snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn."
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class DecisionTreeRegressor(BaseTransformer):
71
64
  r"""A decision tree regressor
72
65
  For more details on this class, see [sklearn.tree.DecisionTreeRegressor]
@@ -312,12 +305,7 @@ class DecisionTreeRegressor(BaseTransformer):
312
305
  )
313
306
  return selected_cols
314
307
 
315
- @telemetry.send_api_usage_telemetry(
316
- project=_PROJECT,
317
- subproject=_SUBPROJECT,
318
- custom_tags=dict([("autogen", True)]),
319
- )
320
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeRegressor":
308
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeRegressor":
321
309
  """Build a decision tree regressor from the training set (X, y)
322
310
  For more details on this function, see [sklearn.tree.DecisionTreeRegressor.fit]
323
311
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor.fit)
@@ -344,12 +332,14 @@ class DecisionTreeRegressor(BaseTransformer):
344
332
 
345
333
  self._snowpark_cols = dataset.select(self.input_cols).columns
346
334
 
347
- # If we are already in a stored procedure, no need to kick off another one.
335
+ # If we are already in a stored procedure, no need to kick off another one.
348
336
  if SNOWML_SPROC_ENV in os.environ:
349
337
  statement_params = telemetry.get_function_usage_statement_params(
350
338
  project=_PROJECT,
351
339
  subproject=_SUBPROJECT,
352
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeRegressor.__class__.__name__),
340
+ function_name=telemetry.get_statement_params_full_func_name(
341
+ inspect.currentframe(), DecisionTreeRegressor.__class__.__name__
342
+ ),
353
343
  api_calls=[Session.call],
354
344
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
355
345
  )
@@ -370,27 +360,24 @@ class DecisionTreeRegressor(BaseTransformer):
370
360
  )
371
361
  self._sklearn_object = model_trainer.train()
372
362
  self._is_fitted = True
373
- self._get_model_signatures(dataset)
363
+ self._generate_model_signatures(dataset)
374
364
  return self
375
365
 
376
366
  def _batch_inference_validate_snowpark(
377
367
  self,
378
368
  dataset: DataFrame,
379
369
  inference_method: str,
380
- ) -> List[str]:
381
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
382
- return the available package that exists in the snowflake anaconda channel
370
+ ) -> None:
371
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
383
372
 
384
373
  Args:
385
374
  dataset: snowpark dataframe
386
375
  inference_method: the inference method such as predict, score...
387
-
376
+
388
377
  Raises:
389
378
  SnowflakeMLException: If the estimator is not fitted, raise error
390
379
  SnowflakeMLException: If the session is None, raise error
391
380
 
392
- Returns:
393
- A list of available package that exists in the snowflake anaconda channel
394
381
  """
395
382
  if not self._is_fitted:
396
383
  raise exceptions.SnowflakeMLException(
@@ -408,9 +395,7 @@ class DecisionTreeRegressor(BaseTransformer):
408
395
  "Session must not specified for snowpark dataset."
409
396
  ),
410
397
  )
411
- # Validate that key package version in user workspace are supported in snowflake conda channel
412
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
413
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
398
+
414
399
 
415
400
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
416
401
  @telemetry.send_api_usage_telemetry(
@@ -446,7 +431,9 @@ class DecisionTreeRegressor(BaseTransformer):
446
431
  # when it is classifier, infer the datatype from label columns
447
432
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
448
433
  # Batch inference takes a single expected output column type. Use the first columns type for now.
449
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
434
+ label_cols_signatures = [
435
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
436
+ ]
450
437
  if len(label_cols_signatures) == 0:
451
438
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
452
439
  raise exceptions.SnowflakeMLException(
@@ -454,25 +441,23 @@ class DecisionTreeRegressor(BaseTransformer):
454
441
  original_exception=ValueError(error_str),
455
442
  )
456
443
 
457
- expected_type_inferred = convert_sp_to_sf_type(
458
- label_cols_signatures[0].as_snowpark_type()
459
- )
444
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
460
445
 
461
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
462
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
446
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
447
+ self._deps = self._get_dependencies()
448
+ assert isinstance(
449
+ dataset._session, Session
450
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
463
451
 
464
452
  transform_kwargs = dict(
465
- session = dataset._session,
466
- dependencies = self._deps,
467
- drop_input_cols = self._drop_input_cols,
468
- expected_output_cols_type = expected_type_inferred,
453
+ session=dataset._session,
454
+ dependencies=self._deps,
455
+ drop_input_cols=self._drop_input_cols,
456
+ expected_output_cols_type=expected_type_inferred,
469
457
  )
470
458
 
471
459
  elif isinstance(dataset, pd.DataFrame):
472
- transform_kwargs = dict(
473
- snowpark_input_cols = self._snowpark_cols,
474
- drop_input_cols = self._drop_input_cols
475
- )
460
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
476
461
 
477
462
  transform_handlers = ModelTransformerBuilder.build(
478
463
  dataset=dataset,
@@ -512,7 +497,7 @@ class DecisionTreeRegressor(BaseTransformer):
512
497
  Transformed dataset.
513
498
  """
514
499
  super()._check_dataset_type(dataset)
515
- inference_method="transform"
500
+ inference_method = "transform"
516
501
 
517
502
  # This dictionary contains optional kwargs for batch inference. These kwargs
518
503
  # are specific to the type of dataset used.
@@ -542,24 +527,19 @@ class DecisionTreeRegressor(BaseTransformer):
542
527
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
543
528
  expected_dtype = convert_sp_to_sf_type(output_types[0])
544
529
 
545
- self._deps = self._batch_inference_validate_snowpark(
546
- dataset=dataset,
547
- inference_method=inference_method,
548
- )
530
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
531
+ self._deps = self._get_dependencies()
549
532
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
550
533
 
551
534
  transform_kwargs = dict(
552
- session = dataset._session,
553
- dependencies = self._deps,
554
- drop_input_cols = self._drop_input_cols,
555
- expected_output_cols_type = expected_dtype,
535
+ session=dataset._session,
536
+ dependencies=self._deps,
537
+ drop_input_cols=self._drop_input_cols,
538
+ expected_output_cols_type=expected_dtype,
556
539
  )
557
540
 
558
541
  elif isinstance(dataset, pd.DataFrame):
559
- transform_kwargs = dict(
560
- snowpark_input_cols = self._snowpark_cols,
561
- drop_input_cols = self._drop_input_cols
562
- )
542
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
563
543
 
564
544
  transform_handlers = ModelTransformerBuilder.build(
565
545
  dataset=dataset,
@@ -578,7 +558,11 @@ class DecisionTreeRegressor(BaseTransformer):
578
558
  return output_df
579
559
 
580
560
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
581
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
561
+ def fit_predict(
562
+ self,
563
+ dataset: Union[DataFrame, pd.DataFrame],
564
+ output_cols_prefix: str = "fit_predict_",
565
+ ) -> Union[DataFrame, pd.DataFrame]:
582
566
  """ Method not supported for this class.
583
567
 
584
568
 
@@ -603,22 +587,104 @@ class DecisionTreeRegressor(BaseTransformer):
603
587
  )
604
588
  output_result, fitted_estimator = model_trainer.train_fit_predict(
605
589
  drop_input_cols=self._drop_input_cols,
606
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
590
+ expected_output_cols_list=(
591
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
592
+ ),
607
593
  )
608
594
  self._sklearn_object = fitted_estimator
609
595
  self._is_fitted = True
610
596
  return output_result
611
597
 
598
+
599
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
600
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
601
+ """ Method not supported for this class.
602
+
612
603
 
613
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
614
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
615
- """
604
+ Raises:
605
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
606
+
607
+ Args:
608
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
609
+ Snowpark or Pandas DataFrame.
610
+ output_cols_prefix: Prefix for the response columns
616
611
  Returns:
617
612
  Transformed dataset.
618
613
  """
619
- self.fit(dataset)
620
- assert self._sklearn_object is not None
621
- return self._sklearn_object.embedding_
614
+ self._infer_input_output_cols(dataset)
615
+ super()._check_dataset_type(dataset)
616
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
617
+ estimator=self._sklearn_object,
618
+ dataset=dataset,
619
+ input_cols=self.input_cols,
620
+ label_cols=self.label_cols,
621
+ sample_weight_col=self.sample_weight_col,
622
+ autogenerated=self._autogenerated,
623
+ subproject=_SUBPROJECT,
624
+ )
625
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
626
+ drop_input_cols=self._drop_input_cols,
627
+ expected_output_cols_list=self.output_cols,
628
+ )
629
+ self._sklearn_object = fitted_estimator
630
+ self._is_fitted = True
631
+ return output_result
632
+
633
+
634
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
635
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
636
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
637
+ """
638
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
639
+ # The following condition is introduced for kneighbors methods, and not used in other methods
640
+ if output_cols:
641
+ output_cols = [
642
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
643
+ for c in output_cols
644
+ ]
645
+ elif getattr(self._sklearn_object, "classes_", None) is None:
646
+ output_cols = [output_cols_prefix]
647
+ elif self._sklearn_object is not None:
648
+ classes = self._sklearn_object.classes_
649
+ if isinstance(classes, numpy.ndarray):
650
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
651
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
652
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
653
+ output_cols = []
654
+ for i, cl in enumerate(classes):
655
+ # For binary classification, there is only one output column for each class
656
+ # ndarray as the two classes are complementary.
657
+ if len(cl) == 2:
658
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
659
+ else:
660
+ output_cols.extend([
661
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
662
+ ])
663
+ else:
664
+ output_cols = []
665
+
666
+ # Make sure column names are valid snowflake identifiers.
667
+ assert output_cols is not None # Make MyPy happy
668
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
669
+
670
+ return rv
671
+
672
+ def _align_expected_output_names(
673
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
674
+ ) -> List[str]:
675
+ # in case the inferred output column names dimension is different
676
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
677
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
678
+ output_df_columns = list(output_df_pd.columns)
679
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
680
+ if self.sample_weight_col:
681
+ output_df_columns_set -= set(self.sample_weight_col)
682
+ # if the dimension of inferred output column names is correct; use it
683
+ if len(expected_output_cols_list) == len(output_df_columns_set):
684
+ return expected_output_cols_list
685
+ # otherwise, use the sklearn estimator's output
686
+ else:
687
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
622
688
 
623
689
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
624
690
  @telemetry.send_api_usage_telemetry(
@@ -650,24 +716,26 @@ class DecisionTreeRegressor(BaseTransformer):
650
716
  # are specific to the type of dataset used.
651
717
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
652
718
 
719
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
720
+
653
721
  if isinstance(dataset, DataFrame):
654
- self._deps = self._batch_inference_validate_snowpark(
655
- dataset=dataset,
656
- inference_method=inference_method,
657
- )
658
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
722
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
723
+ self._deps = self._get_dependencies()
724
+ assert isinstance(
725
+ dataset._session, Session
726
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
659
727
  transform_kwargs = dict(
660
728
  session=dataset._session,
661
729
  dependencies=self._deps,
662
- drop_input_cols = self._drop_input_cols,
730
+ drop_input_cols=self._drop_input_cols,
663
731
  expected_output_cols_type="float",
664
732
  )
733
+ expected_output_cols = self._align_expected_output_names(
734
+ inference_method, dataset, expected_output_cols, output_cols_prefix
735
+ )
665
736
 
666
737
  elif isinstance(dataset, pd.DataFrame):
667
- transform_kwargs = dict(
668
- snowpark_input_cols = self._snowpark_cols,
669
- drop_input_cols = self._drop_input_cols
670
- )
738
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
671
739
 
672
740
  transform_handlers = ModelTransformerBuilder.build(
673
741
  dataset=dataset,
@@ -679,7 +747,7 @@ class DecisionTreeRegressor(BaseTransformer):
679
747
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
680
748
  inference_method=inference_method,
681
749
  input_cols=self.input_cols,
682
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
750
+ expected_output_cols=expected_output_cols,
683
751
  **transform_kwargs
684
752
  )
685
753
  return output_df
@@ -709,29 +777,30 @@ class DecisionTreeRegressor(BaseTransformer):
709
777
  Output dataset with log probability of the sample for each class in the model.
710
778
  """
711
779
  super()._check_dataset_type(dataset)
712
- inference_method="predict_log_proba"
780
+ inference_method = "predict_log_proba"
781
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
713
782
 
714
783
  # This dictionary contains optional kwargs for batch inference. These kwargs
715
784
  # are specific to the type of dataset used.
716
785
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
717
786
 
718
787
  if isinstance(dataset, DataFrame):
719
- self._deps = self._batch_inference_validate_snowpark(
720
- dataset=dataset,
721
- inference_method=inference_method,
722
- )
723
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
789
+ self._deps = self._get_dependencies()
790
+ assert isinstance(
791
+ dataset._session, Session
792
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
793
  transform_kwargs = dict(
725
794
  session=dataset._session,
726
795
  dependencies=self._deps,
727
- drop_input_cols = self._drop_input_cols,
796
+ drop_input_cols=self._drop_input_cols,
728
797
  expected_output_cols_type="float",
729
798
  )
799
+ expected_output_cols = self._align_expected_output_names(
800
+ inference_method, dataset, expected_output_cols, output_cols_prefix
801
+ )
730
802
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
803
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
804
 
736
805
  transform_handlers = ModelTransformerBuilder.build(
737
806
  dataset=dataset,
@@ -744,7 +813,7 @@ class DecisionTreeRegressor(BaseTransformer):
744
813
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
814
  inference_method=inference_method,
746
815
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
816
+ expected_output_cols=expected_output_cols,
748
817
  **transform_kwargs
749
818
  )
750
819
  return output_df
@@ -770,30 +839,32 @@ class DecisionTreeRegressor(BaseTransformer):
770
839
  Output dataset with results of the decision function for the samples in input dataset.
771
840
  """
772
841
  super()._check_dataset_type(dataset)
773
- inference_method="decision_function"
842
+ inference_method = "decision_function"
774
843
 
775
844
  # This dictionary contains optional kwargs for batch inference. These kwargs
776
845
  # are specific to the type of dataset used.
777
846
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
778
847
 
848
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
849
+
779
850
  if isinstance(dataset, DataFrame):
780
- self._deps = self._batch_inference_validate_snowpark(
781
- dataset=dataset,
782
- inference_method=inference_method,
783
- )
784
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
851
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
852
+ self._deps = self._get_dependencies()
853
+ assert isinstance(
854
+ dataset._session, Session
855
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
785
856
  transform_kwargs = dict(
786
857
  session=dataset._session,
787
858
  dependencies=self._deps,
788
- drop_input_cols = self._drop_input_cols,
859
+ drop_input_cols=self._drop_input_cols,
789
860
  expected_output_cols_type="float",
790
861
  )
862
+ expected_output_cols = self._align_expected_output_names(
863
+ inference_method, dataset, expected_output_cols, output_cols_prefix
864
+ )
791
865
 
792
866
  elif isinstance(dataset, pd.DataFrame):
793
- transform_kwargs = dict(
794
- snowpark_input_cols = self._snowpark_cols,
795
- drop_input_cols = self._drop_input_cols
796
- )
867
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
797
868
 
798
869
  transform_handlers = ModelTransformerBuilder.build(
799
870
  dataset=dataset,
@@ -806,7 +877,7 @@ class DecisionTreeRegressor(BaseTransformer):
806
877
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
807
878
  inference_method=inference_method,
808
879
  input_cols=self.input_cols,
809
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
880
+ expected_output_cols=expected_output_cols,
810
881
  **transform_kwargs
811
882
  )
812
883
  return output_df
@@ -835,17 +906,17 @@ class DecisionTreeRegressor(BaseTransformer):
835
906
  Output dataset with probability of the sample for each class in the model.
836
907
  """
837
908
  super()._check_dataset_type(dataset)
838
- inference_method="score_samples"
909
+ inference_method = "score_samples"
839
910
 
840
911
  # This dictionary contains optional kwargs for batch inference. These kwargs
841
912
  # are specific to the type of dataset used.
842
913
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
843
914
 
915
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
916
+
844
917
  if isinstance(dataset, DataFrame):
845
- self._deps = self._batch_inference_validate_snowpark(
846
- dataset=dataset,
847
- inference_method=inference_method,
848
- )
918
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
919
+ self._deps = self._get_dependencies()
849
920
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
850
921
  transform_kwargs = dict(
851
922
  session=dataset._session,
@@ -853,6 +924,9 @@ class DecisionTreeRegressor(BaseTransformer):
853
924
  drop_input_cols = self._drop_input_cols,
854
925
  expected_output_cols_type="float",
855
926
  )
927
+ expected_output_cols = self._align_expected_output_names(
928
+ inference_method, dataset, expected_output_cols, output_cols_prefix
929
+ )
856
930
 
857
931
  elif isinstance(dataset, pd.DataFrame):
858
932
  transform_kwargs = dict(
@@ -871,7 +945,7 @@ class DecisionTreeRegressor(BaseTransformer):
871
945
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
872
946
  inference_method=inference_method,
873
947
  input_cols=self.input_cols,
874
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
948
+ expected_output_cols=expected_output_cols,
875
949
  **transform_kwargs
876
950
  )
877
951
  return output_df
@@ -906,17 +980,15 @@ class DecisionTreeRegressor(BaseTransformer):
906
980
  transform_kwargs: ScoreKwargsTypedDict = dict()
907
981
 
908
982
  if isinstance(dataset, DataFrame):
909
- self._deps = self._batch_inference_validate_snowpark(
910
- dataset=dataset,
911
- inference_method="score",
912
- )
983
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
984
+ self._deps = self._get_dependencies()
913
985
  selected_cols = self._get_active_columns()
914
986
  if len(selected_cols) > 0:
915
987
  dataset = dataset.select(selected_cols)
916
988
  assert isinstance(dataset._session, Session) # keep mypy happy
917
989
  transform_kwargs = dict(
918
990
  session=dataset._session,
919
- dependencies=["snowflake-snowpark-python"] + self._deps,
991
+ dependencies=self._deps,
920
992
  score_sproc_imports=['sklearn'],
921
993
  )
922
994
  elif isinstance(dataset, pd.DataFrame):
@@ -981,11 +1053,8 @@ class DecisionTreeRegressor(BaseTransformer):
981
1053
 
982
1054
  if isinstance(dataset, DataFrame):
983
1055
 
984
- self._deps = self._batch_inference_validate_snowpark(
985
- dataset=dataset,
986
- inference_method=inference_method,
987
-
988
- )
1056
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1057
+ self._deps = self._get_dependencies()
989
1058
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
990
1059
  transform_kwargs = dict(
991
1060
  session = dataset._session,
@@ -1018,50 +1087,84 @@ class DecisionTreeRegressor(BaseTransformer):
1018
1087
  )
1019
1088
  return output_df
1020
1089
 
1090
+
1091
+
1092
+ def to_sklearn(self) -> Any:
1093
+ """Get sklearn.tree.DecisionTreeRegressor object.
1094
+ """
1095
+ if self._sklearn_object is None:
1096
+ self._sklearn_object = self._create_sklearn_object()
1097
+ return self._sklearn_object
1098
+
1099
+ def to_xgboost(self) -> Any:
1100
+ raise exceptions.SnowflakeMLException(
1101
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1102
+ original_exception=AttributeError(
1103
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1104
+ "to_xgboost()",
1105
+ "to_sklearn()"
1106
+ )
1107
+ ),
1108
+ )
1109
+
1110
+ def to_lightgbm(self) -> Any:
1111
+ raise exceptions.SnowflakeMLException(
1112
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1113
+ original_exception=AttributeError(
1114
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1115
+ "to_lightgbm()",
1116
+ "to_sklearn()"
1117
+ )
1118
+ ),
1119
+ )
1120
+
1121
+ def _get_dependencies(self) -> List[str]:
1122
+ return self._deps
1123
+
1021
1124
 
1022
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1125
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1023
1126
  self._model_signature_dict = dict()
1024
1127
 
1025
1128
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1026
1129
 
1027
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1130
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1028
1131
  outputs: List[BaseFeatureSpec] = []
1029
1132
  if hasattr(self, "predict"):
1030
1133
  # keep mypy happy
1031
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1134
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1032
1135
  # For classifier, the type of predict is the same as the type of label
1033
- if self._sklearn_object._estimator_type == 'classifier':
1034
- # label columns is the desired type for output
1136
+ if self._sklearn_object._estimator_type == "classifier":
1137
+ # label columns is the desired type for output
1035
1138
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1036
1139
  # rename the output columns
1037
1140
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1141
+ self._model_signature_dict["predict"] = ModelSignature(
1142
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1143
+ )
1041
1144
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1042
1145
  # For outlier models, returns -1 for outliers and 1 for inliers.
1043
- # Clusterer returns int64 cluster labels.
1146
+ # Clusterer returns int64 cluster labels.
1044
1147
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1045
1148
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1046
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1047
- ([] if self._drop_input_cols else inputs)
1048
- + outputs)
1049
-
1149
+ self._model_signature_dict["predict"] = ModelSignature(
1150
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1151
+ )
1152
+
1050
1153
  # For regressor, the type of predict is float64
1051
- elif self._sklearn_object._estimator_type == 'regressor':
1154
+ elif self._sklearn_object._estimator_type == "regressor":
1052
1155
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1053
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1054
- ([] if self._drop_input_cols else inputs)
1055
- + outputs)
1056
-
1156
+ self._model_signature_dict["predict"] = ModelSignature(
1157
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1158
+ )
1159
+
1057
1160
  for prob_func in PROB_FUNCTIONS:
1058
1161
  if hasattr(self, prob_func):
1059
1162
  output_cols_prefix: str = f"{prob_func}_"
1060
1163
  output_column_names = self._get_output_column_names(output_cols_prefix)
1061
1164
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1062
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1063
- ([] if self._drop_input_cols else inputs)
1064
- + outputs)
1165
+ self._model_signature_dict[prob_func] = ModelSignature(
1166
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1167
+ )
1065
1168
 
1066
1169
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1067
1170
  items = list(self._model_signature_dict.items())
@@ -1074,10 +1177,10 @@ class DecisionTreeRegressor(BaseTransformer):
1074
1177
  """Returns model signature of current class.
1075
1178
 
1076
1179
  Raises:
1077
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1180
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1078
1181
 
1079
1182
  Returns:
1080
- Dict[str, ModelSignature]: each method and its input output signature
1183
+ Dict with each method and its input output signature
1081
1184
  """
1082
1185
  if self._model_signature_dict is None:
1083
1186
  raise exceptions.SnowflakeMLException(
@@ -1085,35 +1188,3 @@ class DecisionTreeRegressor(BaseTransformer):
1085
1188
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1086
1189
  )
1087
1190
  return self._model_signature_dict
1088
-
1089
- def to_sklearn(self) -> Any:
1090
- """Get sklearn.tree.DecisionTreeRegressor object.
1091
- """
1092
- if self._sklearn_object is None:
1093
- self._sklearn_object = self._create_sklearn_object()
1094
- return self._sklearn_object
1095
-
1096
- def to_xgboost(self) -> Any:
1097
- raise exceptions.SnowflakeMLException(
1098
- error_code=error_codes.METHOD_NOT_ALLOWED,
1099
- original_exception=AttributeError(
1100
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1101
- "to_xgboost()",
1102
- "to_sklearn()"
1103
- )
1104
- ),
1105
- )
1106
-
1107
- def to_lightgbm(self) -> Any:
1108
- raise exceptions.SnowflakeMLException(
1109
- error_code=error_codes.METHOD_NOT_ALLOWED,
1110
- original_exception=AttributeError(
1111
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1112
- "to_lightgbm()",
1113
- "to_sklearn()"
1114
- )
1115
- ),
1116
- )
1117
-
1118
- def _get_dependencies(self) -> List[str]:
1119
- return self._deps