snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class PoissonRegressor(BaseTransformer):
71
64
  r"""Generalized Linear Model with a Poisson distribution
72
65
  For more details on this class, see [sklearn.linear_model.PoissonRegressor]
@@ -249,12 +242,7 @@ class PoissonRegressor(BaseTransformer):
249
242
  )
250
243
  return selected_cols
251
244
 
252
- @telemetry.send_api_usage_telemetry(
253
- project=_PROJECT,
254
- subproject=_SUBPROJECT,
255
- custom_tags=dict([("autogen", True)]),
256
- )
257
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PoissonRegressor":
245
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PoissonRegressor":
258
246
  """Fit a Generalized Linear Model
259
247
  For more details on this function, see [sklearn.linear_model.PoissonRegressor.fit]
260
248
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.PoissonRegressor.html#sklearn.linear_model.PoissonRegressor.fit)
@@ -281,12 +269,14 @@ class PoissonRegressor(BaseTransformer):
281
269
 
282
270
  self._snowpark_cols = dataset.select(self.input_cols).columns
283
271
 
284
- # If we are already in a stored procedure, no need to kick off another one.
272
+ # If we are already in a stored procedure, no need to kick off another one.
285
273
  if SNOWML_SPROC_ENV in os.environ:
286
274
  statement_params = telemetry.get_function_usage_statement_params(
287
275
  project=_PROJECT,
288
276
  subproject=_SUBPROJECT,
289
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PoissonRegressor.__class__.__name__),
277
+ function_name=telemetry.get_statement_params_full_func_name(
278
+ inspect.currentframe(), PoissonRegressor.__class__.__name__
279
+ ),
290
280
  api_calls=[Session.call],
291
281
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
292
282
  )
@@ -307,27 +297,24 @@ class PoissonRegressor(BaseTransformer):
307
297
  )
308
298
  self._sklearn_object = model_trainer.train()
309
299
  self._is_fitted = True
310
- self._get_model_signatures(dataset)
300
+ self._generate_model_signatures(dataset)
311
301
  return self
312
302
 
313
303
  def _batch_inference_validate_snowpark(
314
304
  self,
315
305
  dataset: DataFrame,
316
306
  inference_method: str,
317
- ) -> List[str]:
318
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
319
- return the available package that exists in the snowflake anaconda channel
307
+ ) -> None:
308
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
320
309
 
321
310
  Args:
322
311
  dataset: snowpark dataframe
323
312
  inference_method: the inference method such as predict, score...
324
-
313
+
325
314
  Raises:
326
315
  SnowflakeMLException: If the estimator is not fitted, raise error
327
316
  SnowflakeMLException: If the session is None, raise error
328
317
 
329
- Returns:
330
- A list of available package that exists in the snowflake anaconda channel
331
318
  """
332
319
  if not self._is_fitted:
333
320
  raise exceptions.SnowflakeMLException(
@@ -345,9 +332,7 @@ class PoissonRegressor(BaseTransformer):
345
332
  "Session must not specified for snowpark dataset."
346
333
  ),
347
334
  )
348
- # Validate that key package version in user workspace are supported in snowflake conda channel
349
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
350
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
335
+
351
336
 
352
337
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
353
338
  @telemetry.send_api_usage_telemetry(
@@ -383,7 +368,9 @@ class PoissonRegressor(BaseTransformer):
383
368
  # when it is classifier, infer the datatype from label columns
384
369
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
385
370
  # Batch inference takes a single expected output column type. Use the first columns type for now.
386
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
371
+ label_cols_signatures = [
372
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
373
+ ]
387
374
  if len(label_cols_signatures) == 0:
388
375
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
389
376
  raise exceptions.SnowflakeMLException(
@@ -391,25 +378,23 @@ class PoissonRegressor(BaseTransformer):
391
378
  original_exception=ValueError(error_str),
392
379
  )
393
380
 
394
- expected_type_inferred = convert_sp_to_sf_type(
395
- label_cols_signatures[0].as_snowpark_type()
396
- )
381
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
397
382
 
398
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
399
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
383
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
384
+ self._deps = self._get_dependencies()
385
+ assert isinstance(
386
+ dataset._session, Session
387
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
400
388
 
401
389
  transform_kwargs = dict(
402
- session = dataset._session,
403
- dependencies = self._deps,
404
- drop_input_cols = self._drop_input_cols,
405
- expected_output_cols_type = expected_type_inferred,
390
+ session=dataset._session,
391
+ dependencies=self._deps,
392
+ drop_input_cols=self._drop_input_cols,
393
+ expected_output_cols_type=expected_type_inferred,
406
394
  )
407
395
 
408
396
  elif isinstance(dataset, pd.DataFrame):
409
- transform_kwargs = dict(
410
- snowpark_input_cols = self._snowpark_cols,
411
- drop_input_cols = self._drop_input_cols
412
- )
397
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
413
398
 
414
399
  transform_handlers = ModelTransformerBuilder.build(
415
400
  dataset=dataset,
@@ -449,7 +434,7 @@ class PoissonRegressor(BaseTransformer):
449
434
  Transformed dataset.
450
435
  """
451
436
  super()._check_dataset_type(dataset)
452
- inference_method="transform"
437
+ inference_method = "transform"
453
438
 
454
439
  # This dictionary contains optional kwargs for batch inference. These kwargs
455
440
  # are specific to the type of dataset used.
@@ -479,24 +464,19 @@ class PoissonRegressor(BaseTransformer):
479
464
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
480
465
  expected_dtype = convert_sp_to_sf_type(output_types[0])
481
466
 
482
- self._deps = self._batch_inference_validate_snowpark(
483
- dataset=dataset,
484
- inference_method=inference_method,
485
- )
467
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
468
+ self._deps = self._get_dependencies()
486
469
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
487
470
 
488
471
  transform_kwargs = dict(
489
- session = dataset._session,
490
- dependencies = self._deps,
491
- drop_input_cols = self._drop_input_cols,
492
- expected_output_cols_type = expected_dtype,
472
+ session=dataset._session,
473
+ dependencies=self._deps,
474
+ drop_input_cols=self._drop_input_cols,
475
+ expected_output_cols_type=expected_dtype,
493
476
  )
494
477
 
495
478
  elif isinstance(dataset, pd.DataFrame):
496
- transform_kwargs = dict(
497
- snowpark_input_cols = self._snowpark_cols,
498
- drop_input_cols = self._drop_input_cols
499
- )
479
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
500
480
 
501
481
  transform_handlers = ModelTransformerBuilder.build(
502
482
  dataset=dataset,
@@ -515,7 +495,11 @@ class PoissonRegressor(BaseTransformer):
515
495
  return output_df
516
496
 
517
497
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
518
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
498
+ def fit_predict(
499
+ self,
500
+ dataset: Union[DataFrame, pd.DataFrame],
501
+ output_cols_prefix: str = "fit_predict_",
502
+ ) -> Union[DataFrame, pd.DataFrame]:
519
503
  """ Method not supported for this class.
520
504
 
521
505
 
@@ -540,22 +524,104 @@ class PoissonRegressor(BaseTransformer):
540
524
  )
541
525
  output_result, fitted_estimator = model_trainer.train_fit_predict(
542
526
  drop_input_cols=self._drop_input_cols,
543
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
527
+ expected_output_cols_list=(
528
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
529
+ ),
544
530
  )
545
531
  self._sklearn_object = fitted_estimator
546
532
  self._is_fitted = True
547
533
  return output_result
548
534
 
535
+
536
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
537
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
538
+ """ Method not supported for this class.
539
+
549
540
 
550
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
551
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
552
- """
541
+ Raises:
542
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
543
+
544
+ Args:
545
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
546
+ Snowpark or Pandas DataFrame.
547
+ output_cols_prefix: Prefix for the response columns
553
548
  Returns:
554
549
  Transformed dataset.
555
550
  """
556
- self.fit(dataset)
557
- assert self._sklearn_object is not None
558
- return self._sklearn_object.embedding_
551
+ self._infer_input_output_cols(dataset)
552
+ super()._check_dataset_type(dataset)
553
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
554
+ estimator=self._sklearn_object,
555
+ dataset=dataset,
556
+ input_cols=self.input_cols,
557
+ label_cols=self.label_cols,
558
+ sample_weight_col=self.sample_weight_col,
559
+ autogenerated=self._autogenerated,
560
+ subproject=_SUBPROJECT,
561
+ )
562
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
563
+ drop_input_cols=self._drop_input_cols,
564
+ expected_output_cols_list=self.output_cols,
565
+ )
566
+ self._sklearn_object = fitted_estimator
567
+ self._is_fitted = True
568
+ return output_result
569
+
570
+
571
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
572
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
573
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
574
+ """
575
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
576
+ # The following condition is introduced for kneighbors methods, and not used in other methods
577
+ if output_cols:
578
+ output_cols = [
579
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
580
+ for c in output_cols
581
+ ]
582
+ elif getattr(self._sklearn_object, "classes_", None) is None:
583
+ output_cols = [output_cols_prefix]
584
+ elif self._sklearn_object is not None:
585
+ classes = self._sklearn_object.classes_
586
+ if isinstance(classes, numpy.ndarray):
587
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
588
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
589
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
590
+ output_cols = []
591
+ for i, cl in enumerate(classes):
592
+ # For binary classification, there is only one output column for each class
593
+ # ndarray as the two classes are complementary.
594
+ if len(cl) == 2:
595
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
596
+ else:
597
+ output_cols.extend([
598
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
599
+ ])
600
+ else:
601
+ output_cols = []
602
+
603
+ # Make sure column names are valid snowflake identifiers.
604
+ assert output_cols is not None # Make MyPy happy
605
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
606
+
607
+ return rv
608
+
609
+ def _align_expected_output_names(
610
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
611
+ ) -> List[str]:
612
+ # in case the inferred output column names dimension is different
613
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
614
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
615
+ output_df_columns = list(output_df_pd.columns)
616
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
617
+ if self.sample_weight_col:
618
+ output_df_columns_set -= set(self.sample_weight_col)
619
+ # if the dimension of inferred output column names is correct; use it
620
+ if len(expected_output_cols_list) == len(output_df_columns_set):
621
+ return expected_output_cols_list
622
+ # otherwise, use the sklearn estimator's output
623
+ else:
624
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
559
625
 
560
626
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
561
627
  @telemetry.send_api_usage_telemetry(
@@ -587,24 +653,26 @@ class PoissonRegressor(BaseTransformer):
587
653
  # are specific to the type of dataset used.
588
654
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
589
655
 
656
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
657
+
590
658
  if isinstance(dataset, DataFrame):
591
- self._deps = self._batch_inference_validate_snowpark(
592
- dataset=dataset,
593
- inference_method=inference_method,
594
- )
595
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
659
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
660
+ self._deps = self._get_dependencies()
661
+ assert isinstance(
662
+ dataset._session, Session
663
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
596
664
  transform_kwargs = dict(
597
665
  session=dataset._session,
598
666
  dependencies=self._deps,
599
- drop_input_cols = self._drop_input_cols,
667
+ drop_input_cols=self._drop_input_cols,
600
668
  expected_output_cols_type="float",
601
669
  )
670
+ expected_output_cols = self._align_expected_output_names(
671
+ inference_method, dataset, expected_output_cols, output_cols_prefix
672
+ )
602
673
 
603
674
  elif isinstance(dataset, pd.DataFrame):
604
- transform_kwargs = dict(
605
- snowpark_input_cols = self._snowpark_cols,
606
- drop_input_cols = self._drop_input_cols
607
- )
675
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
608
676
 
609
677
  transform_handlers = ModelTransformerBuilder.build(
610
678
  dataset=dataset,
@@ -616,7 +684,7 @@ class PoissonRegressor(BaseTransformer):
616
684
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
617
685
  inference_method=inference_method,
618
686
  input_cols=self.input_cols,
619
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
687
+ expected_output_cols=expected_output_cols,
620
688
  **transform_kwargs
621
689
  )
622
690
  return output_df
@@ -646,29 +714,30 @@ class PoissonRegressor(BaseTransformer):
646
714
  Output dataset with log probability of the sample for each class in the model.
647
715
  """
648
716
  super()._check_dataset_type(dataset)
649
- inference_method="predict_log_proba"
717
+ inference_method = "predict_log_proba"
718
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
650
719
 
651
720
  # This dictionary contains optional kwargs for batch inference. These kwargs
652
721
  # are specific to the type of dataset used.
653
722
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
654
723
 
655
724
  if isinstance(dataset, DataFrame):
656
- self._deps = self._batch_inference_validate_snowpark(
657
- dataset=dataset,
658
- inference_method=inference_method,
659
- )
660
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
725
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
726
+ self._deps = self._get_dependencies()
727
+ assert isinstance(
728
+ dataset._session, Session
729
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
661
730
  transform_kwargs = dict(
662
731
  session=dataset._session,
663
732
  dependencies=self._deps,
664
- drop_input_cols = self._drop_input_cols,
733
+ drop_input_cols=self._drop_input_cols,
665
734
  expected_output_cols_type="float",
666
735
  )
736
+ expected_output_cols = self._align_expected_output_names(
737
+ inference_method, dataset, expected_output_cols, output_cols_prefix
738
+ )
667
739
  elif isinstance(dataset, pd.DataFrame):
668
- transform_kwargs = dict(
669
- snowpark_input_cols = self._snowpark_cols,
670
- drop_input_cols = self._drop_input_cols
671
- )
740
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
672
741
 
673
742
  transform_handlers = ModelTransformerBuilder.build(
674
743
  dataset=dataset,
@@ -681,7 +750,7 @@ class PoissonRegressor(BaseTransformer):
681
750
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
682
751
  inference_method=inference_method,
683
752
  input_cols=self.input_cols,
684
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
753
+ expected_output_cols=expected_output_cols,
685
754
  **transform_kwargs
686
755
  )
687
756
  return output_df
@@ -707,30 +776,32 @@ class PoissonRegressor(BaseTransformer):
707
776
  Output dataset with results of the decision function for the samples in input dataset.
708
777
  """
709
778
  super()._check_dataset_type(dataset)
710
- inference_method="decision_function"
779
+ inference_method = "decision_function"
711
780
 
712
781
  # This dictionary contains optional kwargs for batch inference. These kwargs
713
782
  # are specific to the type of dataset used.
714
783
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
715
784
 
785
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
786
+
716
787
  if isinstance(dataset, DataFrame):
717
- self._deps = self._batch_inference_validate_snowpark(
718
- dataset=dataset,
719
- inference_method=inference_method,
720
- )
721
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
789
+ self._deps = self._get_dependencies()
790
+ assert isinstance(
791
+ dataset._session, Session
792
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
722
793
  transform_kwargs = dict(
723
794
  session=dataset._session,
724
795
  dependencies=self._deps,
725
- drop_input_cols = self._drop_input_cols,
796
+ drop_input_cols=self._drop_input_cols,
726
797
  expected_output_cols_type="float",
727
798
  )
799
+ expected_output_cols = self._align_expected_output_names(
800
+ inference_method, dataset, expected_output_cols, output_cols_prefix
801
+ )
728
802
 
729
803
  elif isinstance(dataset, pd.DataFrame):
730
- transform_kwargs = dict(
731
- snowpark_input_cols = self._snowpark_cols,
732
- drop_input_cols = self._drop_input_cols
733
- )
804
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
734
805
 
735
806
  transform_handlers = ModelTransformerBuilder.build(
736
807
  dataset=dataset,
@@ -743,7 +814,7 @@ class PoissonRegressor(BaseTransformer):
743
814
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
744
815
  inference_method=inference_method,
745
816
  input_cols=self.input_cols,
746
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
817
+ expected_output_cols=expected_output_cols,
747
818
  **transform_kwargs
748
819
  )
749
820
  return output_df
@@ -772,17 +843,17 @@ class PoissonRegressor(BaseTransformer):
772
843
  Output dataset with probability of the sample for each class in the model.
773
844
  """
774
845
  super()._check_dataset_type(dataset)
775
- inference_method="score_samples"
846
+ inference_method = "score_samples"
776
847
 
777
848
  # This dictionary contains optional kwargs for batch inference. These kwargs
778
849
  # are specific to the type of dataset used.
779
850
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
780
851
 
852
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
853
+
781
854
  if isinstance(dataset, DataFrame):
782
- self._deps = self._batch_inference_validate_snowpark(
783
- dataset=dataset,
784
- inference_method=inference_method,
785
- )
855
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
856
+ self._deps = self._get_dependencies()
786
857
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
787
858
  transform_kwargs = dict(
788
859
  session=dataset._session,
@@ -790,6 +861,9 @@ class PoissonRegressor(BaseTransformer):
790
861
  drop_input_cols = self._drop_input_cols,
791
862
  expected_output_cols_type="float",
792
863
  )
864
+ expected_output_cols = self._align_expected_output_names(
865
+ inference_method, dataset, expected_output_cols, output_cols_prefix
866
+ )
793
867
 
794
868
  elif isinstance(dataset, pd.DataFrame):
795
869
  transform_kwargs = dict(
@@ -808,7 +882,7 @@ class PoissonRegressor(BaseTransformer):
808
882
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
809
883
  inference_method=inference_method,
810
884
  input_cols=self.input_cols,
811
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
885
+ expected_output_cols=expected_output_cols,
812
886
  **transform_kwargs
813
887
  )
814
888
  return output_df
@@ -843,17 +917,15 @@ class PoissonRegressor(BaseTransformer):
843
917
  transform_kwargs: ScoreKwargsTypedDict = dict()
844
918
 
845
919
  if isinstance(dataset, DataFrame):
846
- self._deps = self._batch_inference_validate_snowpark(
847
- dataset=dataset,
848
- inference_method="score",
849
- )
920
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
921
+ self._deps = self._get_dependencies()
850
922
  selected_cols = self._get_active_columns()
851
923
  if len(selected_cols) > 0:
852
924
  dataset = dataset.select(selected_cols)
853
925
  assert isinstance(dataset._session, Session) # keep mypy happy
854
926
  transform_kwargs = dict(
855
927
  session=dataset._session,
856
- dependencies=["snowflake-snowpark-python"] + self._deps,
928
+ dependencies=self._deps,
857
929
  score_sproc_imports=['sklearn'],
858
930
  )
859
931
  elif isinstance(dataset, pd.DataFrame):
@@ -918,11 +990,8 @@ class PoissonRegressor(BaseTransformer):
918
990
 
919
991
  if isinstance(dataset, DataFrame):
920
992
 
921
- self._deps = self._batch_inference_validate_snowpark(
922
- dataset=dataset,
923
- inference_method=inference_method,
924
-
925
- )
993
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
994
+ self._deps = self._get_dependencies()
926
995
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
927
996
  transform_kwargs = dict(
928
997
  session = dataset._session,
@@ -955,50 +1024,84 @@ class PoissonRegressor(BaseTransformer):
955
1024
  )
956
1025
  return output_df
957
1026
 
1027
+
1028
+
1029
+ def to_sklearn(self) -> Any:
1030
+ """Get sklearn.linear_model.PoissonRegressor object.
1031
+ """
1032
+ if self._sklearn_object is None:
1033
+ self._sklearn_object = self._create_sklearn_object()
1034
+ return self._sklearn_object
1035
+
1036
+ def to_xgboost(self) -> Any:
1037
+ raise exceptions.SnowflakeMLException(
1038
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1039
+ original_exception=AttributeError(
1040
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
+ "to_xgboost()",
1042
+ "to_sklearn()"
1043
+ )
1044
+ ),
1045
+ )
1046
+
1047
+ def to_lightgbm(self) -> Any:
1048
+ raise exceptions.SnowflakeMLException(
1049
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1050
+ original_exception=AttributeError(
1051
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1052
+ "to_lightgbm()",
1053
+ "to_sklearn()"
1054
+ )
1055
+ ),
1056
+ )
1057
+
1058
+ def _get_dependencies(self) -> List[str]:
1059
+ return self._deps
1060
+
958
1061
 
959
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1062
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
960
1063
  self._model_signature_dict = dict()
961
1064
 
962
1065
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
963
1066
 
964
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1067
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
965
1068
  outputs: List[BaseFeatureSpec] = []
966
1069
  if hasattr(self, "predict"):
967
1070
  # keep mypy happy
968
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1071
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
969
1072
  # For classifier, the type of predict is the same as the type of label
970
- if self._sklearn_object._estimator_type == 'classifier':
971
- # label columns is the desired type for output
1073
+ if self._sklearn_object._estimator_type == "classifier":
1074
+ # label columns is the desired type for output
972
1075
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
973
1076
  # rename the output columns
974
1077
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
975
- self._model_signature_dict["predict"] = ModelSignature(inputs,
976
- ([] if self._drop_input_cols else inputs)
977
- + outputs)
1078
+ self._model_signature_dict["predict"] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
978
1081
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
979
1082
  # For outlier models, returns -1 for outliers and 1 for inliers.
980
- # Clusterer returns int64 cluster labels.
1083
+ # Clusterer returns int64 cluster labels.
981
1084
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
982
1085
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
983
- self._model_signature_dict["predict"] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
986
-
1086
+ self._model_signature_dict["predict"] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
1089
+
987
1090
  # For regressor, the type of predict is float64
988
- elif self._sklearn_object._estimator_type == 'regressor':
1091
+ elif self._sklearn_object._estimator_type == "regressor":
989
1092
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
990
- self._model_signature_dict["predict"] = ModelSignature(inputs,
991
- ([] if self._drop_input_cols else inputs)
992
- + outputs)
993
-
1093
+ self._model_signature_dict["predict"] = ModelSignature(
1094
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1095
+ )
1096
+
994
1097
  for prob_func in PROB_FUNCTIONS:
995
1098
  if hasattr(self, prob_func):
996
1099
  output_cols_prefix: str = f"{prob_func}_"
997
1100
  output_column_names = self._get_output_column_names(output_cols_prefix)
998
1101
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
999
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1000
- ([] if self._drop_input_cols else inputs)
1001
- + outputs)
1102
+ self._model_signature_dict[prob_func] = ModelSignature(
1103
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1104
+ )
1002
1105
 
1003
1106
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1004
1107
  items = list(self._model_signature_dict.items())
@@ -1011,10 +1114,10 @@ class PoissonRegressor(BaseTransformer):
1011
1114
  """Returns model signature of current class.
1012
1115
 
1013
1116
  Raises:
1014
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1117
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1015
1118
 
1016
1119
  Returns:
1017
- Dict[str, ModelSignature]: each method and its input output signature
1120
+ Dict with each method and its input output signature
1018
1121
  """
1019
1122
  if self._model_signature_dict is None:
1020
1123
  raise exceptions.SnowflakeMLException(
@@ -1022,35 +1125,3 @@ class PoissonRegressor(BaseTransformer):
1022
1125
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1023
1126
  )
1024
1127
  return self._model_signature_dict
1025
-
1026
- def to_sklearn(self) -> Any:
1027
- """Get sklearn.linear_model.PoissonRegressor object.
1028
- """
1029
- if self._sklearn_object is None:
1030
- self._sklearn_object = self._create_sklearn_object()
1031
- return self._sklearn_object
1032
-
1033
- def to_xgboost(self) -> Any:
1034
- raise exceptions.SnowflakeMLException(
1035
- error_code=error_codes.METHOD_NOT_ALLOWED,
1036
- original_exception=AttributeError(
1037
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1038
- "to_xgboost()",
1039
- "to_sklearn()"
1040
- )
1041
- ),
1042
- )
1043
-
1044
- def to_lightgbm(self) -> Any:
1045
- raise exceptions.SnowflakeMLException(
1046
- error_code=error_codes.METHOD_NOT_ALLOWED,
1047
- original_exception=AttributeError(
1048
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1049
- "to_lightgbm()",
1050
- "to_sklearn()"
1051
- )
1052
- ),
1053
- )
1054
-
1055
- def _get_dependencies(self) -> List[str]:
1056
- return self._deps