snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class NuSVR(BaseTransformer):
71
64
  r"""Nu Support Vector Regression
72
65
  For more details on this class, see [sklearn.svm.NuSVR]
@@ -260,12 +253,7 @@ class NuSVR(BaseTransformer):
260
253
  )
261
254
  return selected_cols
262
255
 
263
- @telemetry.send_api_usage_telemetry(
264
- project=_PROJECT,
265
- subproject=_SUBPROJECT,
266
- custom_tags=dict([("autogen", True)]),
267
- )
268
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVR":
256
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "NuSVR":
269
257
  """Fit the SVM model according to the given training data
270
258
  For more details on this function, see [sklearn.svm.NuSVR.fit]
271
259
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.NuSVR.html#sklearn.svm.NuSVR.fit)
@@ -292,12 +280,14 @@ class NuSVR(BaseTransformer):
292
280
 
293
281
  self._snowpark_cols = dataset.select(self.input_cols).columns
294
282
 
295
- # If we are already in a stored procedure, no need to kick off another one.
283
+ # If we are already in a stored procedure, no need to kick off another one.
296
284
  if SNOWML_SPROC_ENV in os.environ:
297
285
  statement_params = telemetry.get_function_usage_statement_params(
298
286
  project=_PROJECT,
299
287
  subproject=_SUBPROJECT,
300
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), NuSVR.__class__.__name__),
288
+ function_name=telemetry.get_statement_params_full_func_name(
289
+ inspect.currentframe(), NuSVR.__class__.__name__
290
+ ),
301
291
  api_calls=[Session.call],
302
292
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
303
293
  )
@@ -318,27 +308,24 @@ class NuSVR(BaseTransformer):
318
308
  )
319
309
  self._sklearn_object = model_trainer.train()
320
310
  self._is_fitted = True
321
- self._get_model_signatures(dataset)
311
+ self._generate_model_signatures(dataset)
322
312
  return self
323
313
 
324
314
  def _batch_inference_validate_snowpark(
325
315
  self,
326
316
  dataset: DataFrame,
327
317
  inference_method: str,
328
- ) -> List[str]:
329
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
330
- return the available package that exists in the snowflake anaconda channel
318
+ ) -> None:
319
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
331
320
 
332
321
  Args:
333
322
  dataset: snowpark dataframe
334
323
  inference_method: the inference method such as predict, score...
335
-
324
+
336
325
  Raises:
337
326
  SnowflakeMLException: If the estimator is not fitted, raise error
338
327
  SnowflakeMLException: If the session is None, raise error
339
328
 
340
- Returns:
341
- A list of available package that exists in the snowflake anaconda channel
342
329
  """
343
330
  if not self._is_fitted:
344
331
  raise exceptions.SnowflakeMLException(
@@ -356,9 +343,7 @@ class NuSVR(BaseTransformer):
356
343
  "Session must not specified for snowpark dataset."
357
344
  ),
358
345
  )
359
- # Validate that key package version in user workspace are supported in snowflake conda channel
360
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
361
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
346
+
362
347
 
363
348
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
364
349
  @telemetry.send_api_usage_telemetry(
@@ -394,7 +379,9 @@ class NuSVR(BaseTransformer):
394
379
  # when it is classifier, infer the datatype from label columns
395
380
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
396
381
  # Batch inference takes a single expected output column type. Use the first columns type for now.
397
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
382
+ label_cols_signatures = [
383
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
384
+ ]
398
385
  if len(label_cols_signatures) == 0:
399
386
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
400
387
  raise exceptions.SnowflakeMLException(
@@ -402,25 +389,23 @@ class NuSVR(BaseTransformer):
402
389
  original_exception=ValueError(error_str),
403
390
  )
404
391
 
405
- expected_type_inferred = convert_sp_to_sf_type(
406
- label_cols_signatures[0].as_snowpark_type()
407
- )
392
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
408
393
 
409
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
410
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
394
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
395
+ self._deps = self._get_dependencies()
396
+ assert isinstance(
397
+ dataset._session, Session
398
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
411
399
 
412
400
  transform_kwargs = dict(
413
- session = dataset._session,
414
- dependencies = self._deps,
415
- drop_input_cols = self._drop_input_cols,
416
- expected_output_cols_type = expected_type_inferred,
401
+ session=dataset._session,
402
+ dependencies=self._deps,
403
+ drop_input_cols=self._drop_input_cols,
404
+ expected_output_cols_type=expected_type_inferred,
417
405
  )
418
406
 
419
407
  elif isinstance(dataset, pd.DataFrame):
420
- transform_kwargs = dict(
421
- snowpark_input_cols = self._snowpark_cols,
422
- drop_input_cols = self._drop_input_cols
423
- )
408
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
424
409
 
425
410
  transform_handlers = ModelTransformerBuilder.build(
426
411
  dataset=dataset,
@@ -460,7 +445,7 @@ class NuSVR(BaseTransformer):
460
445
  Transformed dataset.
461
446
  """
462
447
  super()._check_dataset_type(dataset)
463
- inference_method="transform"
448
+ inference_method = "transform"
464
449
 
465
450
  # This dictionary contains optional kwargs for batch inference. These kwargs
466
451
  # are specific to the type of dataset used.
@@ -490,24 +475,19 @@ class NuSVR(BaseTransformer):
490
475
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
491
476
  expected_dtype = convert_sp_to_sf_type(output_types[0])
492
477
 
493
- self._deps = self._batch_inference_validate_snowpark(
494
- dataset=dataset,
495
- inference_method=inference_method,
496
- )
478
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
479
+ self._deps = self._get_dependencies()
497
480
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
498
481
 
499
482
  transform_kwargs = dict(
500
- session = dataset._session,
501
- dependencies = self._deps,
502
- drop_input_cols = self._drop_input_cols,
503
- expected_output_cols_type = expected_dtype,
483
+ session=dataset._session,
484
+ dependencies=self._deps,
485
+ drop_input_cols=self._drop_input_cols,
486
+ expected_output_cols_type=expected_dtype,
504
487
  )
505
488
 
506
489
  elif isinstance(dataset, pd.DataFrame):
507
- transform_kwargs = dict(
508
- snowpark_input_cols = self._snowpark_cols,
509
- drop_input_cols = self._drop_input_cols
510
- )
490
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
511
491
 
512
492
  transform_handlers = ModelTransformerBuilder.build(
513
493
  dataset=dataset,
@@ -526,7 +506,11 @@ class NuSVR(BaseTransformer):
526
506
  return output_df
527
507
 
528
508
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
529
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
509
+ def fit_predict(
510
+ self,
511
+ dataset: Union[DataFrame, pd.DataFrame],
512
+ output_cols_prefix: str = "fit_predict_",
513
+ ) -> Union[DataFrame, pd.DataFrame]:
530
514
  """ Method not supported for this class.
531
515
 
532
516
 
@@ -551,22 +535,104 @@ class NuSVR(BaseTransformer):
551
535
  )
552
536
  output_result, fitted_estimator = model_trainer.train_fit_predict(
553
537
  drop_input_cols=self._drop_input_cols,
554
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
538
+ expected_output_cols_list=(
539
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
540
+ ),
555
541
  )
556
542
  self._sklearn_object = fitted_estimator
557
543
  self._is_fitted = True
558
544
  return output_result
559
545
 
546
+
547
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
548
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
549
+ """ Method not supported for this class.
550
+
560
551
 
561
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
562
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
563
- """
552
+ Raises:
553
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
554
+
555
+ Args:
556
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
557
+ Snowpark or Pandas DataFrame.
558
+ output_cols_prefix: Prefix for the response columns
564
559
  Returns:
565
560
  Transformed dataset.
566
561
  """
567
- self.fit(dataset)
568
- assert self._sklearn_object is not None
569
- return self._sklearn_object.embedding_
562
+ self._infer_input_output_cols(dataset)
563
+ super()._check_dataset_type(dataset)
564
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
565
+ estimator=self._sklearn_object,
566
+ dataset=dataset,
567
+ input_cols=self.input_cols,
568
+ label_cols=self.label_cols,
569
+ sample_weight_col=self.sample_weight_col,
570
+ autogenerated=self._autogenerated,
571
+ subproject=_SUBPROJECT,
572
+ )
573
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
574
+ drop_input_cols=self._drop_input_cols,
575
+ expected_output_cols_list=self.output_cols,
576
+ )
577
+ self._sklearn_object = fitted_estimator
578
+ self._is_fitted = True
579
+ return output_result
580
+
581
+
582
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
583
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
584
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
585
+ """
586
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
587
+ # The following condition is introduced for kneighbors methods, and not used in other methods
588
+ if output_cols:
589
+ output_cols = [
590
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
591
+ for c in output_cols
592
+ ]
593
+ elif getattr(self._sklearn_object, "classes_", None) is None:
594
+ output_cols = [output_cols_prefix]
595
+ elif self._sklearn_object is not None:
596
+ classes = self._sklearn_object.classes_
597
+ if isinstance(classes, numpy.ndarray):
598
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
599
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
600
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
601
+ output_cols = []
602
+ for i, cl in enumerate(classes):
603
+ # For binary classification, there is only one output column for each class
604
+ # ndarray as the two classes are complementary.
605
+ if len(cl) == 2:
606
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
607
+ else:
608
+ output_cols.extend([
609
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
610
+ ])
611
+ else:
612
+ output_cols = []
613
+
614
+ # Make sure column names are valid snowflake identifiers.
615
+ assert output_cols is not None # Make MyPy happy
616
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
617
+
618
+ return rv
619
+
620
+ def _align_expected_output_names(
621
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
622
+ ) -> List[str]:
623
+ # in case the inferred output column names dimension is different
624
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
625
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
626
+ output_df_columns = list(output_df_pd.columns)
627
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
628
+ if self.sample_weight_col:
629
+ output_df_columns_set -= set(self.sample_weight_col)
630
+ # if the dimension of inferred output column names is correct; use it
631
+ if len(expected_output_cols_list) == len(output_df_columns_set):
632
+ return expected_output_cols_list
633
+ # otherwise, use the sklearn estimator's output
634
+ else:
635
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
570
636
 
571
637
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
572
638
  @telemetry.send_api_usage_telemetry(
@@ -598,24 +664,26 @@ class NuSVR(BaseTransformer):
598
664
  # are specific to the type of dataset used.
599
665
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
600
666
 
667
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
668
+
601
669
  if isinstance(dataset, DataFrame):
602
- self._deps = self._batch_inference_validate_snowpark(
603
- dataset=dataset,
604
- inference_method=inference_method,
605
- )
606
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
670
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
671
+ self._deps = self._get_dependencies()
672
+ assert isinstance(
673
+ dataset._session, Session
674
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
607
675
  transform_kwargs = dict(
608
676
  session=dataset._session,
609
677
  dependencies=self._deps,
610
- drop_input_cols = self._drop_input_cols,
678
+ drop_input_cols=self._drop_input_cols,
611
679
  expected_output_cols_type="float",
612
680
  )
681
+ expected_output_cols = self._align_expected_output_names(
682
+ inference_method, dataset, expected_output_cols, output_cols_prefix
683
+ )
613
684
 
614
685
  elif isinstance(dataset, pd.DataFrame):
615
- transform_kwargs = dict(
616
- snowpark_input_cols = self._snowpark_cols,
617
- drop_input_cols = self._drop_input_cols
618
- )
686
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
619
687
 
620
688
  transform_handlers = ModelTransformerBuilder.build(
621
689
  dataset=dataset,
@@ -627,7 +695,7 @@ class NuSVR(BaseTransformer):
627
695
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
628
696
  inference_method=inference_method,
629
697
  input_cols=self.input_cols,
630
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
698
+ expected_output_cols=expected_output_cols,
631
699
  **transform_kwargs
632
700
  )
633
701
  return output_df
@@ -657,29 +725,30 @@ class NuSVR(BaseTransformer):
657
725
  Output dataset with log probability of the sample for each class in the model.
658
726
  """
659
727
  super()._check_dataset_type(dataset)
660
- inference_method="predict_log_proba"
728
+ inference_method = "predict_log_proba"
729
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
661
730
 
662
731
  # This dictionary contains optional kwargs for batch inference. These kwargs
663
732
  # are specific to the type of dataset used.
664
733
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
665
734
 
666
735
  if isinstance(dataset, DataFrame):
667
- self._deps = self._batch_inference_validate_snowpark(
668
- dataset=dataset,
669
- inference_method=inference_method,
670
- )
671
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
736
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
737
+ self._deps = self._get_dependencies()
738
+ assert isinstance(
739
+ dataset._session, Session
740
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
672
741
  transform_kwargs = dict(
673
742
  session=dataset._session,
674
743
  dependencies=self._deps,
675
- drop_input_cols = self._drop_input_cols,
744
+ drop_input_cols=self._drop_input_cols,
676
745
  expected_output_cols_type="float",
677
746
  )
747
+ expected_output_cols = self._align_expected_output_names(
748
+ inference_method, dataset, expected_output_cols, output_cols_prefix
749
+ )
678
750
  elif isinstance(dataset, pd.DataFrame):
679
- transform_kwargs = dict(
680
- snowpark_input_cols = self._snowpark_cols,
681
- drop_input_cols = self._drop_input_cols
682
- )
751
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
683
752
 
684
753
  transform_handlers = ModelTransformerBuilder.build(
685
754
  dataset=dataset,
@@ -692,7 +761,7 @@ class NuSVR(BaseTransformer):
692
761
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
693
762
  inference_method=inference_method,
694
763
  input_cols=self.input_cols,
695
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
764
+ expected_output_cols=expected_output_cols,
696
765
  **transform_kwargs
697
766
  )
698
767
  return output_df
@@ -718,30 +787,32 @@ class NuSVR(BaseTransformer):
718
787
  Output dataset with results of the decision function for the samples in input dataset.
719
788
  """
720
789
  super()._check_dataset_type(dataset)
721
- inference_method="decision_function"
790
+ inference_method = "decision_function"
722
791
 
723
792
  # This dictionary contains optional kwargs for batch inference. These kwargs
724
793
  # are specific to the type of dataset used.
725
794
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
726
795
 
796
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
797
+
727
798
  if isinstance(dataset, DataFrame):
728
- self._deps = self._batch_inference_validate_snowpark(
729
- dataset=dataset,
730
- inference_method=inference_method,
731
- )
732
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
799
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
800
+ self._deps = self._get_dependencies()
801
+ assert isinstance(
802
+ dataset._session, Session
803
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
733
804
  transform_kwargs = dict(
734
805
  session=dataset._session,
735
806
  dependencies=self._deps,
736
- drop_input_cols = self._drop_input_cols,
807
+ drop_input_cols=self._drop_input_cols,
737
808
  expected_output_cols_type="float",
738
809
  )
810
+ expected_output_cols = self._align_expected_output_names(
811
+ inference_method, dataset, expected_output_cols, output_cols_prefix
812
+ )
739
813
 
740
814
  elif isinstance(dataset, pd.DataFrame):
741
- transform_kwargs = dict(
742
- snowpark_input_cols = self._snowpark_cols,
743
- drop_input_cols = self._drop_input_cols
744
- )
815
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
745
816
 
746
817
  transform_handlers = ModelTransformerBuilder.build(
747
818
  dataset=dataset,
@@ -754,7 +825,7 @@ class NuSVR(BaseTransformer):
754
825
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
755
826
  inference_method=inference_method,
756
827
  input_cols=self.input_cols,
757
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
828
+ expected_output_cols=expected_output_cols,
758
829
  **transform_kwargs
759
830
  )
760
831
  return output_df
@@ -783,17 +854,17 @@ class NuSVR(BaseTransformer):
783
854
  Output dataset with probability of the sample for each class in the model.
784
855
  """
785
856
  super()._check_dataset_type(dataset)
786
- inference_method="score_samples"
857
+ inference_method = "score_samples"
787
858
 
788
859
  # This dictionary contains optional kwargs for batch inference. These kwargs
789
860
  # are specific to the type of dataset used.
790
861
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
791
862
 
863
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
864
+
792
865
  if isinstance(dataset, DataFrame):
793
- self._deps = self._batch_inference_validate_snowpark(
794
- dataset=dataset,
795
- inference_method=inference_method,
796
- )
866
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
867
+ self._deps = self._get_dependencies()
797
868
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
798
869
  transform_kwargs = dict(
799
870
  session=dataset._session,
@@ -801,6 +872,9 @@ class NuSVR(BaseTransformer):
801
872
  drop_input_cols = self._drop_input_cols,
802
873
  expected_output_cols_type="float",
803
874
  )
875
+ expected_output_cols = self._align_expected_output_names(
876
+ inference_method, dataset, expected_output_cols, output_cols_prefix
877
+ )
804
878
 
805
879
  elif isinstance(dataset, pd.DataFrame):
806
880
  transform_kwargs = dict(
@@ -819,7 +893,7 @@ class NuSVR(BaseTransformer):
819
893
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
820
894
  inference_method=inference_method,
821
895
  input_cols=self.input_cols,
822
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
896
+ expected_output_cols=expected_output_cols,
823
897
  **transform_kwargs
824
898
  )
825
899
  return output_df
@@ -854,17 +928,15 @@ class NuSVR(BaseTransformer):
854
928
  transform_kwargs: ScoreKwargsTypedDict = dict()
855
929
 
856
930
  if isinstance(dataset, DataFrame):
857
- self._deps = self._batch_inference_validate_snowpark(
858
- dataset=dataset,
859
- inference_method="score",
860
- )
931
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
932
+ self._deps = self._get_dependencies()
861
933
  selected_cols = self._get_active_columns()
862
934
  if len(selected_cols) > 0:
863
935
  dataset = dataset.select(selected_cols)
864
936
  assert isinstance(dataset._session, Session) # keep mypy happy
865
937
  transform_kwargs = dict(
866
938
  session=dataset._session,
867
- dependencies=["snowflake-snowpark-python"] + self._deps,
939
+ dependencies=self._deps,
868
940
  score_sproc_imports=['sklearn'],
869
941
  )
870
942
  elif isinstance(dataset, pd.DataFrame):
@@ -929,11 +1001,8 @@ class NuSVR(BaseTransformer):
929
1001
 
930
1002
  if isinstance(dataset, DataFrame):
931
1003
 
932
- self._deps = self._batch_inference_validate_snowpark(
933
- dataset=dataset,
934
- inference_method=inference_method,
935
-
936
- )
1004
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1005
+ self._deps = self._get_dependencies()
937
1006
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
938
1007
  transform_kwargs = dict(
939
1008
  session = dataset._session,
@@ -966,50 +1035,84 @@ class NuSVR(BaseTransformer):
966
1035
  )
967
1036
  return output_df
968
1037
 
1038
+
1039
+
1040
+ def to_sklearn(self) -> Any:
1041
+ """Get sklearn.svm.NuSVR object.
1042
+ """
1043
+ if self._sklearn_object is None:
1044
+ self._sklearn_object = self._create_sklearn_object()
1045
+ return self._sklearn_object
1046
+
1047
+ def to_xgboost(self) -> Any:
1048
+ raise exceptions.SnowflakeMLException(
1049
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1050
+ original_exception=AttributeError(
1051
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1052
+ "to_xgboost()",
1053
+ "to_sklearn()"
1054
+ )
1055
+ ),
1056
+ )
1057
+
1058
+ def to_lightgbm(self) -> Any:
1059
+ raise exceptions.SnowflakeMLException(
1060
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1061
+ original_exception=AttributeError(
1062
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1063
+ "to_lightgbm()",
1064
+ "to_sklearn()"
1065
+ )
1066
+ ),
1067
+ )
1068
+
1069
+ def _get_dependencies(self) -> List[str]:
1070
+ return self._deps
1071
+
969
1072
 
970
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1073
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
971
1074
  self._model_signature_dict = dict()
972
1075
 
973
1076
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
974
1077
 
975
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1078
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
976
1079
  outputs: List[BaseFeatureSpec] = []
977
1080
  if hasattr(self, "predict"):
978
1081
  # keep mypy happy
979
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1082
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
980
1083
  # For classifier, the type of predict is the same as the type of label
981
- if self._sklearn_object._estimator_type == 'classifier':
982
- # label columns is the desired type for output
1084
+ if self._sklearn_object._estimator_type == "classifier":
1085
+ # label columns is the desired type for output
983
1086
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
984
1087
  # rename the output columns
985
1088
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
986
- self._model_signature_dict["predict"] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
1089
+ self._model_signature_dict["predict"] = ModelSignature(
1090
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1091
+ )
989
1092
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
990
1093
  # For outlier models, returns -1 for outliers and 1 for inliers.
991
- # Clusterer returns int64 cluster labels.
1094
+ # Clusterer returns int64 cluster labels.
992
1095
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
993
1096
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
997
-
1097
+ self._model_signature_dict["predict"] = ModelSignature(
1098
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1099
+ )
1100
+
998
1101
  # For regressor, the type of predict is float64
999
- elif self._sklearn_object._estimator_type == 'regressor':
1102
+ elif self._sklearn_object._estimator_type == "regressor":
1000
1103
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1001
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
- ([] if self._drop_input_cols else inputs)
1003
- + outputs)
1004
-
1104
+ self._model_signature_dict["predict"] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1107
+
1005
1108
  for prob_func in PROB_FUNCTIONS:
1006
1109
  if hasattr(self, prob_func):
1007
1110
  output_cols_prefix: str = f"{prob_func}_"
1008
1111
  output_column_names = self._get_output_column_names(output_cols_prefix)
1009
1112
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1010
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1113
+ self._model_signature_dict[prob_func] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1013
1116
 
1014
1117
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1015
1118
  items = list(self._model_signature_dict.items())
@@ -1022,10 +1125,10 @@ class NuSVR(BaseTransformer):
1022
1125
  """Returns model signature of current class.
1023
1126
 
1024
1127
  Raises:
1025
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1128
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1026
1129
 
1027
1130
  Returns:
1028
- Dict[str, ModelSignature]: each method and its input output signature
1131
+ Dict with each method and its input output signature
1029
1132
  """
1030
1133
  if self._model_signature_dict is None:
1031
1134
  raise exceptions.SnowflakeMLException(
@@ -1033,35 +1136,3 @@ class NuSVR(BaseTransformer):
1033
1136
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1034
1137
  )
1035
1138
  return self._model_signature_dict
1036
-
1037
- def to_sklearn(self) -> Any:
1038
- """Get sklearn.svm.NuSVR object.
1039
- """
1040
- if self._sklearn_object is None:
1041
- self._sklearn_object = self._create_sklearn_object()
1042
- return self._sklearn_object
1043
-
1044
- def to_xgboost(self) -> Any:
1045
- raise exceptions.SnowflakeMLException(
1046
- error_code=error_codes.METHOD_NOT_ALLOWED,
1047
- original_exception=AttributeError(
1048
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1049
- "to_xgboost()",
1050
- "to_sklearn()"
1051
- )
1052
- ),
1053
- )
1054
-
1055
- def to_lightgbm(self) -> Any:
1056
- raise exceptions.SnowflakeMLException(
1057
- error_code=error_codes.METHOD_NOT_ALLOWED,
1058
- original_exception=AttributeError(
1059
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
- "to_lightgbm()",
1061
- "to_sklearn()"
1062
- )
1063
- ),
1064
- )
1065
-
1066
- def _get_dependencies(self) -> List[str]:
1067
- return self._deps