snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ARDRegression(BaseTransformer):
71
64
  r"""Bayesian ARD regression
72
65
  For more details on this class, see [sklearn.linear_model.ARDRegression]
@@ -258,12 +251,7 @@ class ARDRegression(BaseTransformer):
258
251
  )
259
252
  return selected_cols
260
253
 
261
- @telemetry.send_api_usage_telemetry(
262
- project=_PROJECT,
263
- subproject=_SUBPROJECT,
264
- custom_tags=dict([("autogen", True)]),
265
- )
266
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ARDRegression":
254
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ARDRegression":
267
255
  """Fit the model according to the given training data and parameters
268
256
  For more details on this function, see [sklearn.linear_model.ARDRegression.fit]
269
257
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ARDRegression.html#sklearn.linear_model.ARDRegression.fit)
@@ -290,12 +278,14 @@ class ARDRegression(BaseTransformer):
290
278
 
291
279
  self._snowpark_cols = dataset.select(self.input_cols).columns
292
280
 
293
- # If we are already in a stored procedure, no need to kick off another one.
281
+ # If we are already in a stored procedure, no need to kick off another one.
294
282
  if SNOWML_SPROC_ENV in os.environ:
295
283
  statement_params = telemetry.get_function_usage_statement_params(
296
284
  project=_PROJECT,
297
285
  subproject=_SUBPROJECT,
298
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ARDRegression.__class__.__name__),
286
+ function_name=telemetry.get_statement_params_full_func_name(
287
+ inspect.currentframe(), ARDRegression.__class__.__name__
288
+ ),
299
289
  api_calls=[Session.call],
300
290
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
301
291
  )
@@ -316,27 +306,24 @@ class ARDRegression(BaseTransformer):
316
306
  )
317
307
  self._sklearn_object = model_trainer.train()
318
308
  self._is_fitted = True
319
- self._get_model_signatures(dataset)
309
+ self._generate_model_signatures(dataset)
320
310
  return self
321
311
 
322
312
  def _batch_inference_validate_snowpark(
323
313
  self,
324
314
  dataset: DataFrame,
325
315
  inference_method: str,
326
- ) -> List[str]:
327
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
328
- return the available package that exists in the snowflake anaconda channel
316
+ ) -> None:
317
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
329
318
 
330
319
  Args:
331
320
  dataset: snowpark dataframe
332
321
  inference_method: the inference method such as predict, score...
333
-
322
+
334
323
  Raises:
335
324
  SnowflakeMLException: If the estimator is not fitted, raise error
336
325
  SnowflakeMLException: If the session is None, raise error
337
326
 
338
- Returns:
339
- A list of available package that exists in the snowflake anaconda channel
340
327
  """
341
328
  if not self._is_fitted:
342
329
  raise exceptions.SnowflakeMLException(
@@ -354,9 +341,7 @@ class ARDRegression(BaseTransformer):
354
341
  "Session must not specified for snowpark dataset."
355
342
  ),
356
343
  )
357
- # Validate that key package version in user workspace are supported in snowflake conda channel
358
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
359
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
344
+
360
345
 
361
346
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
362
347
  @telemetry.send_api_usage_telemetry(
@@ -392,7 +377,9 @@ class ARDRegression(BaseTransformer):
392
377
  # when it is classifier, infer the datatype from label columns
393
378
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
394
379
  # Batch inference takes a single expected output column type. Use the first columns type for now.
395
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
380
+ label_cols_signatures = [
381
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
382
+ ]
396
383
  if len(label_cols_signatures) == 0:
397
384
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
398
385
  raise exceptions.SnowflakeMLException(
@@ -400,25 +387,23 @@ class ARDRegression(BaseTransformer):
400
387
  original_exception=ValueError(error_str),
401
388
  )
402
389
 
403
- expected_type_inferred = convert_sp_to_sf_type(
404
- label_cols_signatures[0].as_snowpark_type()
405
- )
390
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
406
391
 
407
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
408
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
392
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
393
+ self._deps = self._get_dependencies()
394
+ assert isinstance(
395
+ dataset._session, Session
396
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
409
397
 
410
398
  transform_kwargs = dict(
411
- session = dataset._session,
412
- dependencies = self._deps,
413
- drop_input_cols = self._drop_input_cols,
414
- expected_output_cols_type = expected_type_inferred,
399
+ session=dataset._session,
400
+ dependencies=self._deps,
401
+ drop_input_cols=self._drop_input_cols,
402
+ expected_output_cols_type=expected_type_inferred,
415
403
  )
416
404
 
417
405
  elif isinstance(dataset, pd.DataFrame):
418
- transform_kwargs = dict(
419
- snowpark_input_cols = self._snowpark_cols,
420
- drop_input_cols = self._drop_input_cols
421
- )
406
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
422
407
 
423
408
  transform_handlers = ModelTransformerBuilder.build(
424
409
  dataset=dataset,
@@ -458,7 +443,7 @@ class ARDRegression(BaseTransformer):
458
443
  Transformed dataset.
459
444
  """
460
445
  super()._check_dataset_type(dataset)
461
- inference_method="transform"
446
+ inference_method = "transform"
462
447
 
463
448
  # This dictionary contains optional kwargs for batch inference. These kwargs
464
449
  # are specific to the type of dataset used.
@@ -488,24 +473,19 @@ class ARDRegression(BaseTransformer):
488
473
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
489
474
  expected_dtype = convert_sp_to_sf_type(output_types[0])
490
475
 
491
- self._deps = self._batch_inference_validate_snowpark(
492
- dataset=dataset,
493
- inference_method=inference_method,
494
- )
476
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
477
+ self._deps = self._get_dependencies()
495
478
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
496
479
 
497
480
  transform_kwargs = dict(
498
- session = dataset._session,
499
- dependencies = self._deps,
500
- drop_input_cols = self._drop_input_cols,
501
- expected_output_cols_type = expected_dtype,
481
+ session=dataset._session,
482
+ dependencies=self._deps,
483
+ drop_input_cols=self._drop_input_cols,
484
+ expected_output_cols_type=expected_dtype,
502
485
  )
503
486
 
504
487
  elif isinstance(dataset, pd.DataFrame):
505
- transform_kwargs = dict(
506
- snowpark_input_cols = self._snowpark_cols,
507
- drop_input_cols = self._drop_input_cols
508
- )
488
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
509
489
 
510
490
  transform_handlers = ModelTransformerBuilder.build(
511
491
  dataset=dataset,
@@ -524,7 +504,11 @@ class ARDRegression(BaseTransformer):
524
504
  return output_df
525
505
 
526
506
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
527
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
507
+ def fit_predict(
508
+ self,
509
+ dataset: Union[DataFrame, pd.DataFrame],
510
+ output_cols_prefix: str = "fit_predict_",
511
+ ) -> Union[DataFrame, pd.DataFrame]:
528
512
  """ Method not supported for this class.
529
513
 
530
514
 
@@ -549,22 +533,104 @@ class ARDRegression(BaseTransformer):
549
533
  )
550
534
  output_result, fitted_estimator = model_trainer.train_fit_predict(
551
535
  drop_input_cols=self._drop_input_cols,
552
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
536
+ expected_output_cols_list=(
537
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
538
+ ),
553
539
  )
554
540
  self._sklearn_object = fitted_estimator
555
541
  self._is_fitted = True
556
542
  return output_result
557
543
 
544
+
545
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
546
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
547
+ """ Method not supported for this class.
548
+
558
549
 
559
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
560
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
561
- """
550
+ Raises:
551
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
552
+
553
+ Args:
554
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
555
+ Snowpark or Pandas DataFrame.
556
+ output_cols_prefix: Prefix for the response columns
562
557
  Returns:
563
558
  Transformed dataset.
564
559
  """
565
- self.fit(dataset)
566
- assert self._sklearn_object is not None
567
- return self._sklearn_object.embedding_
560
+ self._infer_input_output_cols(dataset)
561
+ super()._check_dataset_type(dataset)
562
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
563
+ estimator=self._sklearn_object,
564
+ dataset=dataset,
565
+ input_cols=self.input_cols,
566
+ label_cols=self.label_cols,
567
+ sample_weight_col=self.sample_weight_col,
568
+ autogenerated=self._autogenerated,
569
+ subproject=_SUBPROJECT,
570
+ )
571
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
572
+ drop_input_cols=self._drop_input_cols,
573
+ expected_output_cols_list=self.output_cols,
574
+ )
575
+ self._sklearn_object = fitted_estimator
576
+ self._is_fitted = True
577
+ return output_result
578
+
579
+
580
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
581
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
582
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
583
+ """
584
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
585
+ # The following condition is introduced for kneighbors methods, and not used in other methods
586
+ if output_cols:
587
+ output_cols = [
588
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
589
+ for c in output_cols
590
+ ]
591
+ elif getattr(self._sklearn_object, "classes_", None) is None:
592
+ output_cols = [output_cols_prefix]
593
+ elif self._sklearn_object is not None:
594
+ classes = self._sklearn_object.classes_
595
+ if isinstance(classes, numpy.ndarray):
596
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
597
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
598
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
599
+ output_cols = []
600
+ for i, cl in enumerate(classes):
601
+ # For binary classification, there is only one output column for each class
602
+ # ndarray as the two classes are complementary.
603
+ if len(cl) == 2:
604
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
605
+ else:
606
+ output_cols.extend([
607
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
608
+ ])
609
+ else:
610
+ output_cols = []
611
+
612
+ # Make sure column names are valid snowflake identifiers.
613
+ assert output_cols is not None # Make MyPy happy
614
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
615
+
616
+ return rv
617
+
618
+ def _align_expected_output_names(
619
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
620
+ ) -> List[str]:
621
+ # in case the inferred output column names dimension is different
622
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
623
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
624
+ output_df_columns = list(output_df_pd.columns)
625
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
626
+ if self.sample_weight_col:
627
+ output_df_columns_set -= set(self.sample_weight_col)
628
+ # if the dimension of inferred output column names is correct; use it
629
+ if len(expected_output_cols_list) == len(output_df_columns_set):
630
+ return expected_output_cols_list
631
+ # otherwise, use the sklearn estimator's output
632
+ else:
633
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
568
634
 
569
635
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
570
636
  @telemetry.send_api_usage_telemetry(
@@ -596,24 +662,26 @@ class ARDRegression(BaseTransformer):
596
662
  # are specific to the type of dataset used.
597
663
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
598
664
 
665
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
666
+
599
667
  if isinstance(dataset, DataFrame):
600
- self._deps = self._batch_inference_validate_snowpark(
601
- dataset=dataset,
602
- inference_method=inference_method,
603
- )
604
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
668
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
669
+ self._deps = self._get_dependencies()
670
+ assert isinstance(
671
+ dataset._session, Session
672
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
605
673
  transform_kwargs = dict(
606
674
  session=dataset._session,
607
675
  dependencies=self._deps,
608
- drop_input_cols = self._drop_input_cols,
676
+ drop_input_cols=self._drop_input_cols,
609
677
  expected_output_cols_type="float",
610
678
  )
679
+ expected_output_cols = self._align_expected_output_names(
680
+ inference_method, dataset, expected_output_cols, output_cols_prefix
681
+ )
611
682
 
612
683
  elif isinstance(dataset, pd.DataFrame):
613
- transform_kwargs = dict(
614
- snowpark_input_cols = self._snowpark_cols,
615
- drop_input_cols = self._drop_input_cols
616
- )
684
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
617
685
 
618
686
  transform_handlers = ModelTransformerBuilder.build(
619
687
  dataset=dataset,
@@ -625,7 +693,7 @@ class ARDRegression(BaseTransformer):
625
693
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
626
694
  inference_method=inference_method,
627
695
  input_cols=self.input_cols,
628
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
696
+ expected_output_cols=expected_output_cols,
629
697
  **transform_kwargs
630
698
  )
631
699
  return output_df
@@ -655,29 +723,30 @@ class ARDRegression(BaseTransformer):
655
723
  Output dataset with log probability of the sample for each class in the model.
656
724
  """
657
725
  super()._check_dataset_type(dataset)
658
- inference_method="predict_log_proba"
726
+ inference_method = "predict_log_proba"
727
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
659
728
 
660
729
  # This dictionary contains optional kwargs for batch inference. These kwargs
661
730
  # are specific to the type of dataset used.
662
731
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
663
732
 
664
733
  if isinstance(dataset, DataFrame):
665
- self._deps = self._batch_inference_validate_snowpark(
666
- dataset=dataset,
667
- inference_method=inference_method,
668
- )
669
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
734
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
735
+ self._deps = self._get_dependencies()
736
+ assert isinstance(
737
+ dataset._session, Session
738
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
739
  transform_kwargs = dict(
671
740
  session=dataset._session,
672
741
  dependencies=self._deps,
673
- drop_input_cols = self._drop_input_cols,
742
+ drop_input_cols=self._drop_input_cols,
674
743
  expected_output_cols_type="float",
675
744
  )
745
+ expected_output_cols = self._align_expected_output_names(
746
+ inference_method, dataset, expected_output_cols, output_cols_prefix
747
+ )
676
748
  elif isinstance(dataset, pd.DataFrame):
677
- transform_kwargs = dict(
678
- snowpark_input_cols = self._snowpark_cols,
679
- drop_input_cols = self._drop_input_cols
680
- )
749
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
681
750
 
682
751
  transform_handlers = ModelTransformerBuilder.build(
683
752
  dataset=dataset,
@@ -690,7 +759,7 @@ class ARDRegression(BaseTransformer):
690
759
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
691
760
  inference_method=inference_method,
692
761
  input_cols=self.input_cols,
693
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
762
+ expected_output_cols=expected_output_cols,
694
763
  **transform_kwargs
695
764
  )
696
765
  return output_df
@@ -716,30 +785,32 @@ class ARDRegression(BaseTransformer):
716
785
  Output dataset with results of the decision function for the samples in input dataset.
717
786
  """
718
787
  super()._check_dataset_type(dataset)
719
- inference_method="decision_function"
788
+ inference_method = "decision_function"
720
789
 
721
790
  # This dictionary contains optional kwargs for batch inference. These kwargs
722
791
  # are specific to the type of dataset used.
723
792
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
724
793
 
794
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
795
+
725
796
  if isinstance(dataset, DataFrame):
726
- self._deps = self._batch_inference_validate_snowpark(
727
- dataset=dataset,
728
- inference_method=inference_method,
729
- )
730
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
797
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
798
+ self._deps = self._get_dependencies()
799
+ assert isinstance(
800
+ dataset._session, Session
801
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
802
  transform_kwargs = dict(
732
803
  session=dataset._session,
733
804
  dependencies=self._deps,
734
- drop_input_cols = self._drop_input_cols,
805
+ drop_input_cols=self._drop_input_cols,
735
806
  expected_output_cols_type="float",
736
807
  )
808
+ expected_output_cols = self._align_expected_output_names(
809
+ inference_method, dataset, expected_output_cols, output_cols_prefix
810
+ )
737
811
 
738
812
  elif isinstance(dataset, pd.DataFrame):
739
- transform_kwargs = dict(
740
- snowpark_input_cols = self._snowpark_cols,
741
- drop_input_cols = self._drop_input_cols
742
- )
813
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
743
814
 
744
815
  transform_handlers = ModelTransformerBuilder.build(
745
816
  dataset=dataset,
@@ -752,7 +823,7 @@ class ARDRegression(BaseTransformer):
752
823
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
753
824
  inference_method=inference_method,
754
825
  input_cols=self.input_cols,
755
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
826
+ expected_output_cols=expected_output_cols,
756
827
  **transform_kwargs
757
828
  )
758
829
  return output_df
@@ -781,17 +852,17 @@ class ARDRegression(BaseTransformer):
781
852
  Output dataset with probability of the sample for each class in the model.
782
853
  """
783
854
  super()._check_dataset_type(dataset)
784
- inference_method="score_samples"
855
+ inference_method = "score_samples"
785
856
 
786
857
  # This dictionary contains optional kwargs for batch inference. These kwargs
787
858
  # are specific to the type of dataset used.
788
859
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
789
860
 
861
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
862
+
790
863
  if isinstance(dataset, DataFrame):
791
- self._deps = self._batch_inference_validate_snowpark(
792
- dataset=dataset,
793
- inference_method=inference_method,
794
- )
864
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
865
+ self._deps = self._get_dependencies()
795
866
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
796
867
  transform_kwargs = dict(
797
868
  session=dataset._session,
@@ -799,6 +870,9 @@ class ARDRegression(BaseTransformer):
799
870
  drop_input_cols = self._drop_input_cols,
800
871
  expected_output_cols_type="float",
801
872
  )
873
+ expected_output_cols = self._align_expected_output_names(
874
+ inference_method, dataset, expected_output_cols, output_cols_prefix
875
+ )
802
876
 
803
877
  elif isinstance(dataset, pd.DataFrame):
804
878
  transform_kwargs = dict(
@@ -817,7 +891,7 @@ class ARDRegression(BaseTransformer):
817
891
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
818
892
  inference_method=inference_method,
819
893
  input_cols=self.input_cols,
820
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
894
+ expected_output_cols=expected_output_cols,
821
895
  **transform_kwargs
822
896
  )
823
897
  return output_df
@@ -852,17 +926,15 @@ class ARDRegression(BaseTransformer):
852
926
  transform_kwargs: ScoreKwargsTypedDict = dict()
853
927
 
854
928
  if isinstance(dataset, DataFrame):
855
- self._deps = self._batch_inference_validate_snowpark(
856
- dataset=dataset,
857
- inference_method="score",
858
- )
929
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
930
+ self._deps = self._get_dependencies()
859
931
  selected_cols = self._get_active_columns()
860
932
  if len(selected_cols) > 0:
861
933
  dataset = dataset.select(selected_cols)
862
934
  assert isinstance(dataset._session, Session) # keep mypy happy
863
935
  transform_kwargs = dict(
864
936
  session=dataset._session,
865
- dependencies=["snowflake-snowpark-python"] + self._deps,
937
+ dependencies=self._deps,
866
938
  score_sproc_imports=['sklearn'],
867
939
  )
868
940
  elif isinstance(dataset, pd.DataFrame):
@@ -927,11 +999,8 @@ class ARDRegression(BaseTransformer):
927
999
 
928
1000
  if isinstance(dataset, DataFrame):
929
1001
 
930
- self._deps = self._batch_inference_validate_snowpark(
931
- dataset=dataset,
932
- inference_method=inference_method,
933
-
934
- )
1002
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1003
+ self._deps = self._get_dependencies()
935
1004
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
936
1005
  transform_kwargs = dict(
937
1006
  session = dataset._session,
@@ -964,50 +1033,84 @@ class ARDRegression(BaseTransformer):
964
1033
  )
965
1034
  return output_df
966
1035
 
1036
+
1037
+
1038
+ def to_sklearn(self) -> Any:
1039
+ """Get sklearn.linear_model.ARDRegression object.
1040
+ """
1041
+ if self._sklearn_object is None:
1042
+ self._sklearn_object = self._create_sklearn_object()
1043
+ return self._sklearn_object
1044
+
1045
+ def to_xgboost(self) -> Any:
1046
+ raise exceptions.SnowflakeMLException(
1047
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1048
+ original_exception=AttributeError(
1049
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
+ "to_xgboost()",
1051
+ "to_sklearn()"
1052
+ )
1053
+ ),
1054
+ )
1055
+
1056
+ def to_lightgbm(self) -> Any:
1057
+ raise exceptions.SnowflakeMLException(
1058
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1059
+ original_exception=AttributeError(
1060
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1061
+ "to_lightgbm()",
1062
+ "to_sklearn()"
1063
+ )
1064
+ ),
1065
+ )
1066
+
1067
+ def _get_dependencies(self) -> List[str]:
1068
+ return self._deps
1069
+
967
1070
 
968
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1071
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
969
1072
  self._model_signature_dict = dict()
970
1073
 
971
1074
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
972
1075
 
973
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1076
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
974
1077
  outputs: List[BaseFeatureSpec] = []
975
1078
  if hasattr(self, "predict"):
976
1079
  # keep mypy happy
977
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1080
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
978
1081
  # For classifier, the type of predict is the same as the type of label
979
- if self._sklearn_object._estimator_type == 'classifier':
980
- # label columns is the desired type for output
1082
+ if self._sklearn_object._estimator_type == "classifier":
1083
+ # label columns is the desired type for output
981
1084
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
982
1085
  # rename the output columns
983
1086
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
987
1090
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
988
1091
  # For outlier models, returns -1 for outliers and 1 for inliers.
989
- # Clusterer returns int64 cluster labels.
1092
+ # Clusterer returns int64 cluster labels.
990
1093
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
991
1094
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
992
- self._model_signature_dict["predict"] = ModelSignature(inputs,
993
- ([] if self._drop_input_cols else inputs)
994
- + outputs)
995
-
1095
+ self._model_signature_dict["predict"] = ModelSignature(
1096
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1097
+ )
1098
+
996
1099
  # For regressor, the type of predict is float64
997
- elif self._sklearn_object._estimator_type == 'regressor':
1100
+ elif self._sklearn_object._estimator_type == "regressor":
998
1101
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
999
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1002
-
1102
+ self._model_signature_dict["predict"] = ModelSignature(
1103
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1104
+ )
1105
+
1003
1106
  for prob_func in PROB_FUNCTIONS:
1004
1107
  if hasattr(self, prob_func):
1005
1108
  output_cols_prefix: str = f"{prob_func}_"
1006
1109
  output_column_names = self._get_output_column_names(output_cols_prefix)
1007
1110
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1008
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1111
+ self._model_signature_dict[prob_func] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1011
1114
 
1012
1115
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1013
1116
  items = list(self._model_signature_dict.items())
@@ -1020,10 +1123,10 @@ class ARDRegression(BaseTransformer):
1020
1123
  """Returns model signature of current class.
1021
1124
 
1022
1125
  Raises:
1023
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1126
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1024
1127
 
1025
1128
  Returns:
1026
- Dict[str, ModelSignature]: each method and its input output signature
1129
+ Dict with each method and its input output signature
1027
1130
  """
1028
1131
  if self._model_signature_dict is None:
1029
1132
  raise exceptions.SnowflakeMLException(
@@ -1031,35 +1134,3 @@ class ARDRegression(BaseTransformer):
1031
1134
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1032
1135
  )
1033
1136
  return self._model_signature_dict
1034
-
1035
- def to_sklearn(self) -> Any:
1036
- """Get sklearn.linear_model.ARDRegression object.
1037
- """
1038
- if self._sklearn_object is None:
1039
- self._sklearn_object = self._create_sklearn_object()
1040
- return self._sklearn_object
1041
-
1042
- def to_xgboost(self) -> Any:
1043
- raise exceptions.SnowflakeMLException(
1044
- error_code=error_codes.METHOD_NOT_ALLOWED,
1045
- original_exception=AttributeError(
1046
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1047
- "to_xgboost()",
1048
- "to_sklearn()"
1049
- )
1050
- ),
1051
- )
1052
-
1053
- def to_lightgbm(self) -> Any:
1054
- raise exceptions.SnowflakeMLException(
1055
- error_code=error_codes.METHOD_NOT_ALLOWED,
1056
- original_exception=AttributeError(
1057
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1058
- "to_lightgbm()",
1059
- "to_sklearn()"
1060
- )
1061
- ),
1062
- )
1063
-
1064
- def _get_dependencies(self) -> List[str]:
1065
- return self._deps