snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.manifold".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return True and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class TSNE(BaseTransformer):
71
64
  r"""T-distributed Stochastic Neighbor Embedding
72
65
  For more details on this class, see [sklearn.manifold.TSNE]
@@ -322,12 +315,7 @@ class TSNE(BaseTransformer):
322
315
  )
323
316
  return selected_cols
324
317
 
325
- @telemetry.send_api_usage_telemetry(
326
- project=_PROJECT,
327
- subproject=_SUBPROJECT,
328
- custom_tags=dict([("autogen", True)]),
329
- )
330
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TSNE":
318
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TSNE":
331
319
  """Fit X into an embedded space
332
320
  For more details on this function, see [sklearn.manifold.TSNE.fit]
333
321
  (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE.fit)
@@ -354,12 +342,14 @@ class TSNE(BaseTransformer):
354
342
 
355
343
  self._snowpark_cols = dataset.select(self.input_cols).columns
356
344
 
357
- # If we are already in a stored procedure, no need to kick off another one.
345
+ # If we are already in a stored procedure, no need to kick off another one.
358
346
  if SNOWML_SPROC_ENV in os.environ:
359
347
  statement_params = telemetry.get_function_usage_statement_params(
360
348
  project=_PROJECT,
361
349
  subproject=_SUBPROJECT,
362
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TSNE.__class__.__name__),
350
+ function_name=telemetry.get_statement_params_full_func_name(
351
+ inspect.currentframe(), TSNE.__class__.__name__
352
+ ),
363
353
  api_calls=[Session.call],
364
354
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
365
355
  )
@@ -380,27 +370,24 @@ class TSNE(BaseTransformer):
380
370
  )
381
371
  self._sklearn_object = model_trainer.train()
382
372
  self._is_fitted = True
383
- self._get_model_signatures(dataset)
373
+ self._generate_model_signatures(dataset)
384
374
  return self
385
375
 
386
376
  def _batch_inference_validate_snowpark(
387
377
  self,
388
378
  dataset: DataFrame,
389
379
  inference_method: str,
390
- ) -> List[str]:
391
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
392
- return the available package that exists in the snowflake anaconda channel
380
+ ) -> None:
381
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
393
382
 
394
383
  Args:
395
384
  dataset: snowpark dataframe
396
385
  inference_method: the inference method such as predict, score...
397
-
386
+
398
387
  Raises:
399
388
  SnowflakeMLException: If the estimator is not fitted, raise error
400
389
  SnowflakeMLException: If the session is None, raise error
401
390
 
402
- Returns:
403
- A list of available package that exists in the snowflake anaconda channel
404
391
  """
405
392
  if not self._is_fitted:
406
393
  raise exceptions.SnowflakeMLException(
@@ -418,9 +405,7 @@ class TSNE(BaseTransformer):
418
405
  "Session must not specified for snowpark dataset."
419
406
  ),
420
407
  )
421
- # Validate that key package version in user workspace are supported in snowflake conda channel
422
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
423
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
408
+
424
409
 
425
410
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
426
411
  @telemetry.send_api_usage_telemetry(
@@ -454,7 +439,9 @@ class TSNE(BaseTransformer):
454
439
  # when it is classifier, infer the datatype from label columns
455
440
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
456
441
  # Batch inference takes a single expected output column type. Use the first columns type for now.
457
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
442
+ label_cols_signatures = [
443
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
444
+ ]
458
445
  if len(label_cols_signatures) == 0:
459
446
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
460
447
  raise exceptions.SnowflakeMLException(
@@ -462,25 +449,23 @@ class TSNE(BaseTransformer):
462
449
  original_exception=ValueError(error_str),
463
450
  )
464
451
 
465
- expected_type_inferred = convert_sp_to_sf_type(
466
- label_cols_signatures[0].as_snowpark_type()
467
- )
452
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
468
453
 
469
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
470
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
454
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
455
+ self._deps = self._get_dependencies()
456
+ assert isinstance(
457
+ dataset._session, Session
458
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
459
 
472
460
  transform_kwargs = dict(
473
- session = dataset._session,
474
- dependencies = self._deps,
475
- drop_input_cols = self._drop_input_cols,
476
- expected_output_cols_type = expected_type_inferred,
461
+ session=dataset._session,
462
+ dependencies=self._deps,
463
+ drop_input_cols=self._drop_input_cols,
464
+ expected_output_cols_type=expected_type_inferred,
477
465
  )
478
466
 
479
467
  elif isinstance(dataset, pd.DataFrame):
480
- transform_kwargs = dict(
481
- snowpark_input_cols = self._snowpark_cols,
482
- drop_input_cols = self._drop_input_cols
483
- )
468
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
484
469
 
485
470
  transform_handlers = ModelTransformerBuilder.build(
486
471
  dataset=dataset,
@@ -520,7 +505,7 @@ class TSNE(BaseTransformer):
520
505
  Transformed dataset.
521
506
  """
522
507
  super()._check_dataset_type(dataset)
523
- inference_method="transform"
508
+ inference_method = "transform"
524
509
 
525
510
  # This dictionary contains optional kwargs for batch inference. These kwargs
526
511
  # are specific to the type of dataset used.
@@ -550,24 +535,19 @@ class TSNE(BaseTransformer):
550
535
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
551
536
  expected_dtype = convert_sp_to_sf_type(output_types[0])
552
537
 
553
- self._deps = self._batch_inference_validate_snowpark(
554
- dataset=dataset,
555
- inference_method=inference_method,
556
- )
538
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
539
+ self._deps = self._get_dependencies()
557
540
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
558
541
 
559
542
  transform_kwargs = dict(
560
- session = dataset._session,
561
- dependencies = self._deps,
562
- drop_input_cols = self._drop_input_cols,
563
- expected_output_cols_type = expected_dtype,
543
+ session=dataset._session,
544
+ dependencies=self._deps,
545
+ drop_input_cols=self._drop_input_cols,
546
+ expected_output_cols_type=expected_dtype,
564
547
  )
565
548
 
566
549
  elif isinstance(dataset, pd.DataFrame):
567
- transform_kwargs = dict(
568
- snowpark_input_cols = self._snowpark_cols,
569
- drop_input_cols = self._drop_input_cols
570
- )
550
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
571
551
 
572
552
  transform_handlers = ModelTransformerBuilder.build(
573
553
  dataset=dataset,
@@ -586,7 +566,11 @@ class TSNE(BaseTransformer):
586
566
  return output_df
587
567
 
588
568
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
589
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
569
+ def fit_predict(
570
+ self,
571
+ dataset: Union[DataFrame, pd.DataFrame],
572
+ output_cols_prefix: str = "fit_predict_",
573
+ ) -> Union[DataFrame, pd.DataFrame]:
590
574
  """ Method not supported for this class.
591
575
 
592
576
 
@@ -611,22 +595,106 @@ class TSNE(BaseTransformer):
611
595
  )
612
596
  output_result, fitted_estimator = model_trainer.train_fit_predict(
613
597
  drop_input_cols=self._drop_input_cols,
614
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
598
+ expected_output_cols_list=(
599
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
600
+ ),
615
601
  )
616
602
  self._sklearn_object = fitted_estimator
617
603
  self._is_fitted = True
618
604
  return output_result
619
605
 
606
+
607
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
608
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
609
+ """ Fit X into an embedded space and return that transformed output
610
+ For more details on this function, see [sklearn.manifold.TSNE.fit_transform]
611
+ (https://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html#sklearn.manifold.TSNE.fit_transform)
612
+
613
+
614
+ Raises:
615
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
620
616
 
621
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
622
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
623
- """
617
+ Args:
618
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
619
+ Snowpark or Pandas DataFrame.
620
+ output_cols_prefix: Prefix for the response columns
624
621
  Returns:
625
622
  Transformed dataset.
626
623
  """
627
- self.fit(dataset)
628
- assert self._sklearn_object is not None
629
- return self._sklearn_object.embedding_
624
+ self._infer_input_output_cols(dataset)
625
+ super()._check_dataset_type(dataset)
626
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
627
+ estimator=self._sklearn_object,
628
+ dataset=dataset,
629
+ input_cols=self.input_cols,
630
+ label_cols=self.label_cols,
631
+ sample_weight_col=self.sample_weight_col,
632
+ autogenerated=self._autogenerated,
633
+ subproject=_SUBPROJECT,
634
+ )
635
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
636
+ drop_input_cols=self._drop_input_cols,
637
+ expected_output_cols_list=self.output_cols,
638
+ )
639
+ self._sklearn_object = fitted_estimator
640
+ self._is_fitted = True
641
+ return output_result
642
+
643
+
644
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
645
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
646
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
647
+ """
648
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
649
+ # The following condition is introduced for kneighbors methods, and not used in other methods
650
+ if output_cols:
651
+ output_cols = [
652
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
653
+ for c in output_cols
654
+ ]
655
+ elif getattr(self._sklearn_object, "classes_", None) is None:
656
+ output_cols = [output_cols_prefix]
657
+ elif self._sklearn_object is not None:
658
+ classes = self._sklearn_object.classes_
659
+ if isinstance(classes, numpy.ndarray):
660
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
661
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
662
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
663
+ output_cols = []
664
+ for i, cl in enumerate(classes):
665
+ # For binary classification, there is only one output column for each class
666
+ # ndarray as the two classes are complementary.
667
+ if len(cl) == 2:
668
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
669
+ else:
670
+ output_cols.extend([
671
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
672
+ ])
673
+ else:
674
+ output_cols = []
675
+
676
+ # Make sure column names are valid snowflake identifiers.
677
+ assert output_cols is not None # Make MyPy happy
678
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
679
+
680
+ return rv
681
+
682
+ def _align_expected_output_names(
683
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
684
+ ) -> List[str]:
685
+ # in case the inferred output column names dimension is different
686
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
687
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
688
+ output_df_columns = list(output_df_pd.columns)
689
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
690
+ if self.sample_weight_col:
691
+ output_df_columns_set -= set(self.sample_weight_col)
692
+ # if the dimension of inferred output column names is correct; use it
693
+ if len(expected_output_cols_list) == len(output_df_columns_set):
694
+ return expected_output_cols_list
695
+ # otherwise, use the sklearn estimator's output
696
+ else:
697
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
630
698
 
631
699
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
632
700
  @telemetry.send_api_usage_telemetry(
@@ -658,24 +726,26 @@ class TSNE(BaseTransformer):
658
726
  # are specific to the type of dataset used.
659
727
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
660
728
 
729
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
730
+
661
731
  if isinstance(dataset, DataFrame):
662
- self._deps = self._batch_inference_validate_snowpark(
663
- dataset=dataset,
664
- inference_method=inference_method,
665
- )
666
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
733
+ self._deps = self._get_dependencies()
734
+ assert isinstance(
735
+ dataset._session, Session
736
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
667
737
  transform_kwargs = dict(
668
738
  session=dataset._session,
669
739
  dependencies=self._deps,
670
- drop_input_cols = self._drop_input_cols,
740
+ drop_input_cols=self._drop_input_cols,
671
741
  expected_output_cols_type="float",
672
742
  )
743
+ expected_output_cols = self._align_expected_output_names(
744
+ inference_method, dataset, expected_output_cols, output_cols_prefix
745
+ )
673
746
 
674
747
  elif isinstance(dataset, pd.DataFrame):
675
- transform_kwargs = dict(
676
- snowpark_input_cols = self._snowpark_cols,
677
- drop_input_cols = self._drop_input_cols
678
- )
748
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
679
749
 
680
750
  transform_handlers = ModelTransformerBuilder.build(
681
751
  dataset=dataset,
@@ -687,7 +757,7 @@ class TSNE(BaseTransformer):
687
757
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
688
758
  inference_method=inference_method,
689
759
  input_cols=self.input_cols,
690
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
760
+ expected_output_cols=expected_output_cols,
691
761
  **transform_kwargs
692
762
  )
693
763
  return output_df
@@ -717,29 +787,30 @@ class TSNE(BaseTransformer):
717
787
  Output dataset with log probability of the sample for each class in the model.
718
788
  """
719
789
  super()._check_dataset_type(dataset)
720
- inference_method="predict_log_proba"
790
+ inference_method = "predict_log_proba"
791
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
721
792
 
722
793
  # This dictionary contains optional kwargs for batch inference. These kwargs
723
794
  # are specific to the type of dataset used.
724
795
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
725
796
 
726
797
  if isinstance(dataset, DataFrame):
727
- self._deps = self._batch_inference_validate_snowpark(
728
- dataset=dataset,
729
- inference_method=inference_method,
730
- )
731
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
798
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
799
+ self._deps = self._get_dependencies()
800
+ assert isinstance(
801
+ dataset._session, Session
802
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
732
803
  transform_kwargs = dict(
733
804
  session=dataset._session,
734
805
  dependencies=self._deps,
735
- drop_input_cols = self._drop_input_cols,
806
+ drop_input_cols=self._drop_input_cols,
736
807
  expected_output_cols_type="float",
737
808
  )
809
+ expected_output_cols = self._align_expected_output_names(
810
+ inference_method, dataset, expected_output_cols, output_cols_prefix
811
+ )
738
812
  elif isinstance(dataset, pd.DataFrame):
739
- transform_kwargs = dict(
740
- snowpark_input_cols = self._snowpark_cols,
741
- drop_input_cols = self._drop_input_cols
742
- )
813
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
743
814
 
744
815
  transform_handlers = ModelTransformerBuilder.build(
745
816
  dataset=dataset,
@@ -752,7 +823,7 @@ class TSNE(BaseTransformer):
752
823
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
753
824
  inference_method=inference_method,
754
825
  input_cols=self.input_cols,
755
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
826
+ expected_output_cols=expected_output_cols,
756
827
  **transform_kwargs
757
828
  )
758
829
  return output_df
@@ -778,30 +849,32 @@ class TSNE(BaseTransformer):
778
849
  Output dataset with results of the decision function for the samples in input dataset.
779
850
  """
780
851
  super()._check_dataset_type(dataset)
781
- inference_method="decision_function"
852
+ inference_method = "decision_function"
782
853
 
783
854
  # This dictionary contains optional kwargs for batch inference. These kwargs
784
855
  # are specific to the type of dataset used.
785
856
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
786
857
 
858
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
859
+
787
860
  if isinstance(dataset, DataFrame):
788
- self._deps = self._batch_inference_validate_snowpark(
789
- dataset=dataset,
790
- inference_method=inference_method,
791
- )
792
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
861
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
862
+ self._deps = self._get_dependencies()
863
+ assert isinstance(
864
+ dataset._session, Session
865
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
793
866
  transform_kwargs = dict(
794
867
  session=dataset._session,
795
868
  dependencies=self._deps,
796
- drop_input_cols = self._drop_input_cols,
869
+ drop_input_cols=self._drop_input_cols,
797
870
  expected_output_cols_type="float",
798
871
  )
872
+ expected_output_cols = self._align_expected_output_names(
873
+ inference_method, dataset, expected_output_cols, output_cols_prefix
874
+ )
799
875
 
800
876
  elif isinstance(dataset, pd.DataFrame):
801
- transform_kwargs = dict(
802
- snowpark_input_cols = self._snowpark_cols,
803
- drop_input_cols = self._drop_input_cols
804
- )
877
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
805
878
 
806
879
  transform_handlers = ModelTransformerBuilder.build(
807
880
  dataset=dataset,
@@ -814,7 +887,7 @@ class TSNE(BaseTransformer):
814
887
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
815
888
  inference_method=inference_method,
816
889
  input_cols=self.input_cols,
817
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
890
+ expected_output_cols=expected_output_cols,
818
891
  **transform_kwargs
819
892
  )
820
893
  return output_df
@@ -843,17 +916,17 @@ class TSNE(BaseTransformer):
843
916
  Output dataset with probability of the sample for each class in the model.
844
917
  """
845
918
  super()._check_dataset_type(dataset)
846
- inference_method="score_samples"
919
+ inference_method = "score_samples"
847
920
 
848
921
  # This dictionary contains optional kwargs for batch inference. These kwargs
849
922
  # are specific to the type of dataset used.
850
923
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
851
924
 
925
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
926
+
852
927
  if isinstance(dataset, DataFrame):
853
- self._deps = self._batch_inference_validate_snowpark(
854
- dataset=dataset,
855
- inference_method=inference_method,
856
- )
928
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
929
+ self._deps = self._get_dependencies()
857
930
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
858
931
  transform_kwargs = dict(
859
932
  session=dataset._session,
@@ -861,6 +934,9 @@ class TSNE(BaseTransformer):
861
934
  drop_input_cols = self._drop_input_cols,
862
935
  expected_output_cols_type="float",
863
936
  )
937
+ expected_output_cols = self._align_expected_output_names(
938
+ inference_method, dataset, expected_output_cols, output_cols_prefix
939
+ )
864
940
 
865
941
  elif isinstance(dataset, pd.DataFrame):
866
942
  transform_kwargs = dict(
@@ -879,7 +955,7 @@ class TSNE(BaseTransformer):
879
955
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
880
956
  inference_method=inference_method,
881
957
  input_cols=self.input_cols,
882
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
958
+ expected_output_cols=expected_output_cols,
883
959
  **transform_kwargs
884
960
  )
885
961
  return output_df
@@ -912,17 +988,15 @@ class TSNE(BaseTransformer):
912
988
  transform_kwargs: ScoreKwargsTypedDict = dict()
913
989
 
914
990
  if isinstance(dataset, DataFrame):
915
- self._deps = self._batch_inference_validate_snowpark(
916
- dataset=dataset,
917
- inference_method="score",
918
- )
991
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
992
+ self._deps = self._get_dependencies()
919
993
  selected_cols = self._get_active_columns()
920
994
  if len(selected_cols) > 0:
921
995
  dataset = dataset.select(selected_cols)
922
996
  assert isinstance(dataset._session, Session) # keep mypy happy
923
997
  transform_kwargs = dict(
924
998
  session=dataset._session,
925
- dependencies=["snowflake-snowpark-python"] + self._deps,
999
+ dependencies=self._deps,
926
1000
  score_sproc_imports=['sklearn'],
927
1001
  )
928
1002
  elif isinstance(dataset, pd.DataFrame):
@@ -987,11 +1061,8 @@ class TSNE(BaseTransformer):
987
1061
 
988
1062
  if isinstance(dataset, DataFrame):
989
1063
 
990
- self._deps = self._batch_inference_validate_snowpark(
991
- dataset=dataset,
992
- inference_method=inference_method,
993
-
994
- )
1064
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1065
+ self._deps = self._get_dependencies()
995
1066
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
996
1067
  transform_kwargs = dict(
997
1068
  session = dataset._session,
@@ -1024,50 +1095,84 @@ class TSNE(BaseTransformer):
1024
1095
  )
1025
1096
  return output_df
1026
1097
 
1098
+
1099
+
1100
+ def to_sklearn(self) -> Any:
1101
+ """Get sklearn.manifold.TSNE object.
1102
+ """
1103
+ if self._sklearn_object is None:
1104
+ self._sklearn_object = self._create_sklearn_object()
1105
+ return self._sklearn_object
1106
+
1107
+ def to_xgboost(self) -> Any:
1108
+ raise exceptions.SnowflakeMLException(
1109
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1110
+ original_exception=AttributeError(
1111
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
+ "to_xgboost()",
1113
+ "to_sklearn()"
1114
+ )
1115
+ ),
1116
+ )
1027
1117
 
1028
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1118
+ def to_lightgbm(self) -> Any:
1119
+ raise exceptions.SnowflakeMLException(
1120
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1121
+ original_exception=AttributeError(
1122
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1123
+ "to_lightgbm()",
1124
+ "to_sklearn()"
1125
+ )
1126
+ ),
1127
+ )
1128
+
1129
+ def _get_dependencies(self) -> List[str]:
1130
+ return self._deps
1131
+
1132
+
1133
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1029
1134
  self._model_signature_dict = dict()
1030
1135
 
1031
1136
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1032
1137
 
1033
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1138
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1034
1139
  outputs: List[BaseFeatureSpec] = []
1035
1140
  if hasattr(self, "predict"):
1036
1141
  # keep mypy happy
1037
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1142
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1038
1143
  # For classifier, the type of predict is the same as the type of label
1039
- if self._sklearn_object._estimator_type == 'classifier':
1040
- # label columns is the desired type for output
1144
+ if self._sklearn_object._estimator_type == "classifier":
1145
+ # label columns is the desired type for output
1041
1146
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1042
1147
  # rename the output columns
1043
1148
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1044
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1045
- ([] if self._drop_input_cols else inputs)
1046
- + outputs)
1149
+ self._model_signature_dict["predict"] = ModelSignature(
1150
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1151
+ )
1047
1152
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1048
1153
  # For outlier models, returns -1 for outliers and 1 for inliers.
1049
- # Clusterer returns int64 cluster labels.
1154
+ # Clusterer returns int64 cluster labels.
1050
1155
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1051
1156
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1052
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1053
- ([] if self._drop_input_cols else inputs)
1054
- + outputs)
1055
-
1157
+ self._model_signature_dict["predict"] = ModelSignature(
1158
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1159
+ )
1160
+
1056
1161
  # For regressor, the type of predict is float64
1057
- elif self._sklearn_object._estimator_type == 'regressor':
1162
+ elif self._sklearn_object._estimator_type == "regressor":
1058
1163
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1059
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1060
- ([] if self._drop_input_cols else inputs)
1061
- + outputs)
1062
-
1164
+ self._model_signature_dict["predict"] = ModelSignature(
1165
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1166
+ )
1167
+
1063
1168
  for prob_func in PROB_FUNCTIONS:
1064
1169
  if hasattr(self, prob_func):
1065
1170
  output_cols_prefix: str = f"{prob_func}_"
1066
1171
  output_column_names = self._get_output_column_names(output_cols_prefix)
1067
1172
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1068
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1069
- ([] if self._drop_input_cols else inputs)
1070
- + outputs)
1173
+ self._model_signature_dict[prob_func] = ModelSignature(
1174
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1175
+ )
1071
1176
 
1072
1177
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1073
1178
  items = list(self._model_signature_dict.items())
@@ -1080,10 +1185,10 @@ class TSNE(BaseTransformer):
1080
1185
  """Returns model signature of current class.
1081
1186
 
1082
1187
  Raises:
1083
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1188
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1084
1189
 
1085
1190
  Returns:
1086
- Dict[str, ModelSignature]: each method and its input output signature
1191
+ Dict with each method and its input output signature
1087
1192
  """
1088
1193
  if self._model_signature_dict is None:
1089
1194
  raise exceptions.SnowflakeMLException(
@@ -1091,35 +1196,3 @@ class TSNE(BaseTransformer):
1091
1196
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1092
1197
  )
1093
1198
  return self._model_signature_dict
1094
-
1095
- def to_sklearn(self) -> Any:
1096
- """Get sklearn.manifold.TSNE object.
1097
- """
1098
- if self._sklearn_object is None:
1099
- self._sklearn_object = self._create_sklearn_object()
1100
- return self._sklearn_object
1101
-
1102
- def to_xgboost(self) -> Any:
1103
- raise exceptions.SnowflakeMLException(
1104
- error_code=error_codes.METHOD_NOT_ALLOWED,
1105
- original_exception=AttributeError(
1106
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1107
- "to_xgboost()",
1108
- "to_sklearn()"
1109
- )
1110
- ),
1111
- )
1112
-
1113
- def to_lightgbm(self) -> Any:
1114
- raise exceptions.SnowflakeMLException(
1115
- error_code=error_codes.METHOD_NOT_ALLOWED,
1116
- original_exception=AttributeError(
1117
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1118
- "to_lightgbm()",
1119
- "to_sklearn()"
1120
- )
1121
- ),
1122
- )
1123
-
1124
- def _get_dependencies(self) -> List[str]:
1125
- return self._deps