snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class KernelPCA(BaseTransformer):
71
64
  r"""Kernel Principal component analysis (KPCA) [1]_
72
65
  For more details on this class, see [sklearn.decomposition.KernelPCA]
@@ -317,12 +310,7 @@ class KernelPCA(BaseTransformer):
317
310
  )
318
311
  return selected_cols
319
312
 
320
- @telemetry.send_api_usage_telemetry(
321
- project=_PROJECT,
322
- subproject=_SUBPROJECT,
323
- custom_tags=dict([("autogen", True)]),
324
- )
325
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelPCA":
313
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelPCA":
326
314
  """Fit the model from data in X
327
315
  For more details on this function, see [sklearn.decomposition.KernelPCA.fit]
328
316
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA.fit)
@@ -349,12 +337,14 @@ class KernelPCA(BaseTransformer):
349
337
 
350
338
  self._snowpark_cols = dataset.select(self.input_cols).columns
351
339
 
352
- # If we are already in a stored procedure, no need to kick off another one.
340
+ # If we are already in a stored procedure, no need to kick off another one.
353
341
  if SNOWML_SPROC_ENV in os.environ:
354
342
  statement_params = telemetry.get_function_usage_statement_params(
355
343
  project=_PROJECT,
356
344
  subproject=_SUBPROJECT,
357
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelPCA.__class__.__name__),
345
+ function_name=telemetry.get_statement_params_full_func_name(
346
+ inspect.currentframe(), KernelPCA.__class__.__name__
347
+ ),
358
348
  api_calls=[Session.call],
359
349
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
360
350
  )
@@ -375,27 +365,24 @@ class KernelPCA(BaseTransformer):
375
365
  )
376
366
  self._sklearn_object = model_trainer.train()
377
367
  self._is_fitted = True
378
- self._get_model_signatures(dataset)
368
+ self._generate_model_signatures(dataset)
379
369
  return self
380
370
 
381
371
  def _batch_inference_validate_snowpark(
382
372
  self,
383
373
  dataset: DataFrame,
384
374
  inference_method: str,
385
- ) -> List[str]:
386
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
387
- return the available package that exists in the snowflake anaconda channel
375
+ ) -> None:
376
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
388
377
 
389
378
  Args:
390
379
  dataset: snowpark dataframe
391
380
  inference_method: the inference method such as predict, score...
392
-
381
+
393
382
  Raises:
394
383
  SnowflakeMLException: If the estimator is not fitted, raise error
395
384
  SnowflakeMLException: If the session is None, raise error
396
385
 
397
- Returns:
398
- A list of available package that exists in the snowflake anaconda channel
399
386
  """
400
387
  if not self._is_fitted:
401
388
  raise exceptions.SnowflakeMLException(
@@ -413,9 +400,7 @@ class KernelPCA(BaseTransformer):
413
400
  "Session must not specified for snowpark dataset."
414
401
  ),
415
402
  )
416
- # Validate that key package version in user workspace are supported in snowflake conda channel
417
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
418
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
403
+
419
404
 
420
405
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
421
406
  @telemetry.send_api_usage_telemetry(
@@ -449,7 +434,9 @@ class KernelPCA(BaseTransformer):
449
434
  # when it is classifier, infer the datatype from label columns
450
435
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
451
436
  # Batch inference takes a single expected output column type. Use the first columns type for now.
452
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
437
+ label_cols_signatures = [
438
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
439
+ ]
453
440
  if len(label_cols_signatures) == 0:
454
441
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
455
442
  raise exceptions.SnowflakeMLException(
@@ -457,25 +444,23 @@ class KernelPCA(BaseTransformer):
457
444
  original_exception=ValueError(error_str),
458
445
  )
459
446
 
460
- expected_type_inferred = convert_sp_to_sf_type(
461
- label_cols_signatures[0].as_snowpark_type()
462
- )
447
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
463
448
 
464
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
465
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
449
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
450
+ self._deps = self._get_dependencies()
451
+ assert isinstance(
452
+ dataset._session, Session
453
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
466
454
 
467
455
  transform_kwargs = dict(
468
- session = dataset._session,
469
- dependencies = self._deps,
470
- drop_input_cols = self._drop_input_cols,
471
- expected_output_cols_type = expected_type_inferred,
456
+ session=dataset._session,
457
+ dependencies=self._deps,
458
+ drop_input_cols=self._drop_input_cols,
459
+ expected_output_cols_type=expected_type_inferred,
472
460
  )
473
461
 
474
462
  elif isinstance(dataset, pd.DataFrame):
475
- transform_kwargs = dict(
476
- snowpark_input_cols = self._snowpark_cols,
477
- drop_input_cols = self._drop_input_cols
478
- )
463
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
479
464
 
480
465
  transform_handlers = ModelTransformerBuilder.build(
481
466
  dataset=dataset,
@@ -517,7 +502,7 @@ class KernelPCA(BaseTransformer):
517
502
  Transformed dataset.
518
503
  """
519
504
  super()._check_dataset_type(dataset)
520
- inference_method="transform"
505
+ inference_method = "transform"
521
506
 
522
507
  # This dictionary contains optional kwargs for batch inference. These kwargs
523
508
  # are specific to the type of dataset used.
@@ -547,24 +532,19 @@ class KernelPCA(BaseTransformer):
547
532
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
548
533
  expected_dtype = convert_sp_to_sf_type(output_types[0])
549
534
 
550
- self._deps = self._batch_inference_validate_snowpark(
551
- dataset=dataset,
552
- inference_method=inference_method,
553
- )
535
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
536
+ self._deps = self._get_dependencies()
554
537
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
555
538
 
556
539
  transform_kwargs = dict(
557
- session = dataset._session,
558
- dependencies = self._deps,
559
- drop_input_cols = self._drop_input_cols,
560
- expected_output_cols_type = expected_dtype,
540
+ session=dataset._session,
541
+ dependencies=self._deps,
542
+ drop_input_cols=self._drop_input_cols,
543
+ expected_output_cols_type=expected_dtype,
561
544
  )
562
545
 
563
546
  elif isinstance(dataset, pd.DataFrame):
564
- transform_kwargs = dict(
565
- snowpark_input_cols = self._snowpark_cols,
566
- drop_input_cols = self._drop_input_cols
567
- )
547
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
568
548
 
569
549
  transform_handlers = ModelTransformerBuilder.build(
570
550
  dataset=dataset,
@@ -583,7 +563,11 @@ class KernelPCA(BaseTransformer):
583
563
  return output_df
584
564
 
585
565
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
586
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
566
+ def fit_predict(
567
+ self,
568
+ dataset: Union[DataFrame, pd.DataFrame],
569
+ output_cols_prefix: str = "fit_predict_",
570
+ ) -> Union[DataFrame, pd.DataFrame]:
587
571
  """ Method not supported for this class.
588
572
 
589
573
 
@@ -608,22 +592,106 @@ class KernelPCA(BaseTransformer):
608
592
  )
609
593
  output_result, fitted_estimator = model_trainer.train_fit_predict(
610
594
  drop_input_cols=self._drop_input_cols,
611
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
595
+ expected_output_cols_list=(
596
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
597
+ ),
612
598
  )
613
599
  self._sklearn_object = fitted_estimator
614
600
  self._is_fitted = True
615
601
  return output_result
616
602
 
603
+
604
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
605
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
606
+ """ Fit the model from data in X and transform X
607
+ For more details on this function, see [sklearn.decomposition.KernelPCA.fit_transform]
608
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.KernelPCA.html#sklearn.decomposition.KernelPCA.fit_transform)
609
+
610
+
611
+ Raises:
612
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
617
613
 
618
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
619
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
620
- """
614
+ Args:
615
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
616
+ Snowpark or Pandas DataFrame.
617
+ output_cols_prefix: Prefix for the response columns
621
618
  Returns:
622
619
  Transformed dataset.
623
620
  """
624
- self.fit(dataset)
625
- assert self._sklearn_object is not None
626
- return self._sklearn_object.embedding_
621
+ self._infer_input_output_cols(dataset)
622
+ super()._check_dataset_type(dataset)
623
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
624
+ estimator=self._sklearn_object,
625
+ dataset=dataset,
626
+ input_cols=self.input_cols,
627
+ label_cols=self.label_cols,
628
+ sample_weight_col=self.sample_weight_col,
629
+ autogenerated=self._autogenerated,
630
+ subproject=_SUBPROJECT,
631
+ )
632
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
633
+ drop_input_cols=self._drop_input_cols,
634
+ expected_output_cols_list=self.output_cols,
635
+ )
636
+ self._sklearn_object = fitted_estimator
637
+ self._is_fitted = True
638
+ return output_result
639
+
640
+
641
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
642
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
643
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
644
+ """
645
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
646
+ # The following condition is introduced for kneighbors methods, and not used in other methods
647
+ if output_cols:
648
+ output_cols = [
649
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
650
+ for c in output_cols
651
+ ]
652
+ elif getattr(self._sklearn_object, "classes_", None) is None:
653
+ output_cols = [output_cols_prefix]
654
+ elif self._sklearn_object is not None:
655
+ classes = self._sklearn_object.classes_
656
+ if isinstance(classes, numpy.ndarray):
657
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
658
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
659
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
660
+ output_cols = []
661
+ for i, cl in enumerate(classes):
662
+ # For binary classification, there is only one output column for each class
663
+ # ndarray as the two classes are complementary.
664
+ if len(cl) == 2:
665
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
666
+ else:
667
+ output_cols.extend([
668
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
669
+ ])
670
+ else:
671
+ output_cols = []
672
+
673
+ # Make sure column names are valid snowflake identifiers.
674
+ assert output_cols is not None # Make MyPy happy
675
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
676
+
677
+ return rv
678
+
679
+ def _align_expected_output_names(
680
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
681
+ ) -> List[str]:
682
+ # in case the inferred output column names dimension is different
683
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
684
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
685
+ output_df_columns = list(output_df_pd.columns)
686
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
687
+ if self.sample_weight_col:
688
+ output_df_columns_set -= set(self.sample_weight_col)
689
+ # if the dimension of inferred output column names is correct; use it
690
+ if len(expected_output_cols_list) == len(output_df_columns_set):
691
+ return expected_output_cols_list
692
+ # otherwise, use the sklearn estimator's output
693
+ else:
694
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
627
695
 
628
696
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
629
697
  @telemetry.send_api_usage_telemetry(
@@ -655,24 +723,26 @@ class KernelPCA(BaseTransformer):
655
723
  # are specific to the type of dataset used.
656
724
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
657
725
 
726
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
727
+
658
728
  if isinstance(dataset, DataFrame):
659
- self._deps = self._batch_inference_validate_snowpark(
660
- dataset=dataset,
661
- inference_method=inference_method,
662
- )
663
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
730
+ self._deps = self._get_dependencies()
731
+ assert isinstance(
732
+ dataset._session, Session
733
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
664
734
  transform_kwargs = dict(
665
735
  session=dataset._session,
666
736
  dependencies=self._deps,
667
- drop_input_cols = self._drop_input_cols,
737
+ drop_input_cols=self._drop_input_cols,
668
738
  expected_output_cols_type="float",
669
739
  )
740
+ expected_output_cols = self._align_expected_output_names(
741
+ inference_method, dataset, expected_output_cols, output_cols_prefix
742
+ )
670
743
 
671
744
  elif isinstance(dataset, pd.DataFrame):
672
- transform_kwargs = dict(
673
- snowpark_input_cols = self._snowpark_cols,
674
- drop_input_cols = self._drop_input_cols
675
- )
745
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
676
746
 
677
747
  transform_handlers = ModelTransformerBuilder.build(
678
748
  dataset=dataset,
@@ -684,7 +754,7 @@ class KernelPCA(BaseTransformer):
684
754
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
685
755
  inference_method=inference_method,
686
756
  input_cols=self.input_cols,
687
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
757
+ expected_output_cols=expected_output_cols,
688
758
  **transform_kwargs
689
759
  )
690
760
  return output_df
@@ -714,29 +784,30 @@ class KernelPCA(BaseTransformer):
714
784
  Output dataset with log probability of the sample for each class in the model.
715
785
  """
716
786
  super()._check_dataset_type(dataset)
717
- inference_method="predict_log_proba"
787
+ inference_method = "predict_log_proba"
788
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
718
789
 
719
790
  # This dictionary contains optional kwargs for batch inference. These kwargs
720
791
  # are specific to the type of dataset used.
721
792
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
722
793
 
723
794
  if isinstance(dataset, DataFrame):
724
- self._deps = self._batch_inference_validate_snowpark(
725
- dataset=dataset,
726
- inference_method=inference_method,
727
- )
728
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
796
+ self._deps = self._get_dependencies()
797
+ assert isinstance(
798
+ dataset._session, Session
799
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
800
  transform_kwargs = dict(
730
801
  session=dataset._session,
731
802
  dependencies=self._deps,
732
- drop_input_cols = self._drop_input_cols,
803
+ drop_input_cols=self._drop_input_cols,
733
804
  expected_output_cols_type="float",
734
805
  )
806
+ expected_output_cols = self._align_expected_output_names(
807
+ inference_method, dataset, expected_output_cols, output_cols_prefix
808
+ )
735
809
  elif isinstance(dataset, pd.DataFrame):
736
- transform_kwargs = dict(
737
- snowpark_input_cols = self._snowpark_cols,
738
- drop_input_cols = self._drop_input_cols
739
- )
810
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
740
811
 
741
812
  transform_handlers = ModelTransformerBuilder.build(
742
813
  dataset=dataset,
@@ -749,7 +820,7 @@ class KernelPCA(BaseTransformer):
749
820
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
750
821
  inference_method=inference_method,
751
822
  input_cols=self.input_cols,
752
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
823
+ expected_output_cols=expected_output_cols,
753
824
  **transform_kwargs
754
825
  )
755
826
  return output_df
@@ -775,30 +846,32 @@ class KernelPCA(BaseTransformer):
775
846
  Output dataset with results of the decision function for the samples in input dataset.
776
847
  """
777
848
  super()._check_dataset_type(dataset)
778
- inference_method="decision_function"
849
+ inference_method = "decision_function"
779
850
 
780
851
  # This dictionary contains optional kwargs for batch inference. These kwargs
781
852
  # are specific to the type of dataset used.
782
853
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
783
854
 
855
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
856
+
784
857
  if isinstance(dataset, DataFrame):
785
- self._deps = self._batch_inference_validate_snowpark(
786
- dataset=dataset,
787
- inference_method=inference_method,
788
- )
789
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
858
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
859
+ self._deps = self._get_dependencies()
860
+ assert isinstance(
861
+ dataset._session, Session
862
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
790
863
  transform_kwargs = dict(
791
864
  session=dataset._session,
792
865
  dependencies=self._deps,
793
- drop_input_cols = self._drop_input_cols,
866
+ drop_input_cols=self._drop_input_cols,
794
867
  expected_output_cols_type="float",
795
868
  )
869
+ expected_output_cols = self._align_expected_output_names(
870
+ inference_method, dataset, expected_output_cols, output_cols_prefix
871
+ )
796
872
 
797
873
  elif isinstance(dataset, pd.DataFrame):
798
- transform_kwargs = dict(
799
- snowpark_input_cols = self._snowpark_cols,
800
- drop_input_cols = self._drop_input_cols
801
- )
874
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
802
875
 
803
876
  transform_handlers = ModelTransformerBuilder.build(
804
877
  dataset=dataset,
@@ -811,7 +884,7 @@ class KernelPCA(BaseTransformer):
811
884
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
812
885
  inference_method=inference_method,
813
886
  input_cols=self.input_cols,
814
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
887
+ expected_output_cols=expected_output_cols,
815
888
  **transform_kwargs
816
889
  )
817
890
  return output_df
@@ -840,17 +913,17 @@ class KernelPCA(BaseTransformer):
840
913
  Output dataset with probability of the sample for each class in the model.
841
914
  """
842
915
  super()._check_dataset_type(dataset)
843
- inference_method="score_samples"
916
+ inference_method = "score_samples"
844
917
 
845
918
  # This dictionary contains optional kwargs for batch inference. These kwargs
846
919
  # are specific to the type of dataset used.
847
920
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
848
921
 
922
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
923
+
849
924
  if isinstance(dataset, DataFrame):
850
- self._deps = self._batch_inference_validate_snowpark(
851
- dataset=dataset,
852
- inference_method=inference_method,
853
- )
925
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
926
+ self._deps = self._get_dependencies()
854
927
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
855
928
  transform_kwargs = dict(
856
929
  session=dataset._session,
@@ -858,6 +931,9 @@ class KernelPCA(BaseTransformer):
858
931
  drop_input_cols = self._drop_input_cols,
859
932
  expected_output_cols_type="float",
860
933
  )
934
+ expected_output_cols = self._align_expected_output_names(
935
+ inference_method, dataset, expected_output_cols, output_cols_prefix
936
+ )
861
937
 
862
938
  elif isinstance(dataset, pd.DataFrame):
863
939
  transform_kwargs = dict(
@@ -876,7 +952,7 @@ class KernelPCA(BaseTransformer):
876
952
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
877
953
  inference_method=inference_method,
878
954
  input_cols=self.input_cols,
879
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
955
+ expected_output_cols=expected_output_cols,
880
956
  **transform_kwargs
881
957
  )
882
958
  return output_df
@@ -909,17 +985,15 @@ class KernelPCA(BaseTransformer):
909
985
  transform_kwargs: ScoreKwargsTypedDict = dict()
910
986
 
911
987
  if isinstance(dataset, DataFrame):
912
- self._deps = self._batch_inference_validate_snowpark(
913
- dataset=dataset,
914
- inference_method="score",
915
- )
988
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
989
+ self._deps = self._get_dependencies()
916
990
  selected_cols = self._get_active_columns()
917
991
  if len(selected_cols) > 0:
918
992
  dataset = dataset.select(selected_cols)
919
993
  assert isinstance(dataset._session, Session) # keep mypy happy
920
994
  transform_kwargs = dict(
921
995
  session=dataset._session,
922
- dependencies=["snowflake-snowpark-python"] + self._deps,
996
+ dependencies=self._deps,
923
997
  score_sproc_imports=['sklearn'],
924
998
  )
925
999
  elif isinstance(dataset, pd.DataFrame):
@@ -984,11 +1058,8 @@ class KernelPCA(BaseTransformer):
984
1058
 
985
1059
  if isinstance(dataset, DataFrame):
986
1060
 
987
- self._deps = self._batch_inference_validate_snowpark(
988
- dataset=dataset,
989
- inference_method=inference_method,
990
-
991
- )
1061
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1062
+ self._deps = self._get_dependencies()
992
1063
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
993
1064
  transform_kwargs = dict(
994
1065
  session = dataset._session,
@@ -1021,50 +1092,84 @@ class KernelPCA(BaseTransformer):
1021
1092
  )
1022
1093
  return output_df
1023
1094
 
1095
+
1096
+
1097
+ def to_sklearn(self) -> Any:
1098
+ """Get sklearn.decomposition.KernelPCA object.
1099
+ """
1100
+ if self._sklearn_object is None:
1101
+ self._sklearn_object = self._create_sklearn_object()
1102
+ return self._sklearn_object
1103
+
1104
+ def to_xgboost(self) -> Any:
1105
+ raise exceptions.SnowflakeMLException(
1106
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1107
+ original_exception=AttributeError(
1108
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1109
+ "to_xgboost()",
1110
+ "to_sklearn()"
1111
+ )
1112
+ ),
1113
+ )
1024
1114
 
1025
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1115
+ def to_lightgbm(self) -> Any:
1116
+ raise exceptions.SnowflakeMLException(
1117
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1118
+ original_exception=AttributeError(
1119
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1120
+ "to_lightgbm()",
1121
+ "to_sklearn()"
1122
+ )
1123
+ ),
1124
+ )
1125
+
1126
+ def _get_dependencies(self) -> List[str]:
1127
+ return self._deps
1128
+
1129
+
1130
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1026
1131
  self._model_signature_dict = dict()
1027
1132
 
1028
1133
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1029
1134
 
1030
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1135
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1031
1136
  outputs: List[BaseFeatureSpec] = []
1032
1137
  if hasattr(self, "predict"):
1033
1138
  # keep mypy happy
1034
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1139
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1035
1140
  # For classifier, the type of predict is the same as the type of label
1036
- if self._sklearn_object._estimator_type == 'classifier':
1037
- # label columns is the desired type for output
1141
+ if self._sklearn_object._estimator_type == "classifier":
1142
+ # label columns is the desired type for output
1038
1143
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1039
1144
  # rename the output columns
1040
1145
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1041
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1042
- ([] if self._drop_input_cols else inputs)
1043
- + outputs)
1146
+ self._model_signature_dict["predict"] = ModelSignature(
1147
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1148
+ )
1044
1149
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1045
1150
  # For outlier models, returns -1 for outliers and 1 for inliers.
1046
- # Clusterer returns int64 cluster labels.
1151
+ # Clusterer returns int64 cluster labels.
1047
1152
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1048
1153
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1049
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1050
- ([] if self._drop_input_cols else inputs)
1051
- + outputs)
1052
-
1154
+ self._model_signature_dict["predict"] = ModelSignature(
1155
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1156
+ )
1157
+
1053
1158
  # For regressor, the type of predict is float64
1054
- elif self._sklearn_object._estimator_type == 'regressor':
1159
+ elif self._sklearn_object._estimator_type == "regressor":
1055
1160
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1056
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1057
- ([] if self._drop_input_cols else inputs)
1058
- + outputs)
1059
-
1161
+ self._model_signature_dict["predict"] = ModelSignature(
1162
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1163
+ )
1164
+
1060
1165
  for prob_func in PROB_FUNCTIONS:
1061
1166
  if hasattr(self, prob_func):
1062
1167
  output_cols_prefix: str = f"{prob_func}_"
1063
1168
  output_column_names = self._get_output_column_names(output_cols_prefix)
1064
1169
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1065
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1066
- ([] if self._drop_input_cols else inputs)
1067
- + outputs)
1170
+ self._model_signature_dict[prob_func] = ModelSignature(
1171
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1172
+ )
1068
1173
 
1069
1174
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1070
1175
  items = list(self._model_signature_dict.items())
@@ -1077,10 +1182,10 @@ class KernelPCA(BaseTransformer):
1077
1182
  """Returns model signature of current class.
1078
1183
 
1079
1184
  Raises:
1080
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1185
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1081
1186
 
1082
1187
  Returns:
1083
- Dict[str, ModelSignature]: each method and its input output signature
1188
+ Dict with each method and its input output signature
1084
1189
  """
1085
1190
  if self._model_signature_dict is None:
1086
1191
  raise exceptions.SnowflakeMLException(
@@ -1088,35 +1193,3 @@ class KernelPCA(BaseTransformer):
1088
1193
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1089
1194
  )
1090
1195
  return self._model_signature_dict
1091
-
1092
- def to_sklearn(self) -> Any:
1093
- """Get sklearn.decomposition.KernelPCA object.
1094
- """
1095
- if self._sklearn_object is None:
1096
- self._sklearn_object = self._create_sklearn_object()
1097
- return self._sklearn_object
1098
-
1099
- def to_xgboost(self) -> Any:
1100
- raise exceptions.SnowflakeMLException(
1101
- error_code=error_codes.METHOD_NOT_ALLOWED,
1102
- original_exception=AttributeError(
1103
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1104
- "to_xgboost()",
1105
- "to_sklearn()"
1106
- )
1107
- ),
1108
- )
1109
-
1110
- def to_lightgbm(self) -> Any:
1111
- raise exceptions.SnowflakeMLException(
1112
- error_code=error_codes.METHOD_NOT_ALLOWED,
1113
- original_exception=AttributeError(
1114
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1115
- "to_lightgbm()",
1116
- "to_sklearn()"
1117
- )
1118
- ),
1119
- )
1120
-
1121
- def _get_dependencies(self) -> List[str]:
1122
- return self._deps