snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class PoissonRegressor(BaseTransformer):
|
71
64
|
r"""Generalized Linear Model with a Poisson distribution
|
72
65
|
For more details on this class, see [sklearn.linear_model.PoissonRegressor]
|
@@ -249,12 +242,7 @@ class PoissonRegressor(BaseTransformer):
|
|
249
242
|
)
|
250
243
|
return selected_cols
|
251
244
|
|
252
|
-
|
253
|
-
project=_PROJECT,
|
254
|
-
subproject=_SUBPROJECT,
|
255
|
-
custom_tags=dict([("autogen", True)]),
|
256
|
-
)
|
257
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PoissonRegressor":
|
245
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PoissonRegressor":
|
258
246
|
"""Fit a Generalized Linear Model
|
259
247
|
For more details on this function, see [sklearn.linear_model.PoissonRegressor.fit]
|
260
248
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PoissonRegressor.html#sklearn.linear_model.PoissonRegressor.fit)
|
@@ -281,12 +269,14 @@ class PoissonRegressor(BaseTransformer):
|
|
281
269
|
|
282
270
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
283
271
|
|
284
|
-
|
272
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
285
273
|
if SNOWML_SPROC_ENV in os.environ:
|
286
274
|
statement_params = telemetry.get_function_usage_statement_params(
|
287
275
|
project=_PROJECT,
|
288
276
|
subproject=_SUBPROJECT,
|
289
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
277
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
278
|
+
inspect.currentframe(), PoissonRegressor.__class__.__name__
|
279
|
+
),
|
290
280
|
api_calls=[Session.call],
|
291
281
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
292
282
|
)
|
@@ -307,27 +297,24 @@ class PoissonRegressor(BaseTransformer):
|
|
307
297
|
)
|
308
298
|
self._sklearn_object = model_trainer.train()
|
309
299
|
self._is_fitted = True
|
310
|
-
self.
|
300
|
+
self._generate_model_signatures(dataset)
|
311
301
|
return self
|
312
302
|
|
313
303
|
def _batch_inference_validate_snowpark(
|
314
304
|
self,
|
315
305
|
dataset: DataFrame,
|
316
306
|
inference_method: str,
|
317
|
-
) ->
|
318
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
319
|
-
return the available package that exists in the snowflake anaconda channel
|
307
|
+
) -> None:
|
308
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
320
309
|
|
321
310
|
Args:
|
322
311
|
dataset: snowpark dataframe
|
323
312
|
inference_method: the inference method such as predict, score...
|
324
|
-
|
313
|
+
|
325
314
|
Raises:
|
326
315
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
327
316
|
SnowflakeMLException: If the session is None, raise error
|
328
317
|
|
329
|
-
Returns:
|
330
|
-
A list of available package that exists in the snowflake anaconda channel
|
331
318
|
"""
|
332
319
|
if not self._is_fitted:
|
333
320
|
raise exceptions.SnowflakeMLException(
|
@@ -345,9 +332,7 @@ class PoissonRegressor(BaseTransformer):
|
|
345
332
|
"Session must not specified for snowpark dataset."
|
346
333
|
),
|
347
334
|
)
|
348
|
-
|
349
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
350
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
335
|
+
|
351
336
|
|
352
337
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
353
338
|
@telemetry.send_api_usage_telemetry(
|
@@ -383,7 +368,9 @@ class PoissonRegressor(BaseTransformer):
|
|
383
368
|
# when it is classifier, infer the datatype from label columns
|
384
369
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
385
370
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
386
|
-
label_cols_signatures = [
|
371
|
+
label_cols_signatures = [
|
372
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
373
|
+
]
|
387
374
|
if len(label_cols_signatures) == 0:
|
388
375
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
389
376
|
raise exceptions.SnowflakeMLException(
|
@@ -391,25 +378,23 @@ class PoissonRegressor(BaseTransformer):
|
|
391
378
|
original_exception=ValueError(error_str),
|
392
379
|
)
|
393
380
|
|
394
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
395
|
-
label_cols_signatures[0].as_snowpark_type()
|
396
|
-
)
|
381
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
397
382
|
|
398
|
-
self.
|
399
|
-
|
383
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
384
|
+
self._deps = self._get_dependencies()
|
385
|
+
assert isinstance(
|
386
|
+
dataset._session, Session
|
387
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
400
388
|
|
401
389
|
transform_kwargs = dict(
|
402
|
-
session
|
403
|
-
dependencies
|
404
|
-
drop_input_cols
|
405
|
-
expected_output_cols_type
|
390
|
+
session=dataset._session,
|
391
|
+
dependencies=self._deps,
|
392
|
+
drop_input_cols=self._drop_input_cols,
|
393
|
+
expected_output_cols_type=expected_type_inferred,
|
406
394
|
)
|
407
395
|
|
408
396
|
elif isinstance(dataset, pd.DataFrame):
|
409
|
-
transform_kwargs = dict(
|
410
|
-
snowpark_input_cols = self._snowpark_cols,
|
411
|
-
drop_input_cols = self._drop_input_cols
|
412
|
-
)
|
397
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
413
398
|
|
414
399
|
transform_handlers = ModelTransformerBuilder.build(
|
415
400
|
dataset=dataset,
|
@@ -449,7 +434,7 @@ class PoissonRegressor(BaseTransformer):
|
|
449
434
|
Transformed dataset.
|
450
435
|
"""
|
451
436
|
super()._check_dataset_type(dataset)
|
452
|
-
inference_method="transform"
|
437
|
+
inference_method = "transform"
|
453
438
|
|
454
439
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
455
440
|
# are specific to the type of dataset used.
|
@@ -479,24 +464,19 @@ class PoissonRegressor(BaseTransformer):
|
|
479
464
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
480
465
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
481
466
|
|
482
|
-
self.
|
483
|
-
|
484
|
-
inference_method=inference_method,
|
485
|
-
)
|
467
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
468
|
+
self._deps = self._get_dependencies()
|
486
469
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
487
470
|
|
488
471
|
transform_kwargs = dict(
|
489
|
-
session
|
490
|
-
dependencies
|
491
|
-
drop_input_cols
|
492
|
-
expected_output_cols_type
|
472
|
+
session=dataset._session,
|
473
|
+
dependencies=self._deps,
|
474
|
+
drop_input_cols=self._drop_input_cols,
|
475
|
+
expected_output_cols_type=expected_dtype,
|
493
476
|
)
|
494
477
|
|
495
478
|
elif isinstance(dataset, pd.DataFrame):
|
496
|
-
transform_kwargs = dict(
|
497
|
-
snowpark_input_cols = self._snowpark_cols,
|
498
|
-
drop_input_cols = self._drop_input_cols
|
499
|
-
)
|
479
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
500
480
|
|
501
481
|
transform_handlers = ModelTransformerBuilder.build(
|
502
482
|
dataset=dataset,
|
@@ -515,7 +495,11 @@ class PoissonRegressor(BaseTransformer):
|
|
515
495
|
return output_df
|
516
496
|
|
517
497
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
518
|
-
def fit_predict(
|
498
|
+
def fit_predict(
|
499
|
+
self,
|
500
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
501
|
+
output_cols_prefix: str = "fit_predict_",
|
502
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
519
503
|
""" Method not supported for this class.
|
520
504
|
|
521
505
|
|
@@ -540,22 +524,104 @@ class PoissonRegressor(BaseTransformer):
|
|
540
524
|
)
|
541
525
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
542
526
|
drop_input_cols=self._drop_input_cols,
|
543
|
-
expected_output_cols_list=
|
527
|
+
expected_output_cols_list=(
|
528
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
529
|
+
),
|
544
530
|
)
|
545
531
|
self._sklearn_object = fitted_estimator
|
546
532
|
self._is_fitted = True
|
547
533
|
return output_result
|
548
534
|
|
535
|
+
|
536
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
537
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
538
|
+
""" Method not supported for this class.
|
539
|
+
|
549
540
|
|
550
|
-
|
551
|
-
|
552
|
-
|
541
|
+
Raises:
|
542
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
543
|
+
|
544
|
+
Args:
|
545
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
546
|
+
Snowpark or Pandas DataFrame.
|
547
|
+
output_cols_prefix: Prefix for the response columns
|
553
548
|
Returns:
|
554
549
|
Transformed dataset.
|
555
550
|
"""
|
556
|
-
self.
|
557
|
-
|
558
|
-
|
551
|
+
self._infer_input_output_cols(dataset)
|
552
|
+
super()._check_dataset_type(dataset)
|
553
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
554
|
+
estimator=self._sklearn_object,
|
555
|
+
dataset=dataset,
|
556
|
+
input_cols=self.input_cols,
|
557
|
+
label_cols=self.label_cols,
|
558
|
+
sample_weight_col=self.sample_weight_col,
|
559
|
+
autogenerated=self._autogenerated,
|
560
|
+
subproject=_SUBPROJECT,
|
561
|
+
)
|
562
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
563
|
+
drop_input_cols=self._drop_input_cols,
|
564
|
+
expected_output_cols_list=self.output_cols,
|
565
|
+
)
|
566
|
+
self._sklearn_object = fitted_estimator
|
567
|
+
self._is_fitted = True
|
568
|
+
return output_result
|
569
|
+
|
570
|
+
|
571
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
572
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
573
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
574
|
+
"""
|
575
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
576
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
577
|
+
if output_cols:
|
578
|
+
output_cols = [
|
579
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
580
|
+
for c in output_cols
|
581
|
+
]
|
582
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
583
|
+
output_cols = [output_cols_prefix]
|
584
|
+
elif self._sklearn_object is not None:
|
585
|
+
classes = self._sklearn_object.classes_
|
586
|
+
if isinstance(classes, numpy.ndarray):
|
587
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
588
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
589
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
590
|
+
output_cols = []
|
591
|
+
for i, cl in enumerate(classes):
|
592
|
+
# For binary classification, there is only one output column for each class
|
593
|
+
# ndarray as the two classes are complementary.
|
594
|
+
if len(cl) == 2:
|
595
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
596
|
+
else:
|
597
|
+
output_cols.extend([
|
598
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
599
|
+
])
|
600
|
+
else:
|
601
|
+
output_cols = []
|
602
|
+
|
603
|
+
# Make sure column names are valid snowflake identifiers.
|
604
|
+
assert output_cols is not None # Make MyPy happy
|
605
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
606
|
+
|
607
|
+
return rv
|
608
|
+
|
609
|
+
def _align_expected_output_names(
|
610
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
611
|
+
) -> List[str]:
|
612
|
+
# in case the inferred output column names dimension is different
|
613
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
614
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
615
|
+
output_df_columns = list(output_df_pd.columns)
|
616
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
617
|
+
if self.sample_weight_col:
|
618
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
619
|
+
# if the dimension of inferred output column names is correct; use it
|
620
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
621
|
+
return expected_output_cols_list
|
622
|
+
# otherwise, use the sklearn estimator's output
|
623
|
+
else:
|
624
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
559
625
|
|
560
626
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
561
627
|
@telemetry.send_api_usage_telemetry(
|
@@ -587,24 +653,26 @@ class PoissonRegressor(BaseTransformer):
|
|
587
653
|
# are specific to the type of dataset used.
|
588
654
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
589
655
|
|
656
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
657
|
+
|
590
658
|
if isinstance(dataset, DataFrame):
|
591
|
-
self.
|
592
|
-
|
593
|
-
|
594
|
-
|
595
|
-
|
659
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
660
|
+
self._deps = self._get_dependencies()
|
661
|
+
assert isinstance(
|
662
|
+
dataset._session, Session
|
663
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
596
664
|
transform_kwargs = dict(
|
597
665
|
session=dataset._session,
|
598
666
|
dependencies=self._deps,
|
599
|
-
drop_input_cols
|
667
|
+
drop_input_cols=self._drop_input_cols,
|
600
668
|
expected_output_cols_type="float",
|
601
669
|
)
|
670
|
+
expected_output_cols = self._align_expected_output_names(
|
671
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
672
|
+
)
|
602
673
|
|
603
674
|
elif isinstance(dataset, pd.DataFrame):
|
604
|
-
transform_kwargs = dict(
|
605
|
-
snowpark_input_cols = self._snowpark_cols,
|
606
|
-
drop_input_cols = self._drop_input_cols
|
607
|
-
)
|
675
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
608
676
|
|
609
677
|
transform_handlers = ModelTransformerBuilder.build(
|
610
678
|
dataset=dataset,
|
@@ -616,7 +684,7 @@ class PoissonRegressor(BaseTransformer):
|
|
616
684
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
617
685
|
inference_method=inference_method,
|
618
686
|
input_cols=self.input_cols,
|
619
|
-
expected_output_cols=
|
687
|
+
expected_output_cols=expected_output_cols,
|
620
688
|
**transform_kwargs
|
621
689
|
)
|
622
690
|
return output_df
|
@@ -646,29 +714,30 @@ class PoissonRegressor(BaseTransformer):
|
|
646
714
|
Output dataset with log probability of the sample for each class in the model.
|
647
715
|
"""
|
648
716
|
super()._check_dataset_type(dataset)
|
649
|
-
inference_method="predict_log_proba"
|
717
|
+
inference_method = "predict_log_proba"
|
718
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
650
719
|
|
651
720
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
652
721
|
# are specific to the type of dataset used.
|
653
722
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
654
723
|
|
655
724
|
if isinstance(dataset, DataFrame):
|
656
|
-
self.
|
657
|
-
|
658
|
-
|
659
|
-
|
660
|
-
|
725
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
726
|
+
self._deps = self._get_dependencies()
|
727
|
+
assert isinstance(
|
728
|
+
dataset._session, Session
|
729
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
661
730
|
transform_kwargs = dict(
|
662
731
|
session=dataset._session,
|
663
732
|
dependencies=self._deps,
|
664
|
-
drop_input_cols
|
733
|
+
drop_input_cols=self._drop_input_cols,
|
665
734
|
expected_output_cols_type="float",
|
666
735
|
)
|
736
|
+
expected_output_cols = self._align_expected_output_names(
|
737
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
738
|
+
)
|
667
739
|
elif isinstance(dataset, pd.DataFrame):
|
668
|
-
transform_kwargs = dict(
|
669
|
-
snowpark_input_cols = self._snowpark_cols,
|
670
|
-
drop_input_cols = self._drop_input_cols
|
671
|
-
)
|
740
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
672
741
|
|
673
742
|
transform_handlers = ModelTransformerBuilder.build(
|
674
743
|
dataset=dataset,
|
@@ -681,7 +750,7 @@ class PoissonRegressor(BaseTransformer):
|
|
681
750
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
682
751
|
inference_method=inference_method,
|
683
752
|
input_cols=self.input_cols,
|
684
|
-
expected_output_cols=
|
753
|
+
expected_output_cols=expected_output_cols,
|
685
754
|
**transform_kwargs
|
686
755
|
)
|
687
756
|
return output_df
|
@@ -707,30 +776,32 @@ class PoissonRegressor(BaseTransformer):
|
|
707
776
|
Output dataset with results of the decision function for the samples in input dataset.
|
708
777
|
"""
|
709
778
|
super()._check_dataset_type(dataset)
|
710
|
-
inference_method="decision_function"
|
779
|
+
inference_method = "decision_function"
|
711
780
|
|
712
781
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
713
782
|
# are specific to the type of dataset used.
|
714
783
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
715
784
|
|
785
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
786
|
+
|
716
787
|
if isinstance(dataset, DataFrame):
|
717
|
-
self.
|
718
|
-
|
719
|
-
|
720
|
-
|
721
|
-
|
788
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
789
|
+
self._deps = self._get_dependencies()
|
790
|
+
assert isinstance(
|
791
|
+
dataset._session, Session
|
792
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
722
793
|
transform_kwargs = dict(
|
723
794
|
session=dataset._session,
|
724
795
|
dependencies=self._deps,
|
725
|
-
drop_input_cols
|
796
|
+
drop_input_cols=self._drop_input_cols,
|
726
797
|
expected_output_cols_type="float",
|
727
798
|
)
|
799
|
+
expected_output_cols = self._align_expected_output_names(
|
800
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
801
|
+
)
|
728
802
|
|
729
803
|
elif isinstance(dataset, pd.DataFrame):
|
730
|
-
transform_kwargs = dict(
|
731
|
-
snowpark_input_cols = self._snowpark_cols,
|
732
|
-
drop_input_cols = self._drop_input_cols
|
733
|
-
)
|
804
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
734
805
|
|
735
806
|
transform_handlers = ModelTransformerBuilder.build(
|
736
807
|
dataset=dataset,
|
@@ -743,7 +814,7 @@ class PoissonRegressor(BaseTransformer):
|
|
743
814
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
744
815
|
inference_method=inference_method,
|
745
816
|
input_cols=self.input_cols,
|
746
|
-
expected_output_cols=
|
817
|
+
expected_output_cols=expected_output_cols,
|
747
818
|
**transform_kwargs
|
748
819
|
)
|
749
820
|
return output_df
|
@@ -772,17 +843,17 @@ class PoissonRegressor(BaseTransformer):
|
|
772
843
|
Output dataset with probability of the sample for each class in the model.
|
773
844
|
"""
|
774
845
|
super()._check_dataset_type(dataset)
|
775
|
-
inference_method="score_samples"
|
846
|
+
inference_method = "score_samples"
|
776
847
|
|
777
848
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
778
849
|
# are specific to the type of dataset used.
|
779
850
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
780
851
|
|
852
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
853
|
+
|
781
854
|
if isinstance(dataset, DataFrame):
|
782
|
-
self.
|
783
|
-
|
784
|
-
inference_method=inference_method,
|
785
|
-
)
|
855
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
856
|
+
self._deps = self._get_dependencies()
|
786
857
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
787
858
|
transform_kwargs = dict(
|
788
859
|
session=dataset._session,
|
@@ -790,6 +861,9 @@ class PoissonRegressor(BaseTransformer):
|
|
790
861
|
drop_input_cols = self._drop_input_cols,
|
791
862
|
expected_output_cols_type="float",
|
792
863
|
)
|
864
|
+
expected_output_cols = self._align_expected_output_names(
|
865
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
866
|
+
)
|
793
867
|
|
794
868
|
elif isinstance(dataset, pd.DataFrame):
|
795
869
|
transform_kwargs = dict(
|
@@ -808,7 +882,7 @@ class PoissonRegressor(BaseTransformer):
|
|
808
882
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
809
883
|
inference_method=inference_method,
|
810
884
|
input_cols=self.input_cols,
|
811
|
-
expected_output_cols=
|
885
|
+
expected_output_cols=expected_output_cols,
|
812
886
|
**transform_kwargs
|
813
887
|
)
|
814
888
|
return output_df
|
@@ -843,17 +917,15 @@ class PoissonRegressor(BaseTransformer):
|
|
843
917
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
844
918
|
|
845
919
|
if isinstance(dataset, DataFrame):
|
846
|
-
self.
|
847
|
-
|
848
|
-
inference_method="score",
|
849
|
-
)
|
920
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
921
|
+
self._deps = self._get_dependencies()
|
850
922
|
selected_cols = self._get_active_columns()
|
851
923
|
if len(selected_cols) > 0:
|
852
924
|
dataset = dataset.select(selected_cols)
|
853
925
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
854
926
|
transform_kwargs = dict(
|
855
927
|
session=dataset._session,
|
856
|
-
dependencies=
|
928
|
+
dependencies=self._deps,
|
857
929
|
score_sproc_imports=['sklearn'],
|
858
930
|
)
|
859
931
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -918,11 +990,8 @@ class PoissonRegressor(BaseTransformer):
|
|
918
990
|
|
919
991
|
if isinstance(dataset, DataFrame):
|
920
992
|
|
921
|
-
self.
|
922
|
-
|
923
|
-
inference_method=inference_method,
|
924
|
-
|
925
|
-
)
|
993
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
994
|
+
self._deps = self._get_dependencies()
|
926
995
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
927
996
|
transform_kwargs = dict(
|
928
997
|
session = dataset._session,
|
@@ -955,50 +1024,84 @@ class PoissonRegressor(BaseTransformer):
|
|
955
1024
|
)
|
956
1025
|
return output_df
|
957
1026
|
|
1027
|
+
|
1028
|
+
|
1029
|
+
def to_sklearn(self) -> Any:
|
1030
|
+
"""Get sklearn.linear_model.PoissonRegressor object.
|
1031
|
+
"""
|
1032
|
+
if self._sklearn_object is None:
|
1033
|
+
self._sklearn_object = self._create_sklearn_object()
|
1034
|
+
return self._sklearn_object
|
1035
|
+
|
1036
|
+
def to_xgboost(self) -> Any:
|
1037
|
+
raise exceptions.SnowflakeMLException(
|
1038
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
+
original_exception=AttributeError(
|
1040
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
+
"to_xgboost()",
|
1042
|
+
"to_sklearn()"
|
1043
|
+
)
|
1044
|
+
),
|
1045
|
+
)
|
1046
|
+
|
1047
|
+
def to_lightgbm(self) -> Any:
|
1048
|
+
raise exceptions.SnowflakeMLException(
|
1049
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
+
original_exception=AttributeError(
|
1051
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
+
"to_lightgbm()",
|
1053
|
+
"to_sklearn()"
|
1054
|
+
)
|
1055
|
+
),
|
1056
|
+
)
|
1057
|
+
|
1058
|
+
def _get_dependencies(self) -> List[str]:
|
1059
|
+
return self._deps
|
1060
|
+
|
958
1061
|
|
959
|
-
def
|
1062
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
960
1063
|
self._model_signature_dict = dict()
|
961
1064
|
|
962
1065
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
963
1066
|
|
964
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1067
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
965
1068
|
outputs: List[BaseFeatureSpec] = []
|
966
1069
|
if hasattr(self, "predict"):
|
967
1070
|
# keep mypy happy
|
968
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1071
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
969
1072
|
# For classifier, the type of predict is the same as the type of label
|
970
|
-
if self._sklearn_object._estimator_type ==
|
971
|
-
|
1073
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1074
|
+
# label columns is the desired type for output
|
972
1075
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
973
1076
|
# rename the output columns
|
974
1077
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
975
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
976
|
-
|
977
|
-
|
1078
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1079
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1080
|
+
)
|
978
1081
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
979
1082
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
980
|
-
# Clusterer returns int64 cluster labels.
|
1083
|
+
# Clusterer returns int64 cluster labels.
|
981
1084
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
982
1085
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
983
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
984
|
-
|
985
|
-
|
986
|
-
|
1086
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
1089
|
+
|
987
1090
|
# For regressor, the type of predict is float64
|
988
|
-
elif self._sklearn_object._estimator_type ==
|
1091
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
989
1092
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
990
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
991
|
-
|
992
|
-
|
993
|
-
|
1093
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1094
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1095
|
+
)
|
1096
|
+
|
994
1097
|
for prob_func in PROB_FUNCTIONS:
|
995
1098
|
if hasattr(self, prob_func):
|
996
1099
|
output_cols_prefix: str = f"{prob_func}_"
|
997
1100
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
998
1101
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
999
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1000
|
-
|
1001
|
-
|
1102
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1103
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1104
|
+
)
|
1002
1105
|
|
1003
1106
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1004
1107
|
items = list(self._model_signature_dict.items())
|
@@ -1011,10 +1114,10 @@ class PoissonRegressor(BaseTransformer):
|
|
1011
1114
|
"""Returns model signature of current class.
|
1012
1115
|
|
1013
1116
|
Raises:
|
1014
|
-
|
1117
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1015
1118
|
|
1016
1119
|
Returns:
|
1017
|
-
Dict
|
1120
|
+
Dict with each method and its input output signature
|
1018
1121
|
"""
|
1019
1122
|
if self._model_signature_dict is None:
|
1020
1123
|
raise exceptions.SnowflakeMLException(
|
@@ -1022,35 +1125,3 @@ class PoissonRegressor(BaseTransformer):
|
|
1022
1125
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1023
1126
|
)
|
1024
1127
|
return self._model_signature_dict
|
1025
|
-
|
1026
|
-
def to_sklearn(self) -> Any:
|
1027
|
-
"""Get sklearn.linear_model.PoissonRegressor object.
|
1028
|
-
"""
|
1029
|
-
if self._sklearn_object is None:
|
1030
|
-
self._sklearn_object = self._create_sklearn_object()
|
1031
|
-
return self._sklearn_object
|
1032
|
-
|
1033
|
-
def to_xgboost(self) -> Any:
|
1034
|
-
raise exceptions.SnowflakeMLException(
|
1035
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1036
|
-
original_exception=AttributeError(
|
1037
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1038
|
-
"to_xgboost()",
|
1039
|
-
"to_sklearn()"
|
1040
|
-
)
|
1041
|
-
),
|
1042
|
-
)
|
1043
|
-
|
1044
|
-
def to_lightgbm(self) -> Any:
|
1045
|
-
raise exceptions.SnowflakeMLException(
|
1046
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1047
|
-
original_exception=AttributeError(
|
1048
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1049
|
-
"to_lightgbm()",
|
1050
|
-
"to_sklearn()"
|
1051
|
-
)
|
1052
|
-
),
|
1053
|
-
)
|
1054
|
-
|
1055
|
-
def _get_dependencies(self) -> List[str]:
|
1056
|
-
return self._deps
|