snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", ""
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LGBMRegressor(BaseTransformer):
71
64
  r"""LightGBM regressor
72
65
  For more details on this class, see [lightgbm.LGBMRegressor]
@@ -233,12 +226,7 @@ class LGBMRegressor(BaseTransformer):
233
226
  )
234
227
  return selected_cols
235
228
 
236
- @telemetry.send_api_usage_telemetry(
237
- project=_PROJECT,
238
- subproject=_SUBPROJECT,
239
- custom_tags=dict([("autogen", True)]),
240
- )
241
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
229
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMRegressor":
242
230
  """Build a gradient boosting model from the training set (X, y)
243
231
  For more details on this function, see [lightgbm.LGBMRegressor.fit]
244
232
  (https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMRegressor.html#lightgbm.LGBMRegressor.fit)
@@ -265,12 +253,14 @@ class LGBMRegressor(BaseTransformer):
265
253
 
266
254
  self._snowpark_cols = dataset.select(self.input_cols).columns
267
255
 
268
- # If we are already in a stored procedure, no need to kick off another one.
256
+ # If we are already in a stored procedure, no need to kick off another one.
269
257
  if SNOWML_SPROC_ENV in os.environ:
270
258
  statement_params = telemetry.get_function_usage_statement_params(
271
259
  project=_PROJECT,
272
260
  subproject=_SUBPROJECT,
273
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMRegressor.__class__.__name__),
261
+ function_name=telemetry.get_statement_params_full_func_name(
262
+ inspect.currentframe(), LGBMRegressor.__class__.__name__
263
+ ),
274
264
  api_calls=[Session.call],
275
265
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
266
  )
@@ -291,27 +281,24 @@ class LGBMRegressor(BaseTransformer):
291
281
  )
292
282
  self._sklearn_object = model_trainer.train()
293
283
  self._is_fitted = True
294
- self._get_model_signatures(dataset)
284
+ self._generate_model_signatures(dataset)
295
285
  return self
296
286
 
297
287
  def _batch_inference_validate_snowpark(
298
288
  self,
299
289
  dataset: DataFrame,
300
290
  inference_method: str,
301
- ) -> List[str]:
302
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
303
- return the available package that exists in the snowflake anaconda channel
291
+ ) -> None:
292
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
304
293
 
305
294
  Args:
306
295
  dataset: snowpark dataframe
307
296
  inference_method: the inference method such as predict, score...
308
-
297
+
309
298
  Raises:
310
299
  SnowflakeMLException: If the estimator is not fitted, raise error
311
300
  SnowflakeMLException: If the session is None, raise error
312
301
 
313
- Returns:
314
- A list of available package that exists in the snowflake anaconda channel
315
302
  """
316
303
  if not self._is_fitted:
317
304
  raise exceptions.SnowflakeMLException(
@@ -329,9 +316,7 @@ class LGBMRegressor(BaseTransformer):
329
316
  "Session must not specified for snowpark dataset."
330
317
  ),
331
318
  )
332
- # Validate that key package version in user workspace are supported in snowflake conda channel
333
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
334
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
319
+
335
320
 
336
321
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
337
322
  @telemetry.send_api_usage_telemetry(
@@ -367,7 +352,9 @@ class LGBMRegressor(BaseTransformer):
367
352
  # when it is classifier, infer the datatype from label columns
368
353
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
369
354
  # Batch inference takes a single expected output column type. Use the first columns type for now.
370
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
355
+ label_cols_signatures = [
356
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
357
+ ]
371
358
  if len(label_cols_signatures) == 0:
372
359
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
373
360
  raise exceptions.SnowflakeMLException(
@@ -375,25 +362,23 @@ class LGBMRegressor(BaseTransformer):
375
362
  original_exception=ValueError(error_str),
376
363
  )
377
364
 
378
- expected_type_inferred = convert_sp_to_sf_type(
379
- label_cols_signatures[0].as_snowpark_type()
380
- )
365
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
381
366
 
382
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
367
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
368
+ self._deps = self._get_dependencies()
369
+ assert isinstance(
370
+ dataset._session, Session
371
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
372
 
385
373
  transform_kwargs = dict(
386
- session = dataset._session,
387
- dependencies = self._deps,
388
- drop_input_cols = self._drop_input_cols,
389
- expected_output_cols_type = expected_type_inferred,
374
+ session=dataset._session,
375
+ dependencies=self._deps,
376
+ drop_input_cols=self._drop_input_cols,
377
+ expected_output_cols_type=expected_type_inferred,
390
378
  )
391
379
 
392
380
  elif isinstance(dataset, pd.DataFrame):
393
- transform_kwargs = dict(
394
- snowpark_input_cols = self._snowpark_cols,
395
- drop_input_cols = self._drop_input_cols
396
- )
381
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
397
382
 
398
383
  transform_handlers = ModelTransformerBuilder.build(
399
384
  dataset=dataset,
@@ -433,7 +418,7 @@ class LGBMRegressor(BaseTransformer):
433
418
  Transformed dataset.
434
419
  """
435
420
  super()._check_dataset_type(dataset)
436
- inference_method="transform"
421
+ inference_method = "transform"
437
422
 
438
423
  # This dictionary contains optional kwargs for batch inference. These kwargs
439
424
  # are specific to the type of dataset used.
@@ -463,24 +448,19 @@ class LGBMRegressor(BaseTransformer):
463
448
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
464
449
  expected_dtype = convert_sp_to_sf_type(output_types[0])
465
450
 
466
- self._deps = self._batch_inference_validate_snowpark(
467
- dataset=dataset,
468
- inference_method=inference_method,
469
- )
451
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
452
+ self._deps = self._get_dependencies()
470
453
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
454
 
472
455
  transform_kwargs = dict(
473
- session = dataset._session,
474
- dependencies = self._deps,
475
- drop_input_cols = self._drop_input_cols,
476
- expected_output_cols_type = expected_dtype,
456
+ session=dataset._session,
457
+ dependencies=self._deps,
458
+ drop_input_cols=self._drop_input_cols,
459
+ expected_output_cols_type=expected_dtype,
477
460
  )
478
461
 
479
462
  elif isinstance(dataset, pd.DataFrame):
480
- transform_kwargs = dict(
481
- snowpark_input_cols = self._snowpark_cols,
482
- drop_input_cols = self._drop_input_cols
483
- )
463
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
484
464
 
485
465
  transform_handlers = ModelTransformerBuilder.build(
486
466
  dataset=dataset,
@@ -499,7 +479,11 @@ class LGBMRegressor(BaseTransformer):
499
479
  return output_df
500
480
 
501
481
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
502
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
482
+ def fit_predict(
483
+ self,
484
+ dataset: Union[DataFrame, pd.DataFrame],
485
+ output_cols_prefix: str = "fit_predict_",
486
+ ) -> Union[DataFrame, pd.DataFrame]:
503
487
  """ Method not supported for this class.
504
488
 
505
489
 
@@ -524,22 +508,104 @@ class LGBMRegressor(BaseTransformer):
524
508
  )
525
509
  output_result, fitted_estimator = model_trainer.train_fit_predict(
526
510
  drop_input_cols=self._drop_input_cols,
527
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
511
+ expected_output_cols_list=(
512
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
513
+ ),
528
514
  )
529
515
  self._sklearn_object = fitted_estimator
530
516
  self._is_fitted = True
531
517
  return output_result
532
518
 
519
+
520
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
521
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
522
+ """ Method not supported for this class.
523
+
533
524
 
534
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
535
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
536
- """
525
+ Raises:
526
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
527
+
528
+ Args:
529
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
530
+ Snowpark or Pandas DataFrame.
531
+ output_cols_prefix: Prefix for the response columns
537
532
  Returns:
538
533
  Transformed dataset.
539
534
  """
540
- self.fit(dataset)
541
- assert self._sklearn_object is not None
542
- return self._sklearn_object.embedding_
535
+ self._infer_input_output_cols(dataset)
536
+ super()._check_dataset_type(dataset)
537
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
538
+ estimator=self._sklearn_object,
539
+ dataset=dataset,
540
+ input_cols=self.input_cols,
541
+ label_cols=self.label_cols,
542
+ sample_weight_col=self.sample_weight_col,
543
+ autogenerated=self._autogenerated,
544
+ subproject=_SUBPROJECT,
545
+ )
546
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
547
+ drop_input_cols=self._drop_input_cols,
548
+ expected_output_cols_list=self.output_cols,
549
+ )
550
+ self._sklearn_object = fitted_estimator
551
+ self._is_fitted = True
552
+ return output_result
553
+
554
+
555
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
556
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
557
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
558
+ """
559
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
560
+ # The following condition is introduced for kneighbors methods, and not used in other methods
561
+ if output_cols:
562
+ output_cols = [
563
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
564
+ for c in output_cols
565
+ ]
566
+ elif getattr(self._sklearn_object, "classes_", None) is None:
567
+ output_cols = [output_cols_prefix]
568
+ elif self._sklearn_object is not None:
569
+ classes = self._sklearn_object.classes_
570
+ if isinstance(classes, numpy.ndarray):
571
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
572
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
573
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
574
+ output_cols = []
575
+ for i, cl in enumerate(classes):
576
+ # For binary classification, there is only one output column for each class
577
+ # ndarray as the two classes are complementary.
578
+ if len(cl) == 2:
579
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
580
+ else:
581
+ output_cols.extend([
582
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
583
+ ])
584
+ else:
585
+ output_cols = []
586
+
587
+ # Make sure column names are valid snowflake identifiers.
588
+ assert output_cols is not None # Make MyPy happy
589
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
590
+
591
+ return rv
592
+
593
+ def _align_expected_output_names(
594
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
595
+ ) -> List[str]:
596
+ # in case the inferred output column names dimension is different
597
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
598
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
599
+ output_df_columns = list(output_df_pd.columns)
600
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
601
+ if self.sample_weight_col:
602
+ output_df_columns_set -= set(self.sample_weight_col)
603
+ # if the dimension of inferred output column names is correct; use it
604
+ if len(expected_output_cols_list) == len(output_df_columns_set):
605
+ return expected_output_cols_list
606
+ # otherwise, use the sklearn estimator's output
607
+ else:
608
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
543
609
 
544
610
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
545
611
  @telemetry.send_api_usage_telemetry(
@@ -571,24 +637,26 @@ class LGBMRegressor(BaseTransformer):
571
637
  # are specific to the type of dataset used.
572
638
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
573
639
 
640
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
641
+
574
642
  if isinstance(dataset, DataFrame):
575
- self._deps = self._batch_inference_validate_snowpark(
576
- dataset=dataset,
577
- inference_method=inference_method,
578
- )
579
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
643
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
644
+ self._deps = self._get_dependencies()
645
+ assert isinstance(
646
+ dataset._session, Session
647
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
580
648
  transform_kwargs = dict(
581
649
  session=dataset._session,
582
650
  dependencies=self._deps,
583
- drop_input_cols = self._drop_input_cols,
651
+ drop_input_cols=self._drop_input_cols,
584
652
  expected_output_cols_type="float",
585
653
  )
654
+ expected_output_cols = self._align_expected_output_names(
655
+ inference_method, dataset, expected_output_cols, output_cols_prefix
656
+ )
586
657
 
587
658
  elif isinstance(dataset, pd.DataFrame):
588
- transform_kwargs = dict(
589
- snowpark_input_cols = self._snowpark_cols,
590
- drop_input_cols = self._drop_input_cols
591
- )
659
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
592
660
 
593
661
  transform_handlers = ModelTransformerBuilder.build(
594
662
  dataset=dataset,
@@ -600,7 +668,7 @@ class LGBMRegressor(BaseTransformer):
600
668
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
601
669
  inference_method=inference_method,
602
670
  input_cols=self.input_cols,
603
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
671
+ expected_output_cols=expected_output_cols,
604
672
  **transform_kwargs
605
673
  )
606
674
  return output_df
@@ -630,29 +698,30 @@ class LGBMRegressor(BaseTransformer):
630
698
  Output dataset with log probability of the sample for each class in the model.
631
699
  """
632
700
  super()._check_dataset_type(dataset)
633
- inference_method="predict_log_proba"
701
+ inference_method = "predict_log_proba"
702
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
634
703
 
635
704
  # This dictionary contains optional kwargs for batch inference. These kwargs
636
705
  # are specific to the type of dataset used.
637
706
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
638
707
 
639
708
  if isinstance(dataset, DataFrame):
640
- self._deps = self._batch_inference_validate_snowpark(
641
- dataset=dataset,
642
- inference_method=inference_method,
643
- )
644
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
709
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
710
+ self._deps = self._get_dependencies()
711
+ assert isinstance(
712
+ dataset._session, Session
713
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
645
714
  transform_kwargs = dict(
646
715
  session=dataset._session,
647
716
  dependencies=self._deps,
648
- drop_input_cols = self._drop_input_cols,
717
+ drop_input_cols=self._drop_input_cols,
649
718
  expected_output_cols_type="float",
650
719
  )
720
+ expected_output_cols = self._align_expected_output_names(
721
+ inference_method, dataset, expected_output_cols, output_cols_prefix
722
+ )
651
723
  elif isinstance(dataset, pd.DataFrame):
652
- transform_kwargs = dict(
653
- snowpark_input_cols = self._snowpark_cols,
654
- drop_input_cols = self._drop_input_cols
655
- )
724
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
656
725
 
657
726
  transform_handlers = ModelTransformerBuilder.build(
658
727
  dataset=dataset,
@@ -665,7 +734,7 @@ class LGBMRegressor(BaseTransformer):
665
734
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
666
735
  inference_method=inference_method,
667
736
  input_cols=self.input_cols,
668
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
737
+ expected_output_cols=expected_output_cols,
669
738
  **transform_kwargs
670
739
  )
671
740
  return output_df
@@ -691,30 +760,32 @@ class LGBMRegressor(BaseTransformer):
691
760
  Output dataset with results of the decision function for the samples in input dataset.
692
761
  """
693
762
  super()._check_dataset_type(dataset)
694
- inference_method="decision_function"
763
+ inference_method = "decision_function"
695
764
 
696
765
  # This dictionary contains optional kwargs for batch inference. These kwargs
697
766
  # are specific to the type of dataset used.
698
767
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
699
768
 
769
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
770
+
700
771
  if isinstance(dataset, DataFrame):
701
- self._deps = self._batch_inference_validate_snowpark(
702
- dataset=dataset,
703
- inference_method=inference_method,
704
- )
705
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
772
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
773
+ self._deps = self._get_dependencies()
774
+ assert isinstance(
775
+ dataset._session, Session
776
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
706
777
  transform_kwargs = dict(
707
778
  session=dataset._session,
708
779
  dependencies=self._deps,
709
- drop_input_cols = self._drop_input_cols,
780
+ drop_input_cols=self._drop_input_cols,
710
781
  expected_output_cols_type="float",
711
782
  )
783
+ expected_output_cols = self._align_expected_output_names(
784
+ inference_method, dataset, expected_output_cols, output_cols_prefix
785
+ )
712
786
 
713
787
  elif isinstance(dataset, pd.DataFrame):
714
- transform_kwargs = dict(
715
- snowpark_input_cols = self._snowpark_cols,
716
- drop_input_cols = self._drop_input_cols
717
- )
788
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
718
789
 
719
790
  transform_handlers = ModelTransformerBuilder.build(
720
791
  dataset=dataset,
@@ -727,7 +798,7 @@ class LGBMRegressor(BaseTransformer):
727
798
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
728
799
  inference_method=inference_method,
729
800
  input_cols=self.input_cols,
730
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
801
+ expected_output_cols=expected_output_cols,
731
802
  **transform_kwargs
732
803
  )
733
804
  return output_df
@@ -756,17 +827,17 @@ class LGBMRegressor(BaseTransformer):
756
827
  Output dataset with probability of the sample for each class in the model.
757
828
  """
758
829
  super()._check_dataset_type(dataset)
759
- inference_method="score_samples"
830
+ inference_method = "score_samples"
760
831
 
761
832
  # This dictionary contains optional kwargs for batch inference. These kwargs
762
833
  # are specific to the type of dataset used.
763
834
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
764
835
 
836
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
837
+
765
838
  if isinstance(dataset, DataFrame):
766
- self._deps = self._batch_inference_validate_snowpark(
767
- dataset=dataset,
768
- inference_method=inference_method,
769
- )
839
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
840
+ self._deps = self._get_dependencies()
770
841
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
771
842
  transform_kwargs = dict(
772
843
  session=dataset._session,
@@ -774,6 +845,9 @@ class LGBMRegressor(BaseTransformer):
774
845
  drop_input_cols = self._drop_input_cols,
775
846
  expected_output_cols_type="float",
776
847
  )
848
+ expected_output_cols = self._align_expected_output_names(
849
+ inference_method, dataset, expected_output_cols, output_cols_prefix
850
+ )
777
851
 
778
852
  elif isinstance(dataset, pd.DataFrame):
779
853
  transform_kwargs = dict(
@@ -792,7 +866,7 @@ class LGBMRegressor(BaseTransformer):
792
866
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
793
867
  inference_method=inference_method,
794
868
  input_cols=self.input_cols,
795
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
869
+ expected_output_cols=expected_output_cols,
796
870
  **transform_kwargs
797
871
  )
798
872
  return output_df
@@ -827,17 +901,15 @@ class LGBMRegressor(BaseTransformer):
827
901
  transform_kwargs: ScoreKwargsTypedDict = dict()
828
902
 
829
903
  if isinstance(dataset, DataFrame):
830
- self._deps = self._batch_inference_validate_snowpark(
831
- dataset=dataset,
832
- inference_method="score",
833
- )
904
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
905
+ self._deps = self._get_dependencies()
834
906
  selected_cols = self._get_active_columns()
835
907
  if len(selected_cols) > 0:
836
908
  dataset = dataset.select(selected_cols)
837
909
  assert isinstance(dataset._session, Session) # keep mypy happy
838
910
  transform_kwargs = dict(
839
911
  session=dataset._session,
840
- dependencies=["snowflake-snowpark-python"] + self._deps,
912
+ dependencies=self._deps,
841
913
  score_sproc_imports=['lightgbm', 'sklearn'],
842
914
  )
843
915
  elif isinstance(dataset, pd.DataFrame):
@@ -902,11 +974,8 @@ class LGBMRegressor(BaseTransformer):
902
974
 
903
975
  if isinstance(dataset, DataFrame):
904
976
 
905
- self._deps = self._batch_inference_validate_snowpark(
906
- dataset=dataset,
907
- inference_method=inference_method,
908
-
909
- )
977
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
978
+ self._deps = self._get_dependencies()
910
979
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
911
980
  transform_kwargs = dict(
912
981
  session = dataset._session,
@@ -939,50 +1008,84 @@ class LGBMRegressor(BaseTransformer):
939
1008
  )
940
1009
  return output_df
941
1010
 
1011
+
1012
+
1013
+ def to_lightgbm(self) -> Any:
1014
+ """Get lightgbm.LGBMRegressor object.
1015
+ """
1016
+ if self._sklearn_object is None:
1017
+ self._sklearn_object = self._create_sklearn_object()
1018
+ return self._sklearn_object
1019
+
1020
+ def to_sklearn(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_sklearn()",
1026
+ "to_lightgbm()"
1027
+ )
1028
+ ),
1029
+ )
1030
+
1031
+ def to_xgboost(self) -> Any:
1032
+ raise exceptions.SnowflakeMLException(
1033
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1034
+ original_exception=AttributeError(
1035
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
+ "to_xgboost()",
1037
+ "to_lightgbm()"
1038
+ )
1039
+ ),
1040
+ )
1041
+
1042
+ def _get_dependencies(self) -> List[str]:
1043
+ return self._deps
1044
+
942
1045
 
943
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1046
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
944
1047
  self._model_signature_dict = dict()
945
1048
 
946
1049
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
947
1050
 
948
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1051
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
949
1052
  outputs: List[BaseFeatureSpec] = []
950
1053
  if hasattr(self, "predict"):
951
1054
  # keep mypy happy
952
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1055
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
953
1056
  # For classifier, the type of predict is the same as the type of label
954
- if self._sklearn_object._estimator_type == 'classifier':
955
- # label columns is the desired type for output
1057
+ if self._sklearn_object._estimator_type == "classifier":
1058
+ # label columns is the desired type for output
956
1059
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
957
1060
  # rename the output columns
958
1061
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
959
- self._model_signature_dict["predict"] = ModelSignature(inputs,
960
- ([] if self._drop_input_cols else inputs)
961
- + outputs)
1062
+ self._model_signature_dict["predict"] = ModelSignature(
1063
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1064
+ )
962
1065
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
963
1066
  # For outlier models, returns -1 for outliers and 1 for inliers.
964
- # Clusterer returns int64 cluster labels.
1067
+ # Clusterer returns int64 cluster labels.
965
1068
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
966
1069
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
967
- self._model_signature_dict["predict"] = ModelSignature(inputs,
968
- ([] if self._drop_input_cols else inputs)
969
- + outputs)
970
-
1070
+ self._model_signature_dict["predict"] = ModelSignature(
1071
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1072
+ )
1073
+
971
1074
  # For regressor, the type of predict is float64
972
- elif self._sklearn_object._estimator_type == 'regressor':
1075
+ elif self._sklearn_object._estimator_type == "regressor":
973
1076
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
974
- self._model_signature_dict["predict"] = ModelSignature(inputs,
975
- ([] if self._drop_input_cols else inputs)
976
- + outputs)
977
-
1077
+ self._model_signature_dict["predict"] = ModelSignature(
1078
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1079
+ )
1080
+
978
1081
  for prob_func in PROB_FUNCTIONS:
979
1082
  if hasattr(self, prob_func):
980
1083
  output_cols_prefix: str = f"{prob_func}_"
981
1084
  output_column_names = self._get_output_column_names(output_cols_prefix)
982
1085
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
983
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
984
- ([] if self._drop_input_cols else inputs)
985
- + outputs)
1086
+ self._model_signature_dict[prob_func] = ModelSignature(
1087
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1088
+ )
986
1089
 
987
1090
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
988
1091
  items = list(self._model_signature_dict.items())
@@ -995,10 +1098,10 @@ class LGBMRegressor(BaseTransformer):
995
1098
  """Returns model signature of current class.
996
1099
 
997
1100
  Raises:
998
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1101
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
999
1102
 
1000
1103
  Returns:
1001
- Dict[str, ModelSignature]: each method and its input output signature
1104
+ Dict with each method and its input output signature
1002
1105
  """
1003
1106
  if self._model_signature_dict is None:
1004
1107
  raise exceptions.SnowflakeMLException(
@@ -1006,35 +1109,3 @@ class LGBMRegressor(BaseTransformer):
1006
1109
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1007
1110
  )
1008
1111
  return self._model_signature_dict
1009
-
1010
- def to_lightgbm(self) -> Any:
1011
- """Get lightgbm.LGBMRegressor object.
1012
- """
1013
- if self._sklearn_object is None:
1014
- self._sklearn_object = self._create_sklearn_object()
1015
- return self._sklearn_object
1016
-
1017
- def to_sklearn(self) -> Any:
1018
- raise exceptions.SnowflakeMLException(
1019
- error_code=error_codes.METHOD_NOT_ALLOWED,
1020
- original_exception=AttributeError(
1021
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
- "to_sklearn()",
1023
- "to_lightgbm()"
1024
- )
1025
- ),
1026
- )
1027
-
1028
- def to_xgboost(self) -> Any:
1029
- raise exceptions.SnowflakeMLException(
1030
- error_code=error_codes.METHOD_NOT_ALLOWED,
1031
- original_exception=AttributeError(
1032
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1033
- "to_xgboost()",
1034
- "to_lightgbm()"
1035
- )
1036
- ),
1037
- )
1038
-
1039
- def _get_dependencies(self) -> List[str]:
1040
- return self._deps