snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class LinearSVC(BaseTransformer):
|
71
64
|
r"""Linear Support Vector Classification
|
72
65
|
For more details on this class, see [sklearn.svm.LinearSVC]
|
@@ -293,12 +286,7 @@ class LinearSVC(BaseTransformer):
|
|
293
286
|
)
|
294
287
|
return selected_cols
|
295
288
|
|
296
|
-
|
297
|
-
project=_PROJECT,
|
298
|
-
subproject=_SUBPROJECT,
|
299
|
-
custom_tags=dict([("autogen", True)]),
|
300
|
-
)
|
301
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVC":
|
289
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LinearSVC":
|
302
290
|
"""Fit the model according to the given training data
|
303
291
|
For more details on this function, see [sklearn.svm.LinearSVC.fit]
|
304
292
|
(https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC.fit)
|
@@ -325,12 +313,14 @@ class LinearSVC(BaseTransformer):
|
|
325
313
|
|
326
314
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
327
315
|
|
328
|
-
|
316
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
329
317
|
if SNOWML_SPROC_ENV in os.environ:
|
330
318
|
statement_params = telemetry.get_function_usage_statement_params(
|
331
319
|
project=_PROJECT,
|
332
320
|
subproject=_SUBPROJECT,
|
333
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
321
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
322
|
+
inspect.currentframe(), LinearSVC.__class__.__name__
|
323
|
+
),
|
334
324
|
api_calls=[Session.call],
|
335
325
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
336
326
|
)
|
@@ -351,27 +341,24 @@ class LinearSVC(BaseTransformer):
|
|
351
341
|
)
|
352
342
|
self._sklearn_object = model_trainer.train()
|
353
343
|
self._is_fitted = True
|
354
|
-
self.
|
344
|
+
self._generate_model_signatures(dataset)
|
355
345
|
return self
|
356
346
|
|
357
347
|
def _batch_inference_validate_snowpark(
|
358
348
|
self,
|
359
349
|
dataset: DataFrame,
|
360
350
|
inference_method: str,
|
361
|
-
) ->
|
362
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
363
|
-
return the available package that exists in the snowflake anaconda channel
|
351
|
+
) -> None:
|
352
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
364
353
|
|
365
354
|
Args:
|
366
355
|
dataset: snowpark dataframe
|
367
356
|
inference_method: the inference method such as predict, score...
|
368
|
-
|
357
|
+
|
369
358
|
Raises:
|
370
359
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
371
360
|
SnowflakeMLException: If the session is None, raise error
|
372
361
|
|
373
|
-
Returns:
|
374
|
-
A list of available package that exists in the snowflake anaconda channel
|
375
362
|
"""
|
376
363
|
if not self._is_fitted:
|
377
364
|
raise exceptions.SnowflakeMLException(
|
@@ -389,9 +376,7 @@ class LinearSVC(BaseTransformer):
|
|
389
376
|
"Session must not specified for snowpark dataset."
|
390
377
|
),
|
391
378
|
)
|
392
|
-
|
393
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
394
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
379
|
+
|
395
380
|
|
396
381
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
397
382
|
@telemetry.send_api_usage_telemetry(
|
@@ -427,7 +412,9 @@ class LinearSVC(BaseTransformer):
|
|
427
412
|
# when it is classifier, infer the datatype from label columns
|
428
413
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
429
414
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
430
|
-
label_cols_signatures = [
|
415
|
+
label_cols_signatures = [
|
416
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
417
|
+
]
|
431
418
|
if len(label_cols_signatures) == 0:
|
432
419
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
433
420
|
raise exceptions.SnowflakeMLException(
|
@@ -435,25 +422,23 @@ class LinearSVC(BaseTransformer):
|
|
435
422
|
original_exception=ValueError(error_str),
|
436
423
|
)
|
437
424
|
|
438
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
439
|
-
label_cols_signatures[0].as_snowpark_type()
|
440
|
-
)
|
425
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
441
426
|
|
442
|
-
self.
|
443
|
-
|
427
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
428
|
+
self._deps = self._get_dependencies()
|
429
|
+
assert isinstance(
|
430
|
+
dataset._session, Session
|
431
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
444
432
|
|
445
433
|
transform_kwargs = dict(
|
446
|
-
session
|
447
|
-
dependencies
|
448
|
-
drop_input_cols
|
449
|
-
expected_output_cols_type
|
434
|
+
session=dataset._session,
|
435
|
+
dependencies=self._deps,
|
436
|
+
drop_input_cols=self._drop_input_cols,
|
437
|
+
expected_output_cols_type=expected_type_inferred,
|
450
438
|
)
|
451
439
|
|
452
440
|
elif isinstance(dataset, pd.DataFrame):
|
453
|
-
transform_kwargs = dict(
|
454
|
-
snowpark_input_cols = self._snowpark_cols,
|
455
|
-
drop_input_cols = self._drop_input_cols
|
456
|
-
)
|
441
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
457
442
|
|
458
443
|
transform_handlers = ModelTransformerBuilder.build(
|
459
444
|
dataset=dataset,
|
@@ -493,7 +478,7 @@ class LinearSVC(BaseTransformer):
|
|
493
478
|
Transformed dataset.
|
494
479
|
"""
|
495
480
|
super()._check_dataset_type(dataset)
|
496
|
-
inference_method="transform"
|
481
|
+
inference_method = "transform"
|
497
482
|
|
498
483
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
499
484
|
# are specific to the type of dataset used.
|
@@ -523,24 +508,19 @@ class LinearSVC(BaseTransformer):
|
|
523
508
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
524
509
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
525
510
|
|
526
|
-
self.
|
527
|
-
|
528
|
-
inference_method=inference_method,
|
529
|
-
)
|
511
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
512
|
+
self._deps = self._get_dependencies()
|
530
513
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
531
514
|
|
532
515
|
transform_kwargs = dict(
|
533
|
-
session
|
534
|
-
dependencies
|
535
|
-
drop_input_cols
|
536
|
-
expected_output_cols_type
|
516
|
+
session=dataset._session,
|
517
|
+
dependencies=self._deps,
|
518
|
+
drop_input_cols=self._drop_input_cols,
|
519
|
+
expected_output_cols_type=expected_dtype,
|
537
520
|
)
|
538
521
|
|
539
522
|
elif isinstance(dataset, pd.DataFrame):
|
540
|
-
transform_kwargs = dict(
|
541
|
-
snowpark_input_cols = self._snowpark_cols,
|
542
|
-
drop_input_cols = self._drop_input_cols
|
543
|
-
)
|
523
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
544
524
|
|
545
525
|
transform_handlers = ModelTransformerBuilder.build(
|
546
526
|
dataset=dataset,
|
@@ -559,7 +539,11 @@ class LinearSVC(BaseTransformer):
|
|
559
539
|
return output_df
|
560
540
|
|
561
541
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
562
|
-
def fit_predict(
|
542
|
+
def fit_predict(
|
543
|
+
self,
|
544
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
545
|
+
output_cols_prefix: str = "fit_predict_",
|
546
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
563
547
|
""" Method not supported for this class.
|
564
548
|
|
565
549
|
|
@@ -584,22 +568,104 @@ class LinearSVC(BaseTransformer):
|
|
584
568
|
)
|
585
569
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
586
570
|
drop_input_cols=self._drop_input_cols,
|
587
|
-
expected_output_cols_list=
|
571
|
+
expected_output_cols_list=(
|
572
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
573
|
+
),
|
588
574
|
)
|
589
575
|
self._sklearn_object = fitted_estimator
|
590
576
|
self._is_fitted = True
|
591
577
|
return output_result
|
592
578
|
|
579
|
+
|
580
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
581
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
582
|
+
""" Method not supported for this class.
|
583
|
+
|
593
584
|
|
594
|
-
|
595
|
-
|
596
|
-
|
585
|
+
Raises:
|
586
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
587
|
+
|
588
|
+
Args:
|
589
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
590
|
+
Snowpark or Pandas DataFrame.
|
591
|
+
output_cols_prefix: Prefix for the response columns
|
597
592
|
Returns:
|
598
593
|
Transformed dataset.
|
599
594
|
"""
|
600
|
-
self.
|
601
|
-
|
602
|
-
|
595
|
+
self._infer_input_output_cols(dataset)
|
596
|
+
super()._check_dataset_type(dataset)
|
597
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
598
|
+
estimator=self._sklearn_object,
|
599
|
+
dataset=dataset,
|
600
|
+
input_cols=self.input_cols,
|
601
|
+
label_cols=self.label_cols,
|
602
|
+
sample_weight_col=self.sample_weight_col,
|
603
|
+
autogenerated=self._autogenerated,
|
604
|
+
subproject=_SUBPROJECT,
|
605
|
+
)
|
606
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
607
|
+
drop_input_cols=self._drop_input_cols,
|
608
|
+
expected_output_cols_list=self.output_cols,
|
609
|
+
)
|
610
|
+
self._sklearn_object = fitted_estimator
|
611
|
+
self._is_fitted = True
|
612
|
+
return output_result
|
613
|
+
|
614
|
+
|
615
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
616
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
617
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
618
|
+
"""
|
619
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
620
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
621
|
+
if output_cols:
|
622
|
+
output_cols = [
|
623
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
624
|
+
for c in output_cols
|
625
|
+
]
|
626
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
627
|
+
output_cols = [output_cols_prefix]
|
628
|
+
elif self._sklearn_object is not None:
|
629
|
+
classes = self._sklearn_object.classes_
|
630
|
+
if isinstance(classes, numpy.ndarray):
|
631
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
632
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
633
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
634
|
+
output_cols = []
|
635
|
+
for i, cl in enumerate(classes):
|
636
|
+
# For binary classification, there is only one output column for each class
|
637
|
+
# ndarray as the two classes are complementary.
|
638
|
+
if len(cl) == 2:
|
639
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
640
|
+
else:
|
641
|
+
output_cols.extend([
|
642
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
643
|
+
])
|
644
|
+
else:
|
645
|
+
output_cols = []
|
646
|
+
|
647
|
+
# Make sure column names are valid snowflake identifiers.
|
648
|
+
assert output_cols is not None # Make MyPy happy
|
649
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
650
|
+
|
651
|
+
return rv
|
652
|
+
|
653
|
+
def _align_expected_output_names(
|
654
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
655
|
+
) -> List[str]:
|
656
|
+
# in case the inferred output column names dimension is different
|
657
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
658
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
659
|
+
output_df_columns = list(output_df_pd.columns)
|
660
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
661
|
+
if self.sample_weight_col:
|
662
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
663
|
+
# if the dimension of inferred output column names is correct; use it
|
664
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
665
|
+
return expected_output_cols_list
|
666
|
+
# otherwise, use the sklearn estimator's output
|
667
|
+
else:
|
668
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
603
669
|
|
604
670
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
605
671
|
@telemetry.send_api_usage_telemetry(
|
@@ -631,24 +697,26 @@ class LinearSVC(BaseTransformer):
|
|
631
697
|
# are specific to the type of dataset used.
|
632
698
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
633
699
|
|
700
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
701
|
+
|
634
702
|
if isinstance(dataset, DataFrame):
|
635
|
-
self.
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
703
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
704
|
+
self._deps = self._get_dependencies()
|
705
|
+
assert isinstance(
|
706
|
+
dataset._session, Session
|
707
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
640
708
|
transform_kwargs = dict(
|
641
709
|
session=dataset._session,
|
642
710
|
dependencies=self._deps,
|
643
|
-
drop_input_cols
|
711
|
+
drop_input_cols=self._drop_input_cols,
|
644
712
|
expected_output_cols_type="float",
|
645
713
|
)
|
714
|
+
expected_output_cols = self._align_expected_output_names(
|
715
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
716
|
+
)
|
646
717
|
|
647
718
|
elif isinstance(dataset, pd.DataFrame):
|
648
|
-
transform_kwargs = dict(
|
649
|
-
snowpark_input_cols = self._snowpark_cols,
|
650
|
-
drop_input_cols = self._drop_input_cols
|
651
|
-
)
|
719
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
652
720
|
|
653
721
|
transform_handlers = ModelTransformerBuilder.build(
|
654
722
|
dataset=dataset,
|
@@ -660,7 +728,7 @@ class LinearSVC(BaseTransformer):
|
|
660
728
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
661
729
|
inference_method=inference_method,
|
662
730
|
input_cols=self.input_cols,
|
663
|
-
expected_output_cols=
|
731
|
+
expected_output_cols=expected_output_cols,
|
664
732
|
**transform_kwargs
|
665
733
|
)
|
666
734
|
return output_df
|
@@ -690,29 +758,30 @@ class LinearSVC(BaseTransformer):
|
|
690
758
|
Output dataset with log probability of the sample for each class in the model.
|
691
759
|
"""
|
692
760
|
super()._check_dataset_type(dataset)
|
693
|
-
inference_method="predict_log_proba"
|
761
|
+
inference_method = "predict_log_proba"
|
762
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
694
763
|
|
695
764
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
696
765
|
# are specific to the type of dataset used.
|
697
766
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
698
767
|
|
699
768
|
if isinstance(dataset, DataFrame):
|
700
|
-
self.
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
769
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
770
|
+
self._deps = self._get_dependencies()
|
771
|
+
assert isinstance(
|
772
|
+
dataset._session, Session
|
773
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
705
774
|
transform_kwargs = dict(
|
706
775
|
session=dataset._session,
|
707
776
|
dependencies=self._deps,
|
708
|
-
drop_input_cols
|
777
|
+
drop_input_cols=self._drop_input_cols,
|
709
778
|
expected_output_cols_type="float",
|
710
779
|
)
|
780
|
+
expected_output_cols = self._align_expected_output_names(
|
781
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
782
|
+
)
|
711
783
|
elif isinstance(dataset, pd.DataFrame):
|
712
|
-
transform_kwargs = dict(
|
713
|
-
snowpark_input_cols = self._snowpark_cols,
|
714
|
-
drop_input_cols = self._drop_input_cols
|
715
|
-
)
|
784
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
716
785
|
|
717
786
|
transform_handlers = ModelTransformerBuilder.build(
|
718
787
|
dataset=dataset,
|
@@ -725,7 +794,7 @@ class LinearSVC(BaseTransformer):
|
|
725
794
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
726
795
|
inference_method=inference_method,
|
727
796
|
input_cols=self.input_cols,
|
728
|
-
expected_output_cols=
|
797
|
+
expected_output_cols=expected_output_cols,
|
729
798
|
**transform_kwargs
|
730
799
|
)
|
731
800
|
return output_df
|
@@ -753,30 +822,32 @@ class LinearSVC(BaseTransformer):
|
|
753
822
|
Output dataset with results of the decision function for the samples in input dataset.
|
754
823
|
"""
|
755
824
|
super()._check_dataset_type(dataset)
|
756
|
-
inference_method="decision_function"
|
825
|
+
inference_method = "decision_function"
|
757
826
|
|
758
827
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
759
828
|
# are specific to the type of dataset used.
|
760
829
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
761
830
|
|
831
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
832
|
+
|
762
833
|
if isinstance(dataset, DataFrame):
|
763
|
-
self.
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
834
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
835
|
+
self._deps = self._get_dependencies()
|
836
|
+
assert isinstance(
|
837
|
+
dataset._session, Session
|
838
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
768
839
|
transform_kwargs = dict(
|
769
840
|
session=dataset._session,
|
770
841
|
dependencies=self._deps,
|
771
|
-
drop_input_cols
|
842
|
+
drop_input_cols=self._drop_input_cols,
|
772
843
|
expected_output_cols_type="float",
|
773
844
|
)
|
845
|
+
expected_output_cols = self._align_expected_output_names(
|
846
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
847
|
+
)
|
774
848
|
|
775
849
|
elif isinstance(dataset, pd.DataFrame):
|
776
|
-
transform_kwargs = dict(
|
777
|
-
snowpark_input_cols = self._snowpark_cols,
|
778
|
-
drop_input_cols = self._drop_input_cols
|
779
|
-
)
|
850
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
780
851
|
|
781
852
|
transform_handlers = ModelTransformerBuilder.build(
|
782
853
|
dataset=dataset,
|
@@ -789,7 +860,7 @@ class LinearSVC(BaseTransformer):
|
|
789
860
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
790
861
|
inference_method=inference_method,
|
791
862
|
input_cols=self.input_cols,
|
792
|
-
expected_output_cols=
|
863
|
+
expected_output_cols=expected_output_cols,
|
793
864
|
**transform_kwargs
|
794
865
|
)
|
795
866
|
return output_df
|
@@ -818,17 +889,17 @@ class LinearSVC(BaseTransformer):
|
|
818
889
|
Output dataset with probability of the sample for each class in the model.
|
819
890
|
"""
|
820
891
|
super()._check_dataset_type(dataset)
|
821
|
-
inference_method="score_samples"
|
892
|
+
inference_method = "score_samples"
|
822
893
|
|
823
894
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
824
895
|
# are specific to the type of dataset used.
|
825
896
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
826
897
|
|
898
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
899
|
+
|
827
900
|
if isinstance(dataset, DataFrame):
|
828
|
-
self.
|
829
|
-
|
830
|
-
inference_method=inference_method,
|
831
|
-
)
|
901
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
902
|
+
self._deps = self._get_dependencies()
|
832
903
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
833
904
|
transform_kwargs = dict(
|
834
905
|
session=dataset._session,
|
@@ -836,6 +907,9 @@ class LinearSVC(BaseTransformer):
|
|
836
907
|
drop_input_cols = self._drop_input_cols,
|
837
908
|
expected_output_cols_type="float",
|
838
909
|
)
|
910
|
+
expected_output_cols = self._align_expected_output_names(
|
911
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
912
|
+
)
|
839
913
|
|
840
914
|
elif isinstance(dataset, pd.DataFrame):
|
841
915
|
transform_kwargs = dict(
|
@@ -854,7 +928,7 @@ class LinearSVC(BaseTransformer):
|
|
854
928
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
855
929
|
inference_method=inference_method,
|
856
930
|
input_cols=self.input_cols,
|
857
|
-
expected_output_cols=
|
931
|
+
expected_output_cols=expected_output_cols,
|
858
932
|
**transform_kwargs
|
859
933
|
)
|
860
934
|
return output_df
|
@@ -889,17 +963,15 @@ class LinearSVC(BaseTransformer):
|
|
889
963
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
890
964
|
|
891
965
|
if isinstance(dataset, DataFrame):
|
892
|
-
self.
|
893
|
-
|
894
|
-
inference_method="score",
|
895
|
-
)
|
966
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
967
|
+
self._deps = self._get_dependencies()
|
896
968
|
selected_cols = self._get_active_columns()
|
897
969
|
if len(selected_cols) > 0:
|
898
970
|
dataset = dataset.select(selected_cols)
|
899
971
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
900
972
|
transform_kwargs = dict(
|
901
973
|
session=dataset._session,
|
902
|
-
dependencies=
|
974
|
+
dependencies=self._deps,
|
903
975
|
score_sproc_imports=['sklearn'],
|
904
976
|
)
|
905
977
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -964,11 +1036,8 @@ class LinearSVC(BaseTransformer):
|
|
964
1036
|
|
965
1037
|
if isinstance(dataset, DataFrame):
|
966
1038
|
|
967
|
-
self.
|
968
|
-
|
969
|
-
inference_method=inference_method,
|
970
|
-
|
971
|
-
)
|
1039
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1040
|
+
self._deps = self._get_dependencies()
|
972
1041
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
973
1042
|
transform_kwargs = dict(
|
974
1043
|
session = dataset._session,
|
@@ -1001,50 +1070,84 @@ class LinearSVC(BaseTransformer):
|
|
1001
1070
|
)
|
1002
1071
|
return output_df
|
1003
1072
|
|
1073
|
+
|
1074
|
+
|
1075
|
+
def to_sklearn(self) -> Any:
|
1076
|
+
"""Get sklearn.svm.LinearSVC object.
|
1077
|
+
"""
|
1078
|
+
if self._sklearn_object is None:
|
1079
|
+
self._sklearn_object = self._create_sklearn_object()
|
1080
|
+
return self._sklearn_object
|
1081
|
+
|
1082
|
+
def to_xgboost(self) -> Any:
|
1083
|
+
raise exceptions.SnowflakeMLException(
|
1084
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1085
|
+
original_exception=AttributeError(
|
1086
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1087
|
+
"to_xgboost()",
|
1088
|
+
"to_sklearn()"
|
1089
|
+
)
|
1090
|
+
),
|
1091
|
+
)
|
1092
|
+
|
1093
|
+
def to_lightgbm(self) -> Any:
|
1094
|
+
raise exceptions.SnowflakeMLException(
|
1095
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1096
|
+
original_exception=AttributeError(
|
1097
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1098
|
+
"to_lightgbm()",
|
1099
|
+
"to_sklearn()"
|
1100
|
+
)
|
1101
|
+
),
|
1102
|
+
)
|
1103
|
+
|
1104
|
+
def _get_dependencies(self) -> List[str]:
|
1105
|
+
return self._deps
|
1106
|
+
|
1004
1107
|
|
1005
|
-
def
|
1108
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1006
1109
|
self._model_signature_dict = dict()
|
1007
1110
|
|
1008
1111
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1009
1112
|
|
1010
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1113
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1011
1114
|
outputs: List[BaseFeatureSpec] = []
|
1012
1115
|
if hasattr(self, "predict"):
|
1013
1116
|
# keep mypy happy
|
1014
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1117
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1015
1118
|
# For classifier, the type of predict is the same as the type of label
|
1016
|
-
if self._sklearn_object._estimator_type ==
|
1017
|
-
|
1119
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1120
|
+
# label columns is the desired type for output
|
1018
1121
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1019
1122
|
# rename the output columns
|
1020
1123
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1021
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1022
|
-
|
1023
|
-
|
1124
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1125
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1126
|
+
)
|
1024
1127
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1025
1128
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1026
|
-
# Clusterer returns int64 cluster labels.
|
1129
|
+
# Clusterer returns int64 cluster labels.
|
1027
1130
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1028
1131
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1029
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1132
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1133
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1134
|
+
)
|
1135
|
+
|
1033
1136
|
# For regressor, the type of predict is float64
|
1034
|
-
elif self._sklearn_object._estimator_type ==
|
1137
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1035
1138
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1036
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1139
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1140
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1141
|
+
)
|
1142
|
+
|
1040
1143
|
for prob_func in PROB_FUNCTIONS:
|
1041
1144
|
if hasattr(self, prob_func):
|
1042
1145
|
output_cols_prefix: str = f"{prob_func}_"
|
1043
1146
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1044
1147
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1045
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1046
|
-
|
1047
|
-
|
1148
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1149
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1150
|
+
)
|
1048
1151
|
|
1049
1152
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1050
1153
|
items = list(self._model_signature_dict.items())
|
@@ -1057,10 +1160,10 @@ class LinearSVC(BaseTransformer):
|
|
1057
1160
|
"""Returns model signature of current class.
|
1058
1161
|
|
1059
1162
|
Raises:
|
1060
|
-
|
1163
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1061
1164
|
|
1062
1165
|
Returns:
|
1063
|
-
Dict
|
1166
|
+
Dict with each method and its input output signature
|
1064
1167
|
"""
|
1065
1168
|
if self._model_signature_dict is None:
|
1066
1169
|
raise exceptions.SnowflakeMLException(
|
@@ -1068,35 +1171,3 @@ class LinearSVC(BaseTransformer):
|
|
1068
1171
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1069
1172
|
)
|
1070
1173
|
return self._model_signature_dict
|
1071
|
-
|
1072
|
-
def to_sklearn(self) -> Any:
|
1073
|
-
"""Get sklearn.svm.LinearSVC object.
|
1074
|
-
"""
|
1075
|
-
if self._sklearn_object is None:
|
1076
|
-
self._sklearn_object = self._create_sklearn_object()
|
1077
|
-
return self._sklearn_object
|
1078
|
-
|
1079
|
-
def to_xgboost(self) -> Any:
|
1080
|
-
raise exceptions.SnowflakeMLException(
|
1081
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1082
|
-
original_exception=AttributeError(
|
1083
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1084
|
-
"to_xgboost()",
|
1085
|
-
"to_sklearn()"
|
1086
|
-
)
|
1087
|
-
),
|
1088
|
-
)
|
1089
|
-
|
1090
|
-
def to_lightgbm(self) -> Any:
|
1091
|
-
raise exceptions.SnowflakeMLException(
|
1092
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1093
|
-
original_exception=AttributeError(
|
1094
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1095
|
-
"to_lightgbm()",
|
1096
|
-
"to_sklearn()"
|
1097
|
-
)
|
1098
|
-
),
|
1099
|
-
)
|
1100
|
-
|
1101
|
-
def _get_dependencies(self) -> List[str]:
|
1102
|
-
return self._deps
|