snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class OAS(BaseTransformer):
71
64
  r"""Oracle Approximating Shrinkage Estimator as proposed in [1]_
72
65
  For more details on this class, see [sklearn.covariance.OAS]
@@ -202,12 +195,7 @@ class OAS(BaseTransformer):
202
195
  )
203
196
  return selected_cols
204
197
 
205
- @telemetry.send_api_usage_telemetry(
206
- project=_PROJECT,
207
- subproject=_SUBPROJECT,
208
- custom_tags=dict([("autogen", True)]),
209
- )
210
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OAS":
198
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OAS":
211
199
  """Fit the Oracle Approximating Shrinkage covariance model to X
212
200
  For more details on this function, see [sklearn.covariance.OAS.fit]
213
201
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.OAS.html#sklearn.covariance.OAS.fit)
@@ -234,12 +222,14 @@ class OAS(BaseTransformer):
234
222
 
235
223
  self._snowpark_cols = dataset.select(self.input_cols).columns
236
224
 
237
- # If we are already in a stored procedure, no need to kick off another one.
225
+ # If we are already in a stored procedure, no need to kick off another one.
238
226
  if SNOWML_SPROC_ENV in os.environ:
239
227
  statement_params = telemetry.get_function_usage_statement_params(
240
228
  project=_PROJECT,
241
229
  subproject=_SUBPROJECT,
242
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OAS.__class__.__name__),
230
+ function_name=telemetry.get_statement_params_full_func_name(
231
+ inspect.currentframe(), OAS.__class__.__name__
232
+ ),
243
233
  api_calls=[Session.call],
244
234
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
245
235
  )
@@ -260,27 +250,24 @@ class OAS(BaseTransformer):
260
250
  )
261
251
  self._sklearn_object = model_trainer.train()
262
252
  self._is_fitted = True
263
- self._get_model_signatures(dataset)
253
+ self._generate_model_signatures(dataset)
264
254
  return self
265
255
 
266
256
  def _batch_inference_validate_snowpark(
267
257
  self,
268
258
  dataset: DataFrame,
269
259
  inference_method: str,
270
- ) -> List[str]:
271
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
272
- return the available package that exists in the snowflake anaconda channel
260
+ ) -> None:
261
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
273
262
 
274
263
  Args:
275
264
  dataset: snowpark dataframe
276
265
  inference_method: the inference method such as predict, score...
277
-
266
+
278
267
  Raises:
279
268
  SnowflakeMLException: If the estimator is not fitted, raise error
280
269
  SnowflakeMLException: If the session is None, raise error
281
270
 
282
- Returns:
283
- A list of available package that exists in the snowflake anaconda channel
284
271
  """
285
272
  if not self._is_fitted:
286
273
  raise exceptions.SnowflakeMLException(
@@ -298,9 +285,7 @@ class OAS(BaseTransformer):
298
285
  "Session must not specified for snowpark dataset."
299
286
  ),
300
287
  )
301
- # Validate that key package version in user workspace are supported in snowflake conda channel
302
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
303
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
288
+
304
289
 
305
290
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
306
291
  @telemetry.send_api_usage_telemetry(
@@ -334,7 +319,9 @@ class OAS(BaseTransformer):
334
319
  # when it is classifier, infer the datatype from label columns
335
320
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
336
321
  # Batch inference takes a single expected output column type. Use the first columns type for now.
337
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
322
+ label_cols_signatures = [
323
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
324
+ ]
338
325
  if len(label_cols_signatures) == 0:
339
326
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
340
327
  raise exceptions.SnowflakeMLException(
@@ -342,25 +329,23 @@ class OAS(BaseTransformer):
342
329
  original_exception=ValueError(error_str),
343
330
  )
344
331
 
345
- expected_type_inferred = convert_sp_to_sf_type(
346
- label_cols_signatures[0].as_snowpark_type()
347
- )
332
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
348
333
 
349
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
350
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
334
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
335
+ self._deps = self._get_dependencies()
336
+ assert isinstance(
337
+ dataset._session, Session
338
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
351
339
 
352
340
  transform_kwargs = dict(
353
- session = dataset._session,
354
- dependencies = self._deps,
355
- drop_input_cols = self._drop_input_cols,
356
- expected_output_cols_type = expected_type_inferred,
341
+ session=dataset._session,
342
+ dependencies=self._deps,
343
+ drop_input_cols=self._drop_input_cols,
344
+ expected_output_cols_type=expected_type_inferred,
357
345
  )
358
346
 
359
347
  elif isinstance(dataset, pd.DataFrame):
360
- transform_kwargs = dict(
361
- snowpark_input_cols = self._snowpark_cols,
362
- drop_input_cols = self._drop_input_cols
363
- )
348
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
364
349
 
365
350
  transform_handlers = ModelTransformerBuilder.build(
366
351
  dataset=dataset,
@@ -400,7 +385,7 @@ class OAS(BaseTransformer):
400
385
  Transformed dataset.
401
386
  """
402
387
  super()._check_dataset_type(dataset)
403
- inference_method="transform"
388
+ inference_method = "transform"
404
389
 
405
390
  # This dictionary contains optional kwargs for batch inference. These kwargs
406
391
  # are specific to the type of dataset used.
@@ -430,24 +415,19 @@ class OAS(BaseTransformer):
430
415
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
431
416
  expected_dtype = convert_sp_to_sf_type(output_types[0])
432
417
 
433
- self._deps = self._batch_inference_validate_snowpark(
434
- dataset=dataset,
435
- inference_method=inference_method,
436
- )
418
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
419
+ self._deps = self._get_dependencies()
437
420
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
438
421
 
439
422
  transform_kwargs = dict(
440
- session = dataset._session,
441
- dependencies = self._deps,
442
- drop_input_cols = self._drop_input_cols,
443
- expected_output_cols_type = expected_dtype,
423
+ session=dataset._session,
424
+ dependencies=self._deps,
425
+ drop_input_cols=self._drop_input_cols,
426
+ expected_output_cols_type=expected_dtype,
444
427
  )
445
428
 
446
429
  elif isinstance(dataset, pd.DataFrame):
447
- transform_kwargs = dict(
448
- snowpark_input_cols = self._snowpark_cols,
449
- drop_input_cols = self._drop_input_cols
450
- )
430
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
451
431
 
452
432
  transform_handlers = ModelTransformerBuilder.build(
453
433
  dataset=dataset,
@@ -466,7 +446,11 @@ class OAS(BaseTransformer):
466
446
  return output_df
467
447
 
468
448
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
469
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
449
+ def fit_predict(
450
+ self,
451
+ dataset: Union[DataFrame, pd.DataFrame],
452
+ output_cols_prefix: str = "fit_predict_",
453
+ ) -> Union[DataFrame, pd.DataFrame]:
470
454
  """ Method not supported for this class.
471
455
 
472
456
 
@@ -491,22 +475,104 @@ class OAS(BaseTransformer):
491
475
  )
492
476
  output_result, fitted_estimator = model_trainer.train_fit_predict(
493
477
  drop_input_cols=self._drop_input_cols,
494
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
478
+ expected_output_cols_list=(
479
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
480
+ ),
495
481
  )
496
482
  self._sklearn_object = fitted_estimator
497
483
  self._is_fitted = True
498
484
  return output_result
499
485
 
486
+
487
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
488
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
489
+ """ Method not supported for this class.
490
+
500
491
 
501
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
502
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
503
- """
492
+ Raises:
493
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
494
+
495
+ Args:
496
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
497
+ Snowpark or Pandas DataFrame.
498
+ output_cols_prefix: Prefix for the response columns
504
499
  Returns:
505
500
  Transformed dataset.
506
501
  """
507
- self.fit(dataset)
508
- assert self._sklearn_object is not None
509
- return self._sklearn_object.embedding_
502
+ self._infer_input_output_cols(dataset)
503
+ super()._check_dataset_type(dataset)
504
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
505
+ estimator=self._sklearn_object,
506
+ dataset=dataset,
507
+ input_cols=self.input_cols,
508
+ label_cols=self.label_cols,
509
+ sample_weight_col=self.sample_weight_col,
510
+ autogenerated=self._autogenerated,
511
+ subproject=_SUBPROJECT,
512
+ )
513
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
514
+ drop_input_cols=self._drop_input_cols,
515
+ expected_output_cols_list=self.output_cols,
516
+ )
517
+ self._sklearn_object = fitted_estimator
518
+ self._is_fitted = True
519
+ return output_result
520
+
521
+
522
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
523
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
524
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
525
+ """
526
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
527
+ # The following condition is introduced for kneighbors methods, and not used in other methods
528
+ if output_cols:
529
+ output_cols = [
530
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
531
+ for c in output_cols
532
+ ]
533
+ elif getattr(self._sklearn_object, "classes_", None) is None:
534
+ output_cols = [output_cols_prefix]
535
+ elif self._sklearn_object is not None:
536
+ classes = self._sklearn_object.classes_
537
+ if isinstance(classes, numpy.ndarray):
538
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
539
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
540
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
541
+ output_cols = []
542
+ for i, cl in enumerate(classes):
543
+ # For binary classification, there is only one output column for each class
544
+ # ndarray as the two classes are complementary.
545
+ if len(cl) == 2:
546
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
547
+ else:
548
+ output_cols.extend([
549
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
550
+ ])
551
+ else:
552
+ output_cols = []
553
+
554
+ # Make sure column names are valid snowflake identifiers.
555
+ assert output_cols is not None # Make MyPy happy
556
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
557
+
558
+ return rv
559
+
560
+ def _align_expected_output_names(
561
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
562
+ ) -> List[str]:
563
+ # in case the inferred output column names dimension is different
564
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
565
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
566
+ output_df_columns = list(output_df_pd.columns)
567
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
568
+ if self.sample_weight_col:
569
+ output_df_columns_set -= set(self.sample_weight_col)
570
+ # if the dimension of inferred output column names is correct; use it
571
+ if len(expected_output_cols_list) == len(output_df_columns_set):
572
+ return expected_output_cols_list
573
+ # otherwise, use the sklearn estimator's output
574
+ else:
575
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
510
576
 
511
577
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
512
578
  @telemetry.send_api_usage_telemetry(
@@ -538,24 +604,26 @@ class OAS(BaseTransformer):
538
604
  # are specific to the type of dataset used.
539
605
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
540
606
 
607
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
608
+
541
609
  if isinstance(dataset, DataFrame):
542
- self._deps = self._batch_inference_validate_snowpark(
543
- dataset=dataset,
544
- inference_method=inference_method,
545
- )
546
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
610
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
611
+ self._deps = self._get_dependencies()
612
+ assert isinstance(
613
+ dataset._session, Session
614
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
547
615
  transform_kwargs = dict(
548
616
  session=dataset._session,
549
617
  dependencies=self._deps,
550
- drop_input_cols = self._drop_input_cols,
618
+ drop_input_cols=self._drop_input_cols,
551
619
  expected_output_cols_type="float",
552
620
  )
621
+ expected_output_cols = self._align_expected_output_names(
622
+ inference_method, dataset, expected_output_cols, output_cols_prefix
623
+ )
553
624
 
554
625
  elif isinstance(dataset, pd.DataFrame):
555
- transform_kwargs = dict(
556
- snowpark_input_cols = self._snowpark_cols,
557
- drop_input_cols = self._drop_input_cols
558
- )
626
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
559
627
 
560
628
  transform_handlers = ModelTransformerBuilder.build(
561
629
  dataset=dataset,
@@ -567,7 +635,7 @@ class OAS(BaseTransformer):
567
635
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
568
636
  inference_method=inference_method,
569
637
  input_cols=self.input_cols,
570
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
638
+ expected_output_cols=expected_output_cols,
571
639
  **transform_kwargs
572
640
  )
573
641
  return output_df
@@ -597,29 +665,30 @@ class OAS(BaseTransformer):
597
665
  Output dataset with log probability of the sample for each class in the model.
598
666
  """
599
667
  super()._check_dataset_type(dataset)
600
- inference_method="predict_log_proba"
668
+ inference_method = "predict_log_proba"
669
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
601
670
 
602
671
  # This dictionary contains optional kwargs for batch inference. These kwargs
603
672
  # are specific to the type of dataset used.
604
673
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
605
674
 
606
675
  if isinstance(dataset, DataFrame):
607
- self._deps = self._batch_inference_validate_snowpark(
608
- dataset=dataset,
609
- inference_method=inference_method,
610
- )
611
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
676
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
677
+ self._deps = self._get_dependencies()
678
+ assert isinstance(
679
+ dataset._session, Session
680
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
681
  transform_kwargs = dict(
613
682
  session=dataset._session,
614
683
  dependencies=self._deps,
615
- drop_input_cols = self._drop_input_cols,
684
+ drop_input_cols=self._drop_input_cols,
616
685
  expected_output_cols_type="float",
617
686
  )
687
+ expected_output_cols = self._align_expected_output_names(
688
+ inference_method, dataset, expected_output_cols, output_cols_prefix
689
+ )
618
690
  elif isinstance(dataset, pd.DataFrame):
619
- transform_kwargs = dict(
620
- snowpark_input_cols = self._snowpark_cols,
621
- drop_input_cols = self._drop_input_cols
622
- )
691
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
623
692
 
624
693
  transform_handlers = ModelTransformerBuilder.build(
625
694
  dataset=dataset,
@@ -632,7 +701,7 @@ class OAS(BaseTransformer):
632
701
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
633
702
  inference_method=inference_method,
634
703
  input_cols=self.input_cols,
635
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
704
+ expected_output_cols=expected_output_cols,
636
705
  **transform_kwargs
637
706
  )
638
707
  return output_df
@@ -658,30 +727,32 @@ class OAS(BaseTransformer):
658
727
  Output dataset with results of the decision function for the samples in input dataset.
659
728
  """
660
729
  super()._check_dataset_type(dataset)
661
- inference_method="decision_function"
730
+ inference_method = "decision_function"
662
731
 
663
732
  # This dictionary contains optional kwargs for batch inference. These kwargs
664
733
  # are specific to the type of dataset used.
665
734
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
666
735
 
736
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
737
+
667
738
  if isinstance(dataset, DataFrame):
668
- self._deps = self._batch_inference_validate_snowpark(
669
- dataset=dataset,
670
- inference_method=inference_method,
671
- )
672
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
739
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
740
+ self._deps = self._get_dependencies()
741
+ assert isinstance(
742
+ dataset._session, Session
743
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
673
744
  transform_kwargs = dict(
674
745
  session=dataset._session,
675
746
  dependencies=self._deps,
676
- drop_input_cols = self._drop_input_cols,
747
+ drop_input_cols=self._drop_input_cols,
677
748
  expected_output_cols_type="float",
678
749
  )
750
+ expected_output_cols = self._align_expected_output_names(
751
+ inference_method, dataset, expected_output_cols, output_cols_prefix
752
+ )
679
753
 
680
754
  elif isinstance(dataset, pd.DataFrame):
681
- transform_kwargs = dict(
682
- snowpark_input_cols = self._snowpark_cols,
683
- drop_input_cols = self._drop_input_cols
684
- )
755
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
685
756
 
686
757
  transform_handlers = ModelTransformerBuilder.build(
687
758
  dataset=dataset,
@@ -694,7 +765,7 @@ class OAS(BaseTransformer):
694
765
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
695
766
  inference_method=inference_method,
696
767
  input_cols=self.input_cols,
697
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
768
+ expected_output_cols=expected_output_cols,
698
769
  **transform_kwargs
699
770
  )
700
771
  return output_df
@@ -723,17 +794,17 @@ class OAS(BaseTransformer):
723
794
  Output dataset with probability of the sample for each class in the model.
724
795
  """
725
796
  super()._check_dataset_type(dataset)
726
- inference_method="score_samples"
797
+ inference_method = "score_samples"
727
798
 
728
799
  # This dictionary contains optional kwargs for batch inference. These kwargs
729
800
  # are specific to the type of dataset used.
730
801
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
731
802
 
803
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
804
+
732
805
  if isinstance(dataset, DataFrame):
733
- self._deps = self._batch_inference_validate_snowpark(
734
- dataset=dataset,
735
- inference_method=inference_method,
736
- )
806
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
807
+ self._deps = self._get_dependencies()
737
808
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
809
  transform_kwargs = dict(
739
810
  session=dataset._session,
@@ -741,6 +812,9 @@ class OAS(BaseTransformer):
741
812
  drop_input_cols = self._drop_input_cols,
742
813
  expected_output_cols_type="float",
743
814
  )
815
+ expected_output_cols = self._align_expected_output_names(
816
+ inference_method, dataset, expected_output_cols, output_cols_prefix
817
+ )
744
818
 
745
819
  elif isinstance(dataset, pd.DataFrame):
746
820
  transform_kwargs = dict(
@@ -759,7 +833,7 @@ class OAS(BaseTransformer):
759
833
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
760
834
  inference_method=inference_method,
761
835
  input_cols=self.input_cols,
762
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
836
+ expected_output_cols=expected_output_cols,
763
837
  **transform_kwargs
764
838
  )
765
839
  return output_df
@@ -794,17 +868,15 @@ class OAS(BaseTransformer):
794
868
  transform_kwargs: ScoreKwargsTypedDict = dict()
795
869
 
796
870
  if isinstance(dataset, DataFrame):
797
- self._deps = self._batch_inference_validate_snowpark(
798
- dataset=dataset,
799
- inference_method="score",
800
- )
871
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
872
+ self._deps = self._get_dependencies()
801
873
  selected_cols = self._get_active_columns()
802
874
  if len(selected_cols) > 0:
803
875
  dataset = dataset.select(selected_cols)
804
876
  assert isinstance(dataset._session, Session) # keep mypy happy
805
877
  transform_kwargs = dict(
806
878
  session=dataset._session,
807
- dependencies=["snowflake-snowpark-python"] + self._deps,
879
+ dependencies=self._deps,
808
880
  score_sproc_imports=['sklearn'],
809
881
  )
810
882
  elif isinstance(dataset, pd.DataFrame):
@@ -869,11 +941,8 @@ class OAS(BaseTransformer):
869
941
 
870
942
  if isinstance(dataset, DataFrame):
871
943
 
872
- self._deps = self._batch_inference_validate_snowpark(
873
- dataset=dataset,
874
- inference_method=inference_method,
875
-
876
- )
944
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
945
+ self._deps = self._get_dependencies()
877
946
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
878
947
  transform_kwargs = dict(
879
948
  session = dataset._session,
@@ -906,50 +975,84 @@ class OAS(BaseTransformer):
906
975
  )
907
976
  return output_df
908
977
 
978
+
979
+
980
+ def to_sklearn(self) -> Any:
981
+ """Get sklearn.covariance.OAS object.
982
+ """
983
+ if self._sklearn_object is None:
984
+ self._sklearn_object = self._create_sklearn_object()
985
+ return self._sklearn_object
986
+
987
+ def to_xgboost(self) -> Any:
988
+ raise exceptions.SnowflakeMLException(
989
+ error_code=error_codes.METHOD_NOT_ALLOWED,
990
+ original_exception=AttributeError(
991
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
992
+ "to_xgboost()",
993
+ "to_sklearn()"
994
+ )
995
+ ),
996
+ )
997
+
998
+ def to_lightgbm(self) -> Any:
999
+ raise exceptions.SnowflakeMLException(
1000
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1001
+ original_exception=AttributeError(
1002
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1003
+ "to_lightgbm()",
1004
+ "to_sklearn()"
1005
+ )
1006
+ ),
1007
+ )
1008
+
1009
+ def _get_dependencies(self) -> List[str]:
1010
+ return self._deps
1011
+
909
1012
 
910
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1013
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
911
1014
  self._model_signature_dict = dict()
912
1015
 
913
1016
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
914
1017
 
915
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1018
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
916
1019
  outputs: List[BaseFeatureSpec] = []
917
1020
  if hasattr(self, "predict"):
918
1021
  # keep mypy happy
919
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1022
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
920
1023
  # For classifier, the type of predict is the same as the type of label
921
- if self._sklearn_object._estimator_type == 'classifier':
922
- # label columns is the desired type for output
1024
+ if self._sklearn_object._estimator_type == "classifier":
1025
+ # label columns is the desired type for output
923
1026
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
924
1027
  # rename the output columns
925
1028
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
926
- self._model_signature_dict["predict"] = ModelSignature(inputs,
927
- ([] if self._drop_input_cols else inputs)
928
- + outputs)
1029
+ self._model_signature_dict["predict"] = ModelSignature(
1030
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1031
+ )
929
1032
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
930
1033
  # For outlier models, returns -1 for outliers and 1 for inliers.
931
- # Clusterer returns int64 cluster labels.
1034
+ # Clusterer returns int64 cluster labels.
932
1035
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
933
1036
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
934
- self._model_signature_dict["predict"] = ModelSignature(inputs,
935
- ([] if self._drop_input_cols else inputs)
936
- + outputs)
937
-
1037
+ self._model_signature_dict["predict"] = ModelSignature(
1038
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1039
+ )
1040
+
938
1041
  # For regressor, the type of predict is float64
939
- elif self._sklearn_object._estimator_type == 'regressor':
1042
+ elif self._sklearn_object._estimator_type == "regressor":
940
1043
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
941
- self._model_signature_dict["predict"] = ModelSignature(inputs,
942
- ([] if self._drop_input_cols else inputs)
943
- + outputs)
944
-
1044
+ self._model_signature_dict["predict"] = ModelSignature(
1045
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1046
+ )
1047
+
945
1048
  for prob_func in PROB_FUNCTIONS:
946
1049
  if hasattr(self, prob_func):
947
1050
  output_cols_prefix: str = f"{prob_func}_"
948
1051
  output_column_names = self._get_output_column_names(output_cols_prefix)
949
1052
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
950
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
951
- ([] if self._drop_input_cols else inputs)
952
- + outputs)
1053
+ self._model_signature_dict[prob_func] = ModelSignature(
1054
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1055
+ )
953
1056
 
954
1057
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
955
1058
  items = list(self._model_signature_dict.items())
@@ -962,10 +1065,10 @@ class OAS(BaseTransformer):
962
1065
  """Returns model signature of current class.
963
1066
 
964
1067
  Raises:
965
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1068
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
966
1069
 
967
1070
  Returns:
968
- Dict[str, ModelSignature]: each method and its input output signature
1071
+ Dict with each method and its input output signature
969
1072
  """
970
1073
  if self._model_signature_dict is None:
971
1074
  raise exceptions.SnowflakeMLException(
@@ -973,35 +1076,3 @@ class OAS(BaseTransformer):
973
1076
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
974
1077
  )
975
1078
  return self._model_signature_dict
976
-
977
- def to_sklearn(self) -> Any:
978
- """Get sklearn.covariance.OAS object.
979
- """
980
- if self._sklearn_object is None:
981
- self._sklearn_object = self._create_sklearn_object()
982
- return self._sklearn_object
983
-
984
- def to_xgboost(self) -> Any:
985
- raise exceptions.SnowflakeMLException(
986
- error_code=error_codes.METHOD_NOT_ALLOWED,
987
- original_exception=AttributeError(
988
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
989
- "to_xgboost()",
990
- "to_sklearn()"
991
- )
992
- ),
993
- )
994
-
995
- def to_lightgbm(self) -> Any:
996
- raise exceptions.SnowflakeMLException(
997
- error_code=error_codes.METHOD_NOT_ALLOWED,
998
- original_exception=AttributeError(
999
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1000
- "to_lightgbm()",
1001
- "to_sklearn()"
1002
- )
1003
- ),
1004
- )
1005
-
1006
- def _get_dependencies(self) -> List[str]:
1007
- return self._deps