snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn."
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class DecisionTreeRegressor(BaseTransformer):
|
71
64
|
r"""A decision tree regressor
|
72
65
|
For more details on this class, see [sklearn.tree.DecisionTreeRegressor]
|
@@ -312,12 +305,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
312
305
|
)
|
313
306
|
return selected_cols
|
314
307
|
|
315
|
-
|
316
|
-
project=_PROJECT,
|
317
|
-
subproject=_SUBPROJECT,
|
318
|
-
custom_tags=dict([("autogen", True)]),
|
319
|
-
)
|
320
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeRegressor":
|
308
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeRegressor":
|
321
309
|
"""Build a decision tree regressor from the training set (X, y)
|
322
310
|
For more details on this function, see [sklearn.tree.DecisionTreeRegressor.fit]
|
323
311
|
(https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor.fit)
|
@@ -344,12 +332,14 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
344
332
|
|
345
333
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
346
334
|
|
347
|
-
|
335
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
348
336
|
if SNOWML_SPROC_ENV in os.environ:
|
349
337
|
statement_params = telemetry.get_function_usage_statement_params(
|
350
338
|
project=_PROJECT,
|
351
339
|
subproject=_SUBPROJECT,
|
352
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
340
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
341
|
+
inspect.currentframe(), DecisionTreeRegressor.__class__.__name__
|
342
|
+
),
|
353
343
|
api_calls=[Session.call],
|
354
344
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
355
345
|
)
|
@@ -370,27 +360,24 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
370
360
|
)
|
371
361
|
self._sklearn_object = model_trainer.train()
|
372
362
|
self._is_fitted = True
|
373
|
-
self.
|
363
|
+
self._generate_model_signatures(dataset)
|
374
364
|
return self
|
375
365
|
|
376
366
|
def _batch_inference_validate_snowpark(
|
377
367
|
self,
|
378
368
|
dataset: DataFrame,
|
379
369
|
inference_method: str,
|
380
|
-
) ->
|
381
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
382
|
-
return the available package that exists in the snowflake anaconda channel
|
370
|
+
) -> None:
|
371
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
383
372
|
|
384
373
|
Args:
|
385
374
|
dataset: snowpark dataframe
|
386
375
|
inference_method: the inference method such as predict, score...
|
387
|
-
|
376
|
+
|
388
377
|
Raises:
|
389
378
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
390
379
|
SnowflakeMLException: If the session is None, raise error
|
391
380
|
|
392
|
-
Returns:
|
393
|
-
A list of available package that exists in the snowflake anaconda channel
|
394
381
|
"""
|
395
382
|
if not self._is_fitted:
|
396
383
|
raise exceptions.SnowflakeMLException(
|
@@ -408,9 +395,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
408
395
|
"Session must not specified for snowpark dataset."
|
409
396
|
),
|
410
397
|
)
|
411
|
-
|
412
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
413
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
398
|
+
|
414
399
|
|
415
400
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
416
401
|
@telemetry.send_api_usage_telemetry(
|
@@ -446,7 +431,9 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
446
431
|
# when it is classifier, infer the datatype from label columns
|
447
432
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
448
433
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
449
|
-
label_cols_signatures = [
|
434
|
+
label_cols_signatures = [
|
435
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
436
|
+
]
|
450
437
|
if len(label_cols_signatures) == 0:
|
451
438
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
452
439
|
raise exceptions.SnowflakeMLException(
|
@@ -454,25 +441,23 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
454
441
|
original_exception=ValueError(error_str),
|
455
442
|
)
|
456
443
|
|
457
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
458
|
-
label_cols_signatures[0].as_snowpark_type()
|
459
|
-
)
|
444
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
460
445
|
|
461
|
-
self.
|
462
|
-
|
446
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
447
|
+
self._deps = self._get_dependencies()
|
448
|
+
assert isinstance(
|
449
|
+
dataset._session, Session
|
450
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
463
451
|
|
464
452
|
transform_kwargs = dict(
|
465
|
-
session
|
466
|
-
dependencies
|
467
|
-
drop_input_cols
|
468
|
-
expected_output_cols_type
|
453
|
+
session=dataset._session,
|
454
|
+
dependencies=self._deps,
|
455
|
+
drop_input_cols=self._drop_input_cols,
|
456
|
+
expected_output_cols_type=expected_type_inferred,
|
469
457
|
)
|
470
458
|
|
471
459
|
elif isinstance(dataset, pd.DataFrame):
|
472
|
-
transform_kwargs = dict(
|
473
|
-
snowpark_input_cols = self._snowpark_cols,
|
474
|
-
drop_input_cols = self._drop_input_cols
|
475
|
-
)
|
460
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
476
461
|
|
477
462
|
transform_handlers = ModelTransformerBuilder.build(
|
478
463
|
dataset=dataset,
|
@@ -512,7 +497,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
512
497
|
Transformed dataset.
|
513
498
|
"""
|
514
499
|
super()._check_dataset_type(dataset)
|
515
|
-
inference_method="transform"
|
500
|
+
inference_method = "transform"
|
516
501
|
|
517
502
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
518
503
|
# are specific to the type of dataset used.
|
@@ -542,24 +527,19 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
542
527
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
543
528
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
544
529
|
|
545
|
-
self.
|
546
|
-
|
547
|
-
inference_method=inference_method,
|
548
|
-
)
|
530
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
531
|
+
self._deps = self._get_dependencies()
|
549
532
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
550
533
|
|
551
534
|
transform_kwargs = dict(
|
552
|
-
session
|
553
|
-
dependencies
|
554
|
-
drop_input_cols
|
555
|
-
expected_output_cols_type
|
535
|
+
session=dataset._session,
|
536
|
+
dependencies=self._deps,
|
537
|
+
drop_input_cols=self._drop_input_cols,
|
538
|
+
expected_output_cols_type=expected_dtype,
|
556
539
|
)
|
557
540
|
|
558
541
|
elif isinstance(dataset, pd.DataFrame):
|
559
|
-
transform_kwargs = dict(
|
560
|
-
snowpark_input_cols = self._snowpark_cols,
|
561
|
-
drop_input_cols = self._drop_input_cols
|
562
|
-
)
|
542
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
563
543
|
|
564
544
|
transform_handlers = ModelTransformerBuilder.build(
|
565
545
|
dataset=dataset,
|
@@ -578,7 +558,11 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
578
558
|
return output_df
|
579
559
|
|
580
560
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
581
|
-
def fit_predict(
|
561
|
+
def fit_predict(
|
562
|
+
self,
|
563
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
564
|
+
output_cols_prefix: str = "fit_predict_",
|
565
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
582
566
|
""" Method not supported for this class.
|
583
567
|
|
584
568
|
|
@@ -603,22 +587,104 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
603
587
|
)
|
604
588
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
605
589
|
drop_input_cols=self._drop_input_cols,
|
606
|
-
expected_output_cols_list=
|
590
|
+
expected_output_cols_list=(
|
591
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
592
|
+
),
|
607
593
|
)
|
608
594
|
self._sklearn_object = fitted_estimator
|
609
595
|
self._is_fitted = True
|
610
596
|
return output_result
|
611
597
|
|
598
|
+
|
599
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
600
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
601
|
+
""" Method not supported for this class.
|
602
|
+
|
612
603
|
|
613
|
-
|
614
|
-
|
615
|
-
|
604
|
+
Raises:
|
605
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
606
|
+
|
607
|
+
Args:
|
608
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
609
|
+
Snowpark or Pandas DataFrame.
|
610
|
+
output_cols_prefix: Prefix for the response columns
|
616
611
|
Returns:
|
617
612
|
Transformed dataset.
|
618
613
|
"""
|
619
|
-
self.
|
620
|
-
|
621
|
-
|
614
|
+
self._infer_input_output_cols(dataset)
|
615
|
+
super()._check_dataset_type(dataset)
|
616
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
617
|
+
estimator=self._sklearn_object,
|
618
|
+
dataset=dataset,
|
619
|
+
input_cols=self.input_cols,
|
620
|
+
label_cols=self.label_cols,
|
621
|
+
sample_weight_col=self.sample_weight_col,
|
622
|
+
autogenerated=self._autogenerated,
|
623
|
+
subproject=_SUBPROJECT,
|
624
|
+
)
|
625
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
626
|
+
drop_input_cols=self._drop_input_cols,
|
627
|
+
expected_output_cols_list=self.output_cols,
|
628
|
+
)
|
629
|
+
self._sklearn_object = fitted_estimator
|
630
|
+
self._is_fitted = True
|
631
|
+
return output_result
|
632
|
+
|
633
|
+
|
634
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
635
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
636
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
637
|
+
"""
|
638
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
639
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
640
|
+
if output_cols:
|
641
|
+
output_cols = [
|
642
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
643
|
+
for c in output_cols
|
644
|
+
]
|
645
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
646
|
+
output_cols = [output_cols_prefix]
|
647
|
+
elif self._sklearn_object is not None:
|
648
|
+
classes = self._sklearn_object.classes_
|
649
|
+
if isinstance(classes, numpy.ndarray):
|
650
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
651
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
652
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
653
|
+
output_cols = []
|
654
|
+
for i, cl in enumerate(classes):
|
655
|
+
# For binary classification, there is only one output column for each class
|
656
|
+
# ndarray as the two classes are complementary.
|
657
|
+
if len(cl) == 2:
|
658
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
659
|
+
else:
|
660
|
+
output_cols.extend([
|
661
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
662
|
+
])
|
663
|
+
else:
|
664
|
+
output_cols = []
|
665
|
+
|
666
|
+
# Make sure column names are valid snowflake identifiers.
|
667
|
+
assert output_cols is not None # Make MyPy happy
|
668
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
669
|
+
|
670
|
+
return rv
|
671
|
+
|
672
|
+
def _align_expected_output_names(
|
673
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
674
|
+
) -> List[str]:
|
675
|
+
# in case the inferred output column names dimension is different
|
676
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
677
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
678
|
+
output_df_columns = list(output_df_pd.columns)
|
679
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
680
|
+
if self.sample_weight_col:
|
681
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
682
|
+
# if the dimension of inferred output column names is correct; use it
|
683
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
684
|
+
return expected_output_cols_list
|
685
|
+
# otherwise, use the sklearn estimator's output
|
686
|
+
else:
|
687
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
622
688
|
|
623
689
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
624
690
|
@telemetry.send_api_usage_telemetry(
|
@@ -650,24 +716,26 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
650
716
|
# are specific to the type of dataset used.
|
651
717
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
652
718
|
|
719
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
720
|
+
|
653
721
|
if isinstance(dataset, DataFrame):
|
654
|
-
self.
|
655
|
-
|
656
|
-
|
657
|
-
|
658
|
-
|
722
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
723
|
+
self._deps = self._get_dependencies()
|
724
|
+
assert isinstance(
|
725
|
+
dataset._session, Session
|
726
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
659
727
|
transform_kwargs = dict(
|
660
728
|
session=dataset._session,
|
661
729
|
dependencies=self._deps,
|
662
|
-
drop_input_cols
|
730
|
+
drop_input_cols=self._drop_input_cols,
|
663
731
|
expected_output_cols_type="float",
|
664
732
|
)
|
733
|
+
expected_output_cols = self._align_expected_output_names(
|
734
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
735
|
+
)
|
665
736
|
|
666
737
|
elif isinstance(dataset, pd.DataFrame):
|
667
|
-
transform_kwargs = dict(
|
668
|
-
snowpark_input_cols = self._snowpark_cols,
|
669
|
-
drop_input_cols = self._drop_input_cols
|
670
|
-
)
|
738
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
671
739
|
|
672
740
|
transform_handlers = ModelTransformerBuilder.build(
|
673
741
|
dataset=dataset,
|
@@ -679,7 +747,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
679
747
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
680
748
|
inference_method=inference_method,
|
681
749
|
input_cols=self.input_cols,
|
682
|
-
expected_output_cols=
|
750
|
+
expected_output_cols=expected_output_cols,
|
683
751
|
**transform_kwargs
|
684
752
|
)
|
685
753
|
return output_df
|
@@ -709,29 +777,30 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
709
777
|
Output dataset with log probability of the sample for each class in the model.
|
710
778
|
"""
|
711
779
|
super()._check_dataset_type(dataset)
|
712
|
-
inference_method="predict_log_proba"
|
780
|
+
inference_method = "predict_log_proba"
|
781
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
713
782
|
|
714
783
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
715
784
|
# are specific to the type of dataset used.
|
716
785
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
717
786
|
|
718
787
|
if isinstance(dataset, DataFrame):
|
719
|
-
self.
|
720
|
-
|
721
|
-
|
722
|
-
|
723
|
-
|
788
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
789
|
+
self._deps = self._get_dependencies()
|
790
|
+
assert isinstance(
|
791
|
+
dataset._session, Session
|
792
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
724
793
|
transform_kwargs = dict(
|
725
794
|
session=dataset._session,
|
726
795
|
dependencies=self._deps,
|
727
|
-
drop_input_cols
|
796
|
+
drop_input_cols=self._drop_input_cols,
|
728
797
|
expected_output_cols_type="float",
|
729
798
|
)
|
799
|
+
expected_output_cols = self._align_expected_output_names(
|
800
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
801
|
+
)
|
730
802
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
803
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
804
|
|
736
805
|
transform_handlers = ModelTransformerBuilder.build(
|
737
806
|
dataset=dataset,
|
@@ -744,7 +813,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
744
813
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
814
|
inference_method=inference_method,
|
746
815
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
816
|
+
expected_output_cols=expected_output_cols,
|
748
817
|
**transform_kwargs
|
749
818
|
)
|
750
819
|
return output_df
|
@@ -770,30 +839,32 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
770
839
|
Output dataset with results of the decision function for the samples in input dataset.
|
771
840
|
"""
|
772
841
|
super()._check_dataset_type(dataset)
|
773
|
-
inference_method="decision_function"
|
842
|
+
inference_method = "decision_function"
|
774
843
|
|
775
844
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
776
845
|
# are specific to the type of dataset used.
|
777
846
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
778
847
|
|
848
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
849
|
+
|
779
850
|
if isinstance(dataset, DataFrame):
|
780
|
-
self.
|
781
|
-
|
782
|
-
|
783
|
-
|
784
|
-
|
851
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
852
|
+
self._deps = self._get_dependencies()
|
853
|
+
assert isinstance(
|
854
|
+
dataset._session, Session
|
855
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
785
856
|
transform_kwargs = dict(
|
786
857
|
session=dataset._session,
|
787
858
|
dependencies=self._deps,
|
788
|
-
drop_input_cols
|
859
|
+
drop_input_cols=self._drop_input_cols,
|
789
860
|
expected_output_cols_type="float",
|
790
861
|
)
|
862
|
+
expected_output_cols = self._align_expected_output_names(
|
863
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
864
|
+
)
|
791
865
|
|
792
866
|
elif isinstance(dataset, pd.DataFrame):
|
793
|
-
transform_kwargs = dict(
|
794
|
-
snowpark_input_cols = self._snowpark_cols,
|
795
|
-
drop_input_cols = self._drop_input_cols
|
796
|
-
)
|
867
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
797
868
|
|
798
869
|
transform_handlers = ModelTransformerBuilder.build(
|
799
870
|
dataset=dataset,
|
@@ -806,7 +877,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
806
877
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
807
878
|
inference_method=inference_method,
|
808
879
|
input_cols=self.input_cols,
|
809
|
-
expected_output_cols=
|
880
|
+
expected_output_cols=expected_output_cols,
|
810
881
|
**transform_kwargs
|
811
882
|
)
|
812
883
|
return output_df
|
@@ -835,17 +906,17 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
835
906
|
Output dataset with probability of the sample for each class in the model.
|
836
907
|
"""
|
837
908
|
super()._check_dataset_type(dataset)
|
838
|
-
inference_method="score_samples"
|
909
|
+
inference_method = "score_samples"
|
839
910
|
|
840
911
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
841
912
|
# are specific to the type of dataset used.
|
842
913
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
843
914
|
|
915
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
916
|
+
|
844
917
|
if isinstance(dataset, DataFrame):
|
845
|
-
self.
|
846
|
-
|
847
|
-
inference_method=inference_method,
|
848
|
-
)
|
918
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
919
|
+
self._deps = self._get_dependencies()
|
849
920
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
850
921
|
transform_kwargs = dict(
|
851
922
|
session=dataset._session,
|
@@ -853,6 +924,9 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
853
924
|
drop_input_cols = self._drop_input_cols,
|
854
925
|
expected_output_cols_type="float",
|
855
926
|
)
|
927
|
+
expected_output_cols = self._align_expected_output_names(
|
928
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
929
|
+
)
|
856
930
|
|
857
931
|
elif isinstance(dataset, pd.DataFrame):
|
858
932
|
transform_kwargs = dict(
|
@@ -871,7 +945,7 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
871
945
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
872
946
|
inference_method=inference_method,
|
873
947
|
input_cols=self.input_cols,
|
874
|
-
expected_output_cols=
|
948
|
+
expected_output_cols=expected_output_cols,
|
875
949
|
**transform_kwargs
|
876
950
|
)
|
877
951
|
return output_df
|
@@ -906,17 +980,15 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
906
980
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
907
981
|
|
908
982
|
if isinstance(dataset, DataFrame):
|
909
|
-
self.
|
910
|
-
|
911
|
-
inference_method="score",
|
912
|
-
)
|
983
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
984
|
+
self._deps = self._get_dependencies()
|
913
985
|
selected_cols = self._get_active_columns()
|
914
986
|
if len(selected_cols) > 0:
|
915
987
|
dataset = dataset.select(selected_cols)
|
916
988
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
917
989
|
transform_kwargs = dict(
|
918
990
|
session=dataset._session,
|
919
|
-
dependencies=
|
991
|
+
dependencies=self._deps,
|
920
992
|
score_sproc_imports=['sklearn'],
|
921
993
|
)
|
922
994
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -981,11 +1053,8 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
981
1053
|
|
982
1054
|
if isinstance(dataset, DataFrame):
|
983
1055
|
|
984
|
-
self.
|
985
|
-
|
986
|
-
inference_method=inference_method,
|
987
|
-
|
988
|
-
)
|
1056
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1057
|
+
self._deps = self._get_dependencies()
|
989
1058
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
990
1059
|
transform_kwargs = dict(
|
991
1060
|
session = dataset._session,
|
@@ -1018,50 +1087,84 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
1018
1087
|
)
|
1019
1088
|
return output_df
|
1020
1089
|
|
1090
|
+
|
1091
|
+
|
1092
|
+
def to_sklearn(self) -> Any:
|
1093
|
+
"""Get sklearn.tree.DecisionTreeRegressor object.
|
1094
|
+
"""
|
1095
|
+
if self._sklearn_object is None:
|
1096
|
+
self._sklearn_object = self._create_sklearn_object()
|
1097
|
+
return self._sklearn_object
|
1098
|
+
|
1099
|
+
def to_xgboost(self) -> Any:
|
1100
|
+
raise exceptions.SnowflakeMLException(
|
1101
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1102
|
+
original_exception=AttributeError(
|
1103
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1104
|
+
"to_xgboost()",
|
1105
|
+
"to_sklearn()"
|
1106
|
+
)
|
1107
|
+
),
|
1108
|
+
)
|
1109
|
+
|
1110
|
+
def to_lightgbm(self) -> Any:
|
1111
|
+
raise exceptions.SnowflakeMLException(
|
1112
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1113
|
+
original_exception=AttributeError(
|
1114
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1115
|
+
"to_lightgbm()",
|
1116
|
+
"to_sklearn()"
|
1117
|
+
)
|
1118
|
+
),
|
1119
|
+
)
|
1120
|
+
|
1121
|
+
def _get_dependencies(self) -> List[str]:
|
1122
|
+
return self._deps
|
1123
|
+
|
1021
1124
|
|
1022
|
-
def
|
1125
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1023
1126
|
self._model_signature_dict = dict()
|
1024
1127
|
|
1025
1128
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1026
1129
|
|
1027
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1130
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1028
1131
|
outputs: List[BaseFeatureSpec] = []
|
1029
1132
|
if hasattr(self, "predict"):
|
1030
1133
|
# keep mypy happy
|
1031
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1134
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1032
1135
|
# For classifier, the type of predict is the same as the type of label
|
1033
|
-
if self._sklearn_object._estimator_type ==
|
1034
|
-
|
1136
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1137
|
+
# label columns is the desired type for output
|
1035
1138
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1036
1139
|
# rename the output columns
|
1037
1140
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1038
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1039
|
-
|
1040
|
-
|
1141
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1142
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1143
|
+
)
|
1041
1144
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1042
1145
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1043
|
-
# Clusterer returns int64 cluster labels.
|
1146
|
+
# Clusterer returns int64 cluster labels.
|
1044
1147
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1045
1148
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1046
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1047
|
-
|
1048
|
-
|
1049
|
-
|
1149
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1150
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1151
|
+
)
|
1152
|
+
|
1050
1153
|
# For regressor, the type of predict is float64
|
1051
|
-
elif self._sklearn_object._estimator_type ==
|
1154
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1052
1155
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1053
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1054
|
-
|
1055
|
-
|
1056
|
-
|
1156
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1157
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1158
|
+
)
|
1159
|
+
|
1057
1160
|
for prob_func in PROB_FUNCTIONS:
|
1058
1161
|
if hasattr(self, prob_func):
|
1059
1162
|
output_cols_prefix: str = f"{prob_func}_"
|
1060
1163
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1061
1164
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1062
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1063
|
-
|
1064
|
-
|
1165
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1166
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1167
|
+
)
|
1065
1168
|
|
1066
1169
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1067
1170
|
items = list(self._model_signature_dict.items())
|
@@ -1074,10 +1177,10 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
1074
1177
|
"""Returns model signature of current class.
|
1075
1178
|
|
1076
1179
|
Raises:
|
1077
|
-
|
1180
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1078
1181
|
|
1079
1182
|
Returns:
|
1080
|
-
Dict
|
1183
|
+
Dict with each method and its input output signature
|
1081
1184
|
"""
|
1082
1185
|
if self._model_signature_dict is None:
|
1083
1186
|
raise exceptions.SnowflakeMLException(
|
@@ -1085,35 +1188,3 @@ class DecisionTreeRegressor(BaseTransformer):
|
|
1085
1188
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1086
1189
|
)
|
1087
1190
|
return self._model_signature_dict
|
1088
|
-
|
1089
|
-
def to_sklearn(self) -> Any:
|
1090
|
-
"""Get sklearn.tree.DecisionTreeRegressor object.
|
1091
|
-
"""
|
1092
|
-
if self._sklearn_object is None:
|
1093
|
-
self._sklearn_object = self._create_sklearn_object()
|
1094
|
-
return self._sklearn_object
|
1095
|
-
|
1096
|
-
def to_xgboost(self) -> Any:
|
1097
|
-
raise exceptions.SnowflakeMLException(
|
1098
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1099
|
-
original_exception=AttributeError(
|
1100
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1101
|
-
"to_xgboost()",
|
1102
|
-
"to_sklearn()"
|
1103
|
-
)
|
1104
|
-
),
|
1105
|
-
)
|
1106
|
-
|
1107
|
-
def to_lightgbm(self) -> Any:
|
1108
|
-
raise exceptions.SnowflakeMLException(
|
1109
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1110
|
-
original_exception=AttributeError(
|
1111
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1112
|
-
"to_lightgbm()",
|
1113
|
-
"to_sklearn()"
|
1114
|
-
)
|
1115
|
-
),
|
1116
|
-
)
|
1117
|
-
|
1118
|
-
def _get_dependencies(self) -> List[str]:
|
1119
|
-
return self._deps
|