snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", ""
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class LGBMRegressor(BaseTransformer):
|
71
64
|
r"""LightGBM regressor
|
72
65
|
For more details on this class, see [lightgbm.LGBMRegressor]
|
@@ -233,12 +226,7 @@ class LGBMRegressor(BaseTransformer):
|
|
233
226
|
)
|
234
227
|
return selected_cols
|
235
228
|
|
236
|
-
|
237
|
-
project=_PROJECT,
|
238
|
-
subproject=_SUBPROJECT,
|
239
|
-
custom_tags=dict([("autogen", True)]),
|
240
|
-
)
|
241
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
|
229
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
|
242
230
|
"""Build a gradient boosting model from the training set (X, y)
|
243
231
|
For more details on this function, see [lightgbm.LGBMRegressor.fit]
|
244
232
|
(https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMRegressor.html#lightgbm.LGBMRegressor.fit)
|
@@ -265,12 +253,14 @@ class LGBMRegressor(BaseTransformer):
|
|
265
253
|
|
266
254
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
267
255
|
|
268
|
-
|
256
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
269
257
|
if SNOWML_SPROC_ENV in os.environ:
|
270
258
|
statement_params = telemetry.get_function_usage_statement_params(
|
271
259
|
project=_PROJECT,
|
272
260
|
subproject=_SUBPROJECT,
|
273
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
261
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
262
|
+
inspect.currentframe(), LGBMRegressor.__class__.__name__
|
263
|
+
),
|
274
264
|
api_calls=[Session.call],
|
275
265
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
276
266
|
)
|
@@ -291,27 +281,24 @@ class LGBMRegressor(BaseTransformer):
|
|
291
281
|
)
|
292
282
|
self._sklearn_object = model_trainer.train()
|
293
283
|
self._is_fitted = True
|
294
|
-
self.
|
284
|
+
self._generate_model_signatures(dataset)
|
295
285
|
return self
|
296
286
|
|
297
287
|
def _batch_inference_validate_snowpark(
|
298
288
|
self,
|
299
289
|
dataset: DataFrame,
|
300
290
|
inference_method: str,
|
301
|
-
) ->
|
302
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
303
|
-
return the available package that exists in the snowflake anaconda channel
|
291
|
+
) -> None:
|
292
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
304
293
|
|
305
294
|
Args:
|
306
295
|
dataset: snowpark dataframe
|
307
296
|
inference_method: the inference method such as predict, score...
|
308
|
-
|
297
|
+
|
309
298
|
Raises:
|
310
299
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
311
300
|
SnowflakeMLException: If the session is None, raise error
|
312
301
|
|
313
|
-
Returns:
|
314
|
-
A list of available package that exists in the snowflake anaconda channel
|
315
302
|
"""
|
316
303
|
if not self._is_fitted:
|
317
304
|
raise exceptions.SnowflakeMLException(
|
@@ -329,9 +316,7 @@ class LGBMRegressor(BaseTransformer):
|
|
329
316
|
"Session must not specified for snowpark dataset."
|
330
317
|
),
|
331
318
|
)
|
332
|
-
|
333
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
334
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
319
|
+
|
335
320
|
|
336
321
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
337
322
|
@telemetry.send_api_usage_telemetry(
|
@@ -367,7 +352,9 @@ class LGBMRegressor(BaseTransformer):
|
|
367
352
|
# when it is classifier, infer the datatype from label columns
|
368
353
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
369
354
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
370
|
-
label_cols_signatures = [
|
355
|
+
label_cols_signatures = [
|
356
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
357
|
+
]
|
371
358
|
if len(label_cols_signatures) == 0:
|
372
359
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
373
360
|
raise exceptions.SnowflakeMLException(
|
@@ -375,25 +362,23 @@ class LGBMRegressor(BaseTransformer):
|
|
375
362
|
original_exception=ValueError(error_str),
|
376
363
|
)
|
377
364
|
|
378
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
379
|
-
label_cols_signatures[0].as_snowpark_type()
|
380
|
-
)
|
365
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
381
366
|
|
382
|
-
self.
|
383
|
-
|
367
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
368
|
+
self._deps = self._get_dependencies()
|
369
|
+
assert isinstance(
|
370
|
+
dataset._session, Session
|
371
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
384
372
|
|
385
373
|
transform_kwargs = dict(
|
386
|
-
session
|
387
|
-
dependencies
|
388
|
-
drop_input_cols
|
389
|
-
expected_output_cols_type
|
374
|
+
session=dataset._session,
|
375
|
+
dependencies=self._deps,
|
376
|
+
drop_input_cols=self._drop_input_cols,
|
377
|
+
expected_output_cols_type=expected_type_inferred,
|
390
378
|
)
|
391
379
|
|
392
380
|
elif isinstance(dataset, pd.DataFrame):
|
393
|
-
transform_kwargs = dict(
|
394
|
-
snowpark_input_cols = self._snowpark_cols,
|
395
|
-
drop_input_cols = self._drop_input_cols
|
396
|
-
)
|
381
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
397
382
|
|
398
383
|
transform_handlers = ModelTransformerBuilder.build(
|
399
384
|
dataset=dataset,
|
@@ -433,7 +418,7 @@ class LGBMRegressor(BaseTransformer):
|
|
433
418
|
Transformed dataset.
|
434
419
|
"""
|
435
420
|
super()._check_dataset_type(dataset)
|
436
|
-
inference_method="transform"
|
421
|
+
inference_method = "transform"
|
437
422
|
|
438
423
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
439
424
|
# are specific to the type of dataset used.
|
@@ -463,24 +448,19 @@ class LGBMRegressor(BaseTransformer):
|
|
463
448
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
464
449
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
465
450
|
|
466
|
-
self.
|
467
|
-
|
468
|
-
inference_method=inference_method,
|
469
|
-
)
|
451
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
452
|
+
self._deps = self._get_dependencies()
|
470
453
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
471
454
|
|
472
455
|
transform_kwargs = dict(
|
473
|
-
session
|
474
|
-
dependencies
|
475
|
-
drop_input_cols
|
476
|
-
expected_output_cols_type
|
456
|
+
session=dataset._session,
|
457
|
+
dependencies=self._deps,
|
458
|
+
drop_input_cols=self._drop_input_cols,
|
459
|
+
expected_output_cols_type=expected_dtype,
|
477
460
|
)
|
478
461
|
|
479
462
|
elif isinstance(dataset, pd.DataFrame):
|
480
|
-
transform_kwargs = dict(
|
481
|
-
snowpark_input_cols = self._snowpark_cols,
|
482
|
-
drop_input_cols = self._drop_input_cols
|
483
|
-
)
|
463
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
484
464
|
|
485
465
|
transform_handlers = ModelTransformerBuilder.build(
|
486
466
|
dataset=dataset,
|
@@ -499,7 +479,11 @@ class LGBMRegressor(BaseTransformer):
|
|
499
479
|
return output_df
|
500
480
|
|
501
481
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
502
|
-
def fit_predict(
|
482
|
+
def fit_predict(
|
483
|
+
self,
|
484
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
485
|
+
output_cols_prefix: str = "fit_predict_",
|
486
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
503
487
|
""" Method not supported for this class.
|
504
488
|
|
505
489
|
|
@@ -524,22 +508,104 @@ class LGBMRegressor(BaseTransformer):
|
|
524
508
|
)
|
525
509
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
526
510
|
drop_input_cols=self._drop_input_cols,
|
527
|
-
expected_output_cols_list=
|
511
|
+
expected_output_cols_list=(
|
512
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
513
|
+
),
|
528
514
|
)
|
529
515
|
self._sklearn_object = fitted_estimator
|
530
516
|
self._is_fitted = True
|
531
517
|
return output_result
|
532
518
|
|
519
|
+
|
520
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
521
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
522
|
+
""" Method not supported for this class.
|
523
|
+
|
533
524
|
|
534
|
-
|
535
|
-
|
536
|
-
|
525
|
+
Raises:
|
526
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
527
|
+
|
528
|
+
Args:
|
529
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
530
|
+
Snowpark or Pandas DataFrame.
|
531
|
+
output_cols_prefix: Prefix for the response columns
|
537
532
|
Returns:
|
538
533
|
Transformed dataset.
|
539
534
|
"""
|
540
|
-
self.
|
541
|
-
|
542
|
-
|
535
|
+
self._infer_input_output_cols(dataset)
|
536
|
+
super()._check_dataset_type(dataset)
|
537
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
538
|
+
estimator=self._sklearn_object,
|
539
|
+
dataset=dataset,
|
540
|
+
input_cols=self.input_cols,
|
541
|
+
label_cols=self.label_cols,
|
542
|
+
sample_weight_col=self.sample_weight_col,
|
543
|
+
autogenerated=self._autogenerated,
|
544
|
+
subproject=_SUBPROJECT,
|
545
|
+
)
|
546
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
547
|
+
drop_input_cols=self._drop_input_cols,
|
548
|
+
expected_output_cols_list=self.output_cols,
|
549
|
+
)
|
550
|
+
self._sklearn_object = fitted_estimator
|
551
|
+
self._is_fitted = True
|
552
|
+
return output_result
|
553
|
+
|
554
|
+
|
555
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
556
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
557
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
558
|
+
"""
|
559
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
560
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
561
|
+
if output_cols:
|
562
|
+
output_cols = [
|
563
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
564
|
+
for c in output_cols
|
565
|
+
]
|
566
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
567
|
+
output_cols = [output_cols_prefix]
|
568
|
+
elif self._sklearn_object is not None:
|
569
|
+
classes = self._sklearn_object.classes_
|
570
|
+
if isinstance(classes, numpy.ndarray):
|
571
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
572
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
573
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
574
|
+
output_cols = []
|
575
|
+
for i, cl in enumerate(classes):
|
576
|
+
# For binary classification, there is only one output column for each class
|
577
|
+
# ndarray as the two classes are complementary.
|
578
|
+
if len(cl) == 2:
|
579
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
580
|
+
else:
|
581
|
+
output_cols.extend([
|
582
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
583
|
+
])
|
584
|
+
else:
|
585
|
+
output_cols = []
|
586
|
+
|
587
|
+
# Make sure column names are valid snowflake identifiers.
|
588
|
+
assert output_cols is not None # Make MyPy happy
|
589
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
590
|
+
|
591
|
+
return rv
|
592
|
+
|
593
|
+
def _align_expected_output_names(
|
594
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
595
|
+
) -> List[str]:
|
596
|
+
# in case the inferred output column names dimension is different
|
597
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
598
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
599
|
+
output_df_columns = list(output_df_pd.columns)
|
600
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
601
|
+
if self.sample_weight_col:
|
602
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
603
|
+
# if the dimension of inferred output column names is correct; use it
|
604
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
605
|
+
return expected_output_cols_list
|
606
|
+
# otherwise, use the sklearn estimator's output
|
607
|
+
else:
|
608
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
543
609
|
|
544
610
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
545
611
|
@telemetry.send_api_usage_telemetry(
|
@@ -571,24 +637,26 @@ class LGBMRegressor(BaseTransformer):
|
|
571
637
|
# are specific to the type of dataset used.
|
572
638
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
573
639
|
|
640
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
641
|
+
|
574
642
|
if isinstance(dataset, DataFrame):
|
575
|
-
self.
|
576
|
-
|
577
|
-
|
578
|
-
|
579
|
-
|
643
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
644
|
+
self._deps = self._get_dependencies()
|
645
|
+
assert isinstance(
|
646
|
+
dataset._session, Session
|
647
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
580
648
|
transform_kwargs = dict(
|
581
649
|
session=dataset._session,
|
582
650
|
dependencies=self._deps,
|
583
|
-
drop_input_cols
|
651
|
+
drop_input_cols=self._drop_input_cols,
|
584
652
|
expected_output_cols_type="float",
|
585
653
|
)
|
654
|
+
expected_output_cols = self._align_expected_output_names(
|
655
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
656
|
+
)
|
586
657
|
|
587
658
|
elif isinstance(dataset, pd.DataFrame):
|
588
|
-
transform_kwargs = dict(
|
589
|
-
snowpark_input_cols = self._snowpark_cols,
|
590
|
-
drop_input_cols = self._drop_input_cols
|
591
|
-
)
|
659
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
592
660
|
|
593
661
|
transform_handlers = ModelTransformerBuilder.build(
|
594
662
|
dataset=dataset,
|
@@ -600,7 +668,7 @@ class LGBMRegressor(BaseTransformer):
|
|
600
668
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
601
669
|
inference_method=inference_method,
|
602
670
|
input_cols=self.input_cols,
|
603
|
-
expected_output_cols=
|
671
|
+
expected_output_cols=expected_output_cols,
|
604
672
|
**transform_kwargs
|
605
673
|
)
|
606
674
|
return output_df
|
@@ -630,29 +698,30 @@ class LGBMRegressor(BaseTransformer):
|
|
630
698
|
Output dataset with log probability of the sample for each class in the model.
|
631
699
|
"""
|
632
700
|
super()._check_dataset_type(dataset)
|
633
|
-
inference_method="predict_log_proba"
|
701
|
+
inference_method = "predict_log_proba"
|
702
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
634
703
|
|
635
704
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
636
705
|
# are specific to the type of dataset used.
|
637
706
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
638
707
|
|
639
708
|
if isinstance(dataset, DataFrame):
|
640
|
-
self.
|
641
|
-
|
642
|
-
|
643
|
-
|
644
|
-
|
709
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
710
|
+
self._deps = self._get_dependencies()
|
711
|
+
assert isinstance(
|
712
|
+
dataset._session, Session
|
713
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
645
714
|
transform_kwargs = dict(
|
646
715
|
session=dataset._session,
|
647
716
|
dependencies=self._deps,
|
648
|
-
drop_input_cols
|
717
|
+
drop_input_cols=self._drop_input_cols,
|
649
718
|
expected_output_cols_type="float",
|
650
719
|
)
|
720
|
+
expected_output_cols = self._align_expected_output_names(
|
721
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
722
|
+
)
|
651
723
|
elif isinstance(dataset, pd.DataFrame):
|
652
|
-
transform_kwargs = dict(
|
653
|
-
snowpark_input_cols = self._snowpark_cols,
|
654
|
-
drop_input_cols = self._drop_input_cols
|
655
|
-
)
|
724
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
656
725
|
|
657
726
|
transform_handlers = ModelTransformerBuilder.build(
|
658
727
|
dataset=dataset,
|
@@ -665,7 +734,7 @@ class LGBMRegressor(BaseTransformer):
|
|
665
734
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
666
735
|
inference_method=inference_method,
|
667
736
|
input_cols=self.input_cols,
|
668
|
-
expected_output_cols=
|
737
|
+
expected_output_cols=expected_output_cols,
|
669
738
|
**transform_kwargs
|
670
739
|
)
|
671
740
|
return output_df
|
@@ -691,30 +760,32 @@ class LGBMRegressor(BaseTransformer):
|
|
691
760
|
Output dataset with results of the decision function for the samples in input dataset.
|
692
761
|
"""
|
693
762
|
super()._check_dataset_type(dataset)
|
694
|
-
inference_method="decision_function"
|
763
|
+
inference_method = "decision_function"
|
695
764
|
|
696
765
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
697
766
|
# are specific to the type of dataset used.
|
698
767
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
699
768
|
|
769
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
770
|
+
|
700
771
|
if isinstance(dataset, DataFrame):
|
701
|
-
self.
|
702
|
-
|
703
|
-
|
704
|
-
|
705
|
-
|
772
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
773
|
+
self._deps = self._get_dependencies()
|
774
|
+
assert isinstance(
|
775
|
+
dataset._session, Session
|
776
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
706
777
|
transform_kwargs = dict(
|
707
778
|
session=dataset._session,
|
708
779
|
dependencies=self._deps,
|
709
|
-
drop_input_cols
|
780
|
+
drop_input_cols=self._drop_input_cols,
|
710
781
|
expected_output_cols_type="float",
|
711
782
|
)
|
783
|
+
expected_output_cols = self._align_expected_output_names(
|
784
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
785
|
+
)
|
712
786
|
|
713
787
|
elif isinstance(dataset, pd.DataFrame):
|
714
|
-
transform_kwargs = dict(
|
715
|
-
snowpark_input_cols = self._snowpark_cols,
|
716
|
-
drop_input_cols = self._drop_input_cols
|
717
|
-
)
|
788
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
718
789
|
|
719
790
|
transform_handlers = ModelTransformerBuilder.build(
|
720
791
|
dataset=dataset,
|
@@ -727,7 +798,7 @@ class LGBMRegressor(BaseTransformer):
|
|
727
798
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
728
799
|
inference_method=inference_method,
|
729
800
|
input_cols=self.input_cols,
|
730
|
-
expected_output_cols=
|
801
|
+
expected_output_cols=expected_output_cols,
|
731
802
|
**transform_kwargs
|
732
803
|
)
|
733
804
|
return output_df
|
@@ -756,17 +827,17 @@ class LGBMRegressor(BaseTransformer):
|
|
756
827
|
Output dataset with probability of the sample for each class in the model.
|
757
828
|
"""
|
758
829
|
super()._check_dataset_type(dataset)
|
759
|
-
inference_method="score_samples"
|
830
|
+
inference_method = "score_samples"
|
760
831
|
|
761
832
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
762
833
|
# are specific to the type of dataset used.
|
763
834
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
764
835
|
|
836
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
837
|
+
|
765
838
|
if isinstance(dataset, DataFrame):
|
766
|
-
self.
|
767
|
-
|
768
|
-
inference_method=inference_method,
|
769
|
-
)
|
839
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
840
|
+
self._deps = self._get_dependencies()
|
770
841
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
771
842
|
transform_kwargs = dict(
|
772
843
|
session=dataset._session,
|
@@ -774,6 +845,9 @@ class LGBMRegressor(BaseTransformer):
|
|
774
845
|
drop_input_cols = self._drop_input_cols,
|
775
846
|
expected_output_cols_type="float",
|
776
847
|
)
|
848
|
+
expected_output_cols = self._align_expected_output_names(
|
849
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
850
|
+
)
|
777
851
|
|
778
852
|
elif isinstance(dataset, pd.DataFrame):
|
779
853
|
transform_kwargs = dict(
|
@@ -792,7 +866,7 @@ class LGBMRegressor(BaseTransformer):
|
|
792
866
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
793
867
|
inference_method=inference_method,
|
794
868
|
input_cols=self.input_cols,
|
795
|
-
expected_output_cols=
|
869
|
+
expected_output_cols=expected_output_cols,
|
796
870
|
**transform_kwargs
|
797
871
|
)
|
798
872
|
return output_df
|
@@ -827,17 +901,15 @@ class LGBMRegressor(BaseTransformer):
|
|
827
901
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
828
902
|
|
829
903
|
if isinstance(dataset, DataFrame):
|
830
|
-
self.
|
831
|
-
|
832
|
-
inference_method="score",
|
833
|
-
)
|
904
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
905
|
+
self._deps = self._get_dependencies()
|
834
906
|
selected_cols = self._get_active_columns()
|
835
907
|
if len(selected_cols) > 0:
|
836
908
|
dataset = dataset.select(selected_cols)
|
837
909
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
838
910
|
transform_kwargs = dict(
|
839
911
|
session=dataset._session,
|
840
|
-
dependencies=
|
912
|
+
dependencies=self._deps,
|
841
913
|
score_sproc_imports=['lightgbm', 'sklearn'],
|
842
914
|
)
|
843
915
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -902,11 +974,8 @@ class LGBMRegressor(BaseTransformer):
|
|
902
974
|
|
903
975
|
if isinstance(dataset, DataFrame):
|
904
976
|
|
905
|
-
self.
|
906
|
-
|
907
|
-
inference_method=inference_method,
|
908
|
-
|
909
|
-
)
|
977
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
978
|
+
self._deps = self._get_dependencies()
|
910
979
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
911
980
|
transform_kwargs = dict(
|
912
981
|
session = dataset._session,
|
@@ -939,50 +1008,84 @@ class LGBMRegressor(BaseTransformer):
|
|
939
1008
|
)
|
940
1009
|
return output_df
|
941
1010
|
|
1011
|
+
|
1012
|
+
|
1013
|
+
def to_lightgbm(self) -> Any:
|
1014
|
+
"""Get lightgbm.LGBMRegressor object.
|
1015
|
+
"""
|
1016
|
+
if self._sklearn_object is None:
|
1017
|
+
self._sklearn_object = self._create_sklearn_object()
|
1018
|
+
return self._sklearn_object
|
1019
|
+
|
1020
|
+
def to_sklearn(self) -> Any:
|
1021
|
+
raise exceptions.SnowflakeMLException(
|
1022
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1023
|
+
original_exception=AttributeError(
|
1024
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1025
|
+
"to_sklearn()",
|
1026
|
+
"to_lightgbm()"
|
1027
|
+
)
|
1028
|
+
),
|
1029
|
+
)
|
1030
|
+
|
1031
|
+
def to_xgboost(self) -> Any:
|
1032
|
+
raise exceptions.SnowflakeMLException(
|
1033
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1034
|
+
original_exception=AttributeError(
|
1035
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1036
|
+
"to_xgboost()",
|
1037
|
+
"to_lightgbm()"
|
1038
|
+
)
|
1039
|
+
),
|
1040
|
+
)
|
1041
|
+
|
1042
|
+
def _get_dependencies(self) -> List[str]:
|
1043
|
+
return self._deps
|
1044
|
+
|
942
1045
|
|
943
|
-
def
|
1046
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
944
1047
|
self._model_signature_dict = dict()
|
945
1048
|
|
946
1049
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
947
1050
|
|
948
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1051
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
949
1052
|
outputs: List[BaseFeatureSpec] = []
|
950
1053
|
if hasattr(self, "predict"):
|
951
1054
|
# keep mypy happy
|
952
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1055
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
953
1056
|
# For classifier, the type of predict is the same as the type of label
|
954
|
-
if self._sklearn_object._estimator_type ==
|
955
|
-
|
1057
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1058
|
+
# label columns is the desired type for output
|
956
1059
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
957
1060
|
# rename the output columns
|
958
1061
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
959
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
960
|
-
|
961
|
-
|
1062
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1063
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1064
|
+
)
|
962
1065
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
963
1066
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
964
|
-
# Clusterer returns int64 cluster labels.
|
1067
|
+
# Clusterer returns int64 cluster labels.
|
965
1068
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
966
1069
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
967
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
968
|
-
|
969
|
-
|
970
|
-
|
1070
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1071
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1072
|
+
)
|
1073
|
+
|
971
1074
|
# For regressor, the type of predict is float64
|
972
|
-
elif self._sklearn_object._estimator_type ==
|
1075
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
973
1076
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
974
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
975
|
-
|
976
|
-
|
977
|
-
|
1077
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1078
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1079
|
+
)
|
1080
|
+
|
978
1081
|
for prob_func in PROB_FUNCTIONS:
|
979
1082
|
if hasattr(self, prob_func):
|
980
1083
|
output_cols_prefix: str = f"{prob_func}_"
|
981
1084
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
982
1085
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
983
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
984
|
-
|
985
|
-
|
1086
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1087
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1088
|
+
)
|
986
1089
|
|
987
1090
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
988
1091
|
items = list(self._model_signature_dict.items())
|
@@ -995,10 +1098,10 @@ class LGBMRegressor(BaseTransformer):
|
|
995
1098
|
"""Returns model signature of current class.
|
996
1099
|
|
997
1100
|
Raises:
|
998
|
-
|
1101
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
999
1102
|
|
1000
1103
|
Returns:
|
1001
|
-
Dict
|
1104
|
+
Dict with each method and its input output signature
|
1002
1105
|
"""
|
1003
1106
|
if self._model_signature_dict is None:
|
1004
1107
|
raise exceptions.SnowflakeMLException(
|
@@ -1006,35 +1109,3 @@ class LGBMRegressor(BaseTransformer):
|
|
1006
1109
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1007
1110
|
)
|
1008
1111
|
return self._model_signature_dict
|
1009
|
-
|
1010
|
-
def to_lightgbm(self) -> Any:
|
1011
|
-
"""Get lightgbm.LGBMRegressor object.
|
1012
|
-
"""
|
1013
|
-
if self._sklearn_object is None:
|
1014
|
-
self._sklearn_object = self._create_sklearn_object()
|
1015
|
-
return self._sklearn_object
|
1016
|
-
|
1017
|
-
def to_sklearn(self) -> Any:
|
1018
|
-
raise exceptions.SnowflakeMLException(
|
1019
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1020
|
-
original_exception=AttributeError(
|
1021
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1022
|
-
"to_sklearn()",
|
1023
|
-
"to_lightgbm()"
|
1024
|
-
)
|
1025
|
-
),
|
1026
|
-
)
|
1027
|
-
|
1028
|
-
def to_xgboost(self) -> Any:
|
1029
|
-
raise exceptions.SnowflakeMLException(
|
1030
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1031
|
-
original_exception=AttributeError(
|
1032
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1033
|
-
"to_xgboost()",
|
1034
|
-
"to_lightgbm()"
|
1035
|
-
)
|
1036
|
-
),
|
1037
|
-
)
|
1038
|
-
|
1039
|
-
def _get_dependencies(self) -> List[str]:
|
1040
|
-
return self._deps
|