snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LinearSVC(BaseTransformer):
71
64
  r"""Linear Support Vector Classification
72
65
  For more details on this class, see [sklearn.svm.LinearSVC]
@@ -293,12 +286,7 @@ class LinearSVC(BaseTransformer):
293
286
  )
294
287
  return selected_cols
295
288
 
296
- @telemetry.send_api_usage_telemetry(
297
- project=_PROJECT,
298
- subproject=_SUBPROJECT,
299
- custom_tags=dict([("autogen", True)]),
300
- )
301
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVC":
289
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVC":
302
290
  """Fit the model according to the given training data
303
291
  For more details on this function, see [sklearn.svm.LinearSVC.fit]
304
292
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC.fit)
@@ -325,12 +313,14 @@ class LinearSVC(BaseTransformer):
325
313
 
326
314
  self._snowpark_cols = dataset.select(self.input_cols).columns
327
315
 
328
- # If we are already in a stored procedure, no need to kick off another one.
316
+ # If we are already in a stored procedure, no need to kick off another one.
329
317
  if SNOWML_SPROC_ENV in os.environ:
330
318
  statement_params = telemetry.get_function_usage_statement_params(
331
319
  project=_PROJECT,
332
320
  subproject=_SUBPROJECT,
333
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LinearSVC.__class__.__name__),
321
+ function_name=telemetry.get_statement_params_full_func_name(
322
+ inspect.currentframe(), LinearSVC.__class__.__name__
323
+ ),
334
324
  api_calls=[Session.call],
335
325
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
336
326
  )
@@ -351,27 +341,24 @@ class LinearSVC(BaseTransformer):
351
341
  )
352
342
  self._sklearn_object = model_trainer.train()
353
343
  self._is_fitted = True
354
- self._get_model_signatures(dataset)
344
+ self._generate_model_signatures(dataset)
355
345
  return self
356
346
 
357
347
  def _batch_inference_validate_snowpark(
358
348
  self,
359
349
  dataset: DataFrame,
360
350
  inference_method: str,
361
- ) -> List[str]:
362
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
363
- return the available package that exists in the snowflake anaconda channel
351
+ ) -> None:
352
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
364
353
 
365
354
  Args:
366
355
  dataset: snowpark dataframe
367
356
  inference_method: the inference method such as predict, score...
368
-
357
+
369
358
  Raises:
370
359
  SnowflakeMLException: If the estimator is not fitted, raise error
371
360
  SnowflakeMLException: If the session is None, raise error
372
361
 
373
- Returns:
374
- A list of available package that exists in the snowflake anaconda channel
375
362
  """
376
363
  if not self._is_fitted:
377
364
  raise exceptions.SnowflakeMLException(
@@ -389,9 +376,7 @@ class LinearSVC(BaseTransformer):
389
376
  "Session must not specified for snowpark dataset."
390
377
  ),
391
378
  )
392
- # Validate that key package version in user workspace are supported in snowflake conda channel
393
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
394
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
379
+
395
380
 
396
381
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
397
382
  @telemetry.send_api_usage_telemetry(
@@ -427,7 +412,9 @@ class LinearSVC(BaseTransformer):
427
412
  # when it is classifier, infer the datatype from label columns
428
413
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
429
414
  # Batch inference takes a single expected output column type. Use the first columns type for now.
430
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
415
+ label_cols_signatures = [
416
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
417
+ ]
431
418
  if len(label_cols_signatures) == 0:
432
419
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
433
420
  raise exceptions.SnowflakeMLException(
@@ -435,25 +422,23 @@ class LinearSVC(BaseTransformer):
435
422
  original_exception=ValueError(error_str),
436
423
  )
437
424
 
438
- expected_type_inferred = convert_sp_to_sf_type(
439
- label_cols_signatures[0].as_snowpark_type()
440
- )
425
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
441
426
 
442
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
443
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
427
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
428
+ self._deps = self._get_dependencies()
429
+ assert isinstance(
430
+ dataset._session, Session
431
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
444
432
 
445
433
  transform_kwargs = dict(
446
- session = dataset._session,
447
- dependencies = self._deps,
448
- drop_input_cols = self._drop_input_cols,
449
- expected_output_cols_type = expected_type_inferred,
434
+ session=dataset._session,
435
+ dependencies=self._deps,
436
+ drop_input_cols=self._drop_input_cols,
437
+ expected_output_cols_type=expected_type_inferred,
450
438
  )
451
439
 
452
440
  elif isinstance(dataset, pd.DataFrame):
453
- transform_kwargs = dict(
454
- snowpark_input_cols = self._snowpark_cols,
455
- drop_input_cols = self._drop_input_cols
456
- )
441
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
457
442
 
458
443
  transform_handlers = ModelTransformerBuilder.build(
459
444
  dataset=dataset,
@@ -493,7 +478,7 @@ class LinearSVC(BaseTransformer):
493
478
  Transformed dataset.
494
479
  """
495
480
  super()._check_dataset_type(dataset)
496
- inference_method="transform"
481
+ inference_method = "transform"
497
482
 
498
483
  # This dictionary contains optional kwargs for batch inference. These kwargs
499
484
  # are specific to the type of dataset used.
@@ -523,24 +508,19 @@ class LinearSVC(BaseTransformer):
523
508
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
524
509
  expected_dtype = convert_sp_to_sf_type(output_types[0])
525
510
 
526
- self._deps = self._batch_inference_validate_snowpark(
527
- dataset=dataset,
528
- inference_method=inference_method,
529
- )
511
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
512
+ self._deps = self._get_dependencies()
530
513
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
531
514
 
532
515
  transform_kwargs = dict(
533
- session = dataset._session,
534
- dependencies = self._deps,
535
- drop_input_cols = self._drop_input_cols,
536
- expected_output_cols_type = expected_dtype,
516
+ session=dataset._session,
517
+ dependencies=self._deps,
518
+ drop_input_cols=self._drop_input_cols,
519
+ expected_output_cols_type=expected_dtype,
537
520
  )
538
521
 
539
522
  elif isinstance(dataset, pd.DataFrame):
540
- transform_kwargs = dict(
541
- snowpark_input_cols = self._snowpark_cols,
542
- drop_input_cols = self._drop_input_cols
543
- )
523
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
544
524
 
545
525
  transform_handlers = ModelTransformerBuilder.build(
546
526
  dataset=dataset,
@@ -559,7 +539,11 @@ class LinearSVC(BaseTransformer):
559
539
  return output_df
560
540
 
561
541
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
562
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
542
+ def fit_predict(
543
+ self,
544
+ dataset: Union[DataFrame, pd.DataFrame],
545
+ output_cols_prefix: str = "fit_predict_",
546
+ ) -> Union[DataFrame, pd.DataFrame]:
563
547
  """ Method not supported for this class.
564
548
 
565
549
 
@@ -584,22 +568,104 @@ class LinearSVC(BaseTransformer):
584
568
  )
585
569
  output_result, fitted_estimator = model_trainer.train_fit_predict(
586
570
  drop_input_cols=self._drop_input_cols,
587
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
571
+ expected_output_cols_list=(
572
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
573
+ ),
588
574
  )
589
575
  self._sklearn_object = fitted_estimator
590
576
  self._is_fitted = True
591
577
  return output_result
592
578
 
579
+
580
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
581
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
582
+ """ Method not supported for this class.
583
+
593
584
 
594
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
595
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
596
- """
585
+ Raises:
586
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
587
+
588
+ Args:
589
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
590
+ Snowpark or Pandas DataFrame.
591
+ output_cols_prefix: Prefix for the response columns
597
592
  Returns:
598
593
  Transformed dataset.
599
594
  """
600
- self.fit(dataset)
601
- assert self._sklearn_object is not None
602
- return self._sklearn_object.embedding_
595
+ self._infer_input_output_cols(dataset)
596
+ super()._check_dataset_type(dataset)
597
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
598
+ estimator=self._sklearn_object,
599
+ dataset=dataset,
600
+ input_cols=self.input_cols,
601
+ label_cols=self.label_cols,
602
+ sample_weight_col=self.sample_weight_col,
603
+ autogenerated=self._autogenerated,
604
+ subproject=_SUBPROJECT,
605
+ )
606
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
607
+ drop_input_cols=self._drop_input_cols,
608
+ expected_output_cols_list=self.output_cols,
609
+ )
610
+ self._sklearn_object = fitted_estimator
611
+ self._is_fitted = True
612
+ return output_result
613
+
614
+
615
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
616
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
617
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
618
+ """
619
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
620
+ # The following condition is introduced for kneighbors methods, and not used in other methods
621
+ if output_cols:
622
+ output_cols = [
623
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
624
+ for c in output_cols
625
+ ]
626
+ elif getattr(self._sklearn_object, "classes_", None) is None:
627
+ output_cols = [output_cols_prefix]
628
+ elif self._sklearn_object is not None:
629
+ classes = self._sklearn_object.classes_
630
+ if isinstance(classes, numpy.ndarray):
631
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
632
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
633
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
634
+ output_cols = []
635
+ for i, cl in enumerate(classes):
636
+ # For binary classification, there is only one output column for each class
637
+ # ndarray as the two classes are complementary.
638
+ if len(cl) == 2:
639
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
640
+ else:
641
+ output_cols.extend([
642
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
643
+ ])
644
+ else:
645
+ output_cols = []
646
+
647
+ # Make sure column names are valid snowflake identifiers.
648
+ assert output_cols is not None # Make MyPy happy
649
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
650
+
651
+ return rv
652
+
653
+ def _align_expected_output_names(
654
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
655
+ ) -> List[str]:
656
+ # in case the inferred output column names dimension is different
657
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
658
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
659
+ output_df_columns = list(output_df_pd.columns)
660
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
661
+ if self.sample_weight_col:
662
+ output_df_columns_set -= set(self.sample_weight_col)
663
+ # if the dimension of inferred output column names is correct; use it
664
+ if len(expected_output_cols_list) == len(output_df_columns_set):
665
+ return expected_output_cols_list
666
+ # otherwise, use the sklearn estimator's output
667
+ else:
668
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
603
669
 
604
670
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
605
671
  @telemetry.send_api_usage_telemetry(
@@ -631,24 +697,26 @@ class LinearSVC(BaseTransformer):
631
697
  # are specific to the type of dataset used.
632
698
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
633
699
 
700
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
701
+
634
702
  if isinstance(dataset, DataFrame):
635
- self._deps = self._batch_inference_validate_snowpark(
636
- dataset=dataset,
637
- inference_method=inference_method,
638
- )
639
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
704
+ self._deps = self._get_dependencies()
705
+ assert isinstance(
706
+ dataset._session, Session
707
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
640
708
  transform_kwargs = dict(
641
709
  session=dataset._session,
642
710
  dependencies=self._deps,
643
- drop_input_cols = self._drop_input_cols,
711
+ drop_input_cols=self._drop_input_cols,
644
712
  expected_output_cols_type="float",
645
713
  )
714
+ expected_output_cols = self._align_expected_output_names(
715
+ inference_method, dataset, expected_output_cols, output_cols_prefix
716
+ )
646
717
 
647
718
  elif isinstance(dataset, pd.DataFrame):
648
- transform_kwargs = dict(
649
- snowpark_input_cols = self._snowpark_cols,
650
- drop_input_cols = self._drop_input_cols
651
- )
719
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
652
720
 
653
721
  transform_handlers = ModelTransformerBuilder.build(
654
722
  dataset=dataset,
@@ -660,7 +728,7 @@ class LinearSVC(BaseTransformer):
660
728
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
661
729
  inference_method=inference_method,
662
730
  input_cols=self.input_cols,
663
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
731
+ expected_output_cols=expected_output_cols,
664
732
  **transform_kwargs
665
733
  )
666
734
  return output_df
@@ -690,29 +758,30 @@ class LinearSVC(BaseTransformer):
690
758
  Output dataset with log probability of the sample for each class in the model.
691
759
  """
692
760
  super()._check_dataset_type(dataset)
693
- inference_method="predict_log_proba"
761
+ inference_method = "predict_log_proba"
762
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
694
763
 
695
764
  # This dictionary contains optional kwargs for batch inference. These kwargs
696
765
  # are specific to the type of dataset used.
697
766
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
698
767
 
699
768
  if isinstance(dataset, DataFrame):
700
- self._deps = self._batch_inference_validate_snowpark(
701
- dataset=dataset,
702
- inference_method=inference_method,
703
- )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
769
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
770
+ self._deps = self._get_dependencies()
771
+ assert isinstance(
772
+ dataset._session, Session
773
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
774
  transform_kwargs = dict(
706
775
  session=dataset._session,
707
776
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
777
+ drop_input_cols=self._drop_input_cols,
709
778
  expected_output_cols_type="float",
710
779
  )
780
+ expected_output_cols = self._align_expected_output_names(
781
+ inference_method, dataset, expected_output_cols, output_cols_prefix
782
+ )
711
783
  elif isinstance(dataset, pd.DataFrame):
712
- transform_kwargs = dict(
713
- snowpark_input_cols = self._snowpark_cols,
714
- drop_input_cols = self._drop_input_cols
715
- )
784
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
716
785
 
717
786
  transform_handlers = ModelTransformerBuilder.build(
718
787
  dataset=dataset,
@@ -725,7 +794,7 @@ class LinearSVC(BaseTransformer):
725
794
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
726
795
  inference_method=inference_method,
727
796
  input_cols=self.input_cols,
728
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
797
+ expected_output_cols=expected_output_cols,
729
798
  **transform_kwargs
730
799
  )
731
800
  return output_df
@@ -753,30 +822,32 @@ class LinearSVC(BaseTransformer):
753
822
  Output dataset with results of the decision function for the samples in input dataset.
754
823
  """
755
824
  super()._check_dataset_type(dataset)
756
- inference_method="decision_function"
825
+ inference_method = "decision_function"
757
826
 
758
827
  # This dictionary contains optional kwargs for batch inference. These kwargs
759
828
  # are specific to the type of dataset used.
760
829
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
761
830
 
831
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
832
+
762
833
  if isinstance(dataset, DataFrame):
763
- self._deps = self._batch_inference_validate_snowpark(
764
- dataset=dataset,
765
- inference_method=inference_method,
766
- )
767
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
834
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
835
+ self._deps = self._get_dependencies()
836
+ assert isinstance(
837
+ dataset._session, Session
838
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
768
839
  transform_kwargs = dict(
769
840
  session=dataset._session,
770
841
  dependencies=self._deps,
771
- drop_input_cols = self._drop_input_cols,
842
+ drop_input_cols=self._drop_input_cols,
772
843
  expected_output_cols_type="float",
773
844
  )
845
+ expected_output_cols = self._align_expected_output_names(
846
+ inference_method, dataset, expected_output_cols, output_cols_prefix
847
+ )
774
848
 
775
849
  elif isinstance(dataset, pd.DataFrame):
776
- transform_kwargs = dict(
777
- snowpark_input_cols = self._snowpark_cols,
778
- drop_input_cols = self._drop_input_cols
779
- )
850
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
780
851
 
781
852
  transform_handlers = ModelTransformerBuilder.build(
782
853
  dataset=dataset,
@@ -789,7 +860,7 @@ class LinearSVC(BaseTransformer):
789
860
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
790
861
  inference_method=inference_method,
791
862
  input_cols=self.input_cols,
792
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
863
+ expected_output_cols=expected_output_cols,
793
864
  **transform_kwargs
794
865
  )
795
866
  return output_df
@@ -818,17 +889,17 @@ class LinearSVC(BaseTransformer):
818
889
  Output dataset with probability of the sample for each class in the model.
819
890
  """
820
891
  super()._check_dataset_type(dataset)
821
- inference_method="score_samples"
892
+ inference_method = "score_samples"
822
893
 
823
894
  # This dictionary contains optional kwargs for batch inference. These kwargs
824
895
  # are specific to the type of dataset used.
825
896
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
826
897
 
898
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
899
+
827
900
  if isinstance(dataset, DataFrame):
828
- self._deps = self._batch_inference_validate_snowpark(
829
- dataset=dataset,
830
- inference_method=inference_method,
831
- )
901
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
902
+ self._deps = self._get_dependencies()
832
903
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
833
904
  transform_kwargs = dict(
834
905
  session=dataset._session,
@@ -836,6 +907,9 @@ class LinearSVC(BaseTransformer):
836
907
  drop_input_cols = self._drop_input_cols,
837
908
  expected_output_cols_type="float",
838
909
  )
910
+ expected_output_cols = self._align_expected_output_names(
911
+ inference_method, dataset, expected_output_cols, output_cols_prefix
912
+ )
839
913
 
840
914
  elif isinstance(dataset, pd.DataFrame):
841
915
  transform_kwargs = dict(
@@ -854,7 +928,7 @@ class LinearSVC(BaseTransformer):
854
928
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
855
929
  inference_method=inference_method,
856
930
  input_cols=self.input_cols,
857
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
931
+ expected_output_cols=expected_output_cols,
858
932
  **transform_kwargs
859
933
  )
860
934
  return output_df
@@ -889,17 +963,15 @@ class LinearSVC(BaseTransformer):
889
963
  transform_kwargs: ScoreKwargsTypedDict = dict()
890
964
 
891
965
  if isinstance(dataset, DataFrame):
892
- self._deps = self._batch_inference_validate_snowpark(
893
- dataset=dataset,
894
- inference_method="score",
895
- )
966
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
967
+ self._deps = self._get_dependencies()
896
968
  selected_cols = self._get_active_columns()
897
969
  if len(selected_cols) > 0:
898
970
  dataset = dataset.select(selected_cols)
899
971
  assert isinstance(dataset._session, Session) # keep mypy happy
900
972
  transform_kwargs = dict(
901
973
  session=dataset._session,
902
- dependencies=["snowflake-snowpark-python"] + self._deps,
974
+ dependencies=self._deps,
903
975
  score_sproc_imports=['sklearn'],
904
976
  )
905
977
  elif isinstance(dataset, pd.DataFrame):
@@ -964,11 +1036,8 @@ class LinearSVC(BaseTransformer):
964
1036
 
965
1037
  if isinstance(dataset, DataFrame):
966
1038
 
967
- self._deps = self._batch_inference_validate_snowpark(
968
- dataset=dataset,
969
- inference_method=inference_method,
970
-
971
- )
1039
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1040
+ self._deps = self._get_dependencies()
972
1041
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
973
1042
  transform_kwargs = dict(
974
1043
  session = dataset._session,
@@ -1001,50 +1070,84 @@ class LinearSVC(BaseTransformer):
1001
1070
  )
1002
1071
  return output_df
1003
1072
 
1073
+
1074
+
1075
+ def to_sklearn(self) -> Any:
1076
+ """Get sklearn.svm.LinearSVC object.
1077
+ """
1078
+ if self._sklearn_object is None:
1079
+ self._sklearn_object = self._create_sklearn_object()
1080
+ return self._sklearn_object
1081
+
1082
+ def to_xgboost(self) -> Any:
1083
+ raise exceptions.SnowflakeMLException(
1084
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1085
+ original_exception=AttributeError(
1086
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1087
+ "to_xgboost()",
1088
+ "to_sklearn()"
1089
+ )
1090
+ ),
1091
+ )
1092
+
1093
+ def to_lightgbm(self) -> Any:
1094
+ raise exceptions.SnowflakeMLException(
1095
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1096
+ original_exception=AttributeError(
1097
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1098
+ "to_lightgbm()",
1099
+ "to_sklearn()"
1100
+ )
1101
+ ),
1102
+ )
1103
+
1104
+ def _get_dependencies(self) -> List[str]:
1105
+ return self._deps
1106
+
1004
1107
 
1005
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1108
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1006
1109
  self._model_signature_dict = dict()
1007
1110
 
1008
1111
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1009
1112
 
1010
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1113
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1011
1114
  outputs: List[BaseFeatureSpec] = []
1012
1115
  if hasattr(self, "predict"):
1013
1116
  # keep mypy happy
1014
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1117
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1015
1118
  # For classifier, the type of predict is the same as the type of label
1016
- if self._sklearn_object._estimator_type == 'classifier':
1017
- # label columns is the desired type for output
1119
+ if self._sklearn_object._estimator_type == "classifier":
1120
+ # label columns is the desired type for output
1018
1121
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1019
1122
  # rename the output columns
1020
1123
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1021
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1022
- ([] if self._drop_input_cols else inputs)
1023
- + outputs)
1124
+ self._model_signature_dict["predict"] = ModelSignature(
1125
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1126
+ )
1024
1127
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1025
1128
  # For outlier models, returns -1 for outliers and 1 for inliers.
1026
- # Clusterer returns int64 cluster labels.
1129
+ # Clusterer returns int64 cluster labels.
1027
1130
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1028
1131
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1029
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1032
-
1132
+ self._model_signature_dict["predict"] = ModelSignature(
1133
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1134
+ )
1135
+
1033
1136
  # For regressor, the type of predict is float64
1034
- elif self._sklearn_object._estimator_type == 'regressor':
1137
+ elif self._sklearn_object._estimator_type == "regressor":
1035
1138
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1036
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1039
-
1139
+ self._model_signature_dict["predict"] = ModelSignature(
1140
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1141
+ )
1142
+
1040
1143
  for prob_func in PROB_FUNCTIONS:
1041
1144
  if hasattr(self, prob_func):
1042
1145
  output_cols_prefix: str = f"{prob_func}_"
1043
1146
  output_column_names = self._get_output_column_names(output_cols_prefix)
1044
1147
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1045
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1046
- ([] if self._drop_input_cols else inputs)
1047
- + outputs)
1148
+ self._model_signature_dict[prob_func] = ModelSignature(
1149
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1150
+ )
1048
1151
 
1049
1152
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1050
1153
  items = list(self._model_signature_dict.items())
@@ -1057,10 +1160,10 @@ class LinearSVC(BaseTransformer):
1057
1160
  """Returns model signature of current class.
1058
1161
 
1059
1162
  Raises:
1060
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1163
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1061
1164
 
1062
1165
  Returns:
1063
- Dict[str, ModelSignature]: each method and its input output signature
1166
+ Dict with each method and its input output signature
1064
1167
  """
1065
1168
  if self._model_signature_dict is None:
1066
1169
  raise exceptions.SnowflakeMLException(
@@ -1068,35 +1171,3 @@ class LinearSVC(BaseTransformer):
1068
1171
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1069
1172
  )
1070
1173
  return self._model_signature_dict
1071
-
1072
- def to_sklearn(self) -> Any:
1073
- """Get sklearn.svm.LinearSVC object.
1074
- """
1075
- if self._sklearn_object is None:
1076
- self._sklearn_object = self._create_sklearn_object()
1077
- return self._sklearn_object
1078
-
1079
- def to_xgboost(self) -> Any:
1080
- raise exceptions.SnowflakeMLException(
1081
- error_code=error_codes.METHOD_NOT_ALLOWED,
1082
- original_exception=AttributeError(
1083
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1084
- "to_xgboost()",
1085
- "to_sklearn()"
1086
- )
1087
- ),
1088
- )
1089
-
1090
- def to_lightgbm(self) -> Any:
1091
- raise exceptions.SnowflakeMLException(
1092
- error_code=error_codes.METHOD_NOT_ALLOWED,
1093
- original_exception=AttributeError(
1094
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1095
- "to_lightgbm()",
1096
- "to_sklearn()"
1097
- )
1098
- ),
1099
- )
1100
-
1101
- def _get_dependencies(self) -> List[str]:
1102
- return self._deps