snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "lightgbm".replace("sklearn.", ""
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LGBMClassifier(BaseTransformer):
71
64
  r"""LightGBM classifier
72
65
  For more details on this class, see [lightgbm.LGBMClassifier]
@@ -233,12 +226,7 @@ class LGBMClassifier(BaseTransformer):
233
226
  )
234
227
  return selected_cols
235
228
 
236
- @telemetry.send_api_usage_telemetry(
237
- project=_PROJECT,
238
- subproject=_SUBPROJECT,
239
- custom_tags=dict([("autogen", True)]),
240
- )
241
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMClassifier":
229
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LGBMClassifier":
242
230
  """Build a gradient boosting model from the training set (X, y)
243
231
  For more details on this function, see [lightgbm.LGBMClassifier.fit]
244
232
  (https://lightgbm.readthedocs.io/en/v3.3.2/pythonapi/lightgbm.LGBMClassifier.html#lightgbm.LGBMClassifier.fit)
@@ -265,12 +253,14 @@ class LGBMClassifier(BaseTransformer):
265
253
 
266
254
  self._snowpark_cols = dataset.select(self.input_cols).columns
267
255
 
268
- # If we are already in a stored procedure, no need to kick off another one.
256
+ # If we are already in a stored procedure, no need to kick off another one.
269
257
  if SNOWML_SPROC_ENV in os.environ:
270
258
  statement_params = telemetry.get_function_usage_statement_params(
271
259
  project=_PROJECT,
272
260
  subproject=_SUBPROJECT,
273
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LGBMClassifier.__class__.__name__),
261
+ function_name=telemetry.get_statement_params_full_func_name(
262
+ inspect.currentframe(), LGBMClassifier.__class__.__name__
263
+ ),
274
264
  api_calls=[Session.call],
275
265
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
266
  )
@@ -291,27 +281,24 @@ class LGBMClassifier(BaseTransformer):
291
281
  )
292
282
  self._sklearn_object = model_trainer.train()
293
283
  self._is_fitted = True
294
- self._get_model_signatures(dataset)
284
+ self._generate_model_signatures(dataset)
295
285
  return self
296
286
 
297
287
  def _batch_inference_validate_snowpark(
298
288
  self,
299
289
  dataset: DataFrame,
300
290
  inference_method: str,
301
- ) -> List[str]:
302
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
303
- return the available package that exists in the snowflake anaconda channel
291
+ ) -> None:
292
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
304
293
 
305
294
  Args:
306
295
  dataset: snowpark dataframe
307
296
  inference_method: the inference method such as predict, score...
308
-
297
+
309
298
  Raises:
310
299
  SnowflakeMLException: If the estimator is not fitted, raise error
311
300
  SnowflakeMLException: If the session is None, raise error
312
301
 
313
- Returns:
314
- A list of available package that exists in the snowflake anaconda channel
315
302
  """
316
303
  if not self._is_fitted:
317
304
  raise exceptions.SnowflakeMLException(
@@ -329,9 +316,7 @@ class LGBMClassifier(BaseTransformer):
329
316
  "Session must not specified for snowpark dataset."
330
317
  ),
331
318
  )
332
- # Validate that key package version in user workspace are supported in snowflake conda channel
333
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
334
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
319
+
335
320
 
336
321
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
337
322
  @telemetry.send_api_usage_telemetry(
@@ -367,7 +352,9 @@ class LGBMClassifier(BaseTransformer):
367
352
  # when it is classifier, infer the datatype from label columns
368
353
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
369
354
  # Batch inference takes a single expected output column type. Use the first columns type for now.
370
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
355
+ label_cols_signatures = [
356
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
357
+ ]
371
358
  if len(label_cols_signatures) == 0:
372
359
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
373
360
  raise exceptions.SnowflakeMLException(
@@ -375,25 +362,23 @@ class LGBMClassifier(BaseTransformer):
375
362
  original_exception=ValueError(error_str),
376
363
  )
377
364
 
378
- expected_type_inferred = convert_sp_to_sf_type(
379
- label_cols_signatures[0].as_snowpark_type()
380
- )
365
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
381
366
 
382
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
367
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
368
+ self._deps = self._get_dependencies()
369
+ assert isinstance(
370
+ dataset._session, Session
371
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
372
 
385
373
  transform_kwargs = dict(
386
- session = dataset._session,
387
- dependencies = self._deps,
388
- drop_input_cols = self._drop_input_cols,
389
- expected_output_cols_type = expected_type_inferred,
374
+ session=dataset._session,
375
+ dependencies=self._deps,
376
+ drop_input_cols=self._drop_input_cols,
377
+ expected_output_cols_type=expected_type_inferred,
390
378
  )
391
379
 
392
380
  elif isinstance(dataset, pd.DataFrame):
393
- transform_kwargs = dict(
394
- snowpark_input_cols = self._snowpark_cols,
395
- drop_input_cols = self._drop_input_cols
396
- )
381
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
397
382
 
398
383
  transform_handlers = ModelTransformerBuilder.build(
399
384
  dataset=dataset,
@@ -433,7 +418,7 @@ class LGBMClassifier(BaseTransformer):
433
418
  Transformed dataset.
434
419
  """
435
420
  super()._check_dataset_type(dataset)
436
- inference_method="transform"
421
+ inference_method = "transform"
437
422
 
438
423
  # This dictionary contains optional kwargs for batch inference. These kwargs
439
424
  # are specific to the type of dataset used.
@@ -463,24 +448,19 @@ class LGBMClassifier(BaseTransformer):
463
448
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
464
449
  expected_dtype = convert_sp_to_sf_type(output_types[0])
465
450
 
466
- self._deps = self._batch_inference_validate_snowpark(
467
- dataset=dataset,
468
- inference_method=inference_method,
469
- )
451
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
452
+ self._deps = self._get_dependencies()
470
453
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
454
 
472
455
  transform_kwargs = dict(
473
- session = dataset._session,
474
- dependencies = self._deps,
475
- drop_input_cols = self._drop_input_cols,
476
- expected_output_cols_type = expected_dtype,
456
+ session=dataset._session,
457
+ dependencies=self._deps,
458
+ drop_input_cols=self._drop_input_cols,
459
+ expected_output_cols_type=expected_dtype,
477
460
  )
478
461
 
479
462
  elif isinstance(dataset, pd.DataFrame):
480
- transform_kwargs = dict(
481
- snowpark_input_cols = self._snowpark_cols,
482
- drop_input_cols = self._drop_input_cols
483
- )
463
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
484
464
 
485
465
  transform_handlers = ModelTransformerBuilder.build(
486
466
  dataset=dataset,
@@ -499,7 +479,11 @@ class LGBMClassifier(BaseTransformer):
499
479
  return output_df
500
480
 
501
481
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
502
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
482
+ def fit_predict(
483
+ self,
484
+ dataset: Union[DataFrame, pd.DataFrame],
485
+ output_cols_prefix: str = "fit_predict_",
486
+ ) -> Union[DataFrame, pd.DataFrame]:
503
487
  """ Method not supported for this class.
504
488
 
505
489
 
@@ -524,22 +508,104 @@ class LGBMClassifier(BaseTransformer):
524
508
  )
525
509
  output_result, fitted_estimator = model_trainer.train_fit_predict(
526
510
  drop_input_cols=self._drop_input_cols,
527
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
511
+ expected_output_cols_list=(
512
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
513
+ ),
528
514
  )
529
515
  self._sklearn_object = fitted_estimator
530
516
  self._is_fitted = True
531
517
  return output_result
532
518
 
519
+
520
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
521
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
522
+ """ Method not supported for this class.
523
+
533
524
 
534
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
535
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
536
- """
525
+ Raises:
526
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
527
+
528
+ Args:
529
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
530
+ Snowpark or Pandas DataFrame.
531
+ output_cols_prefix: Prefix for the response columns
537
532
  Returns:
538
533
  Transformed dataset.
539
534
  """
540
- self.fit(dataset)
541
- assert self._sklearn_object is not None
542
- return self._sklearn_object.embedding_
535
+ self._infer_input_output_cols(dataset)
536
+ super()._check_dataset_type(dataset)
537
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
538
+ estimator=self._sklearn_object,
539
+ dataset=dataset,
540
+ input_cols=self.input_cols,
541
+ label_cols=self.label_cols,
542
+ sample_weight_col=self.sample_weight_col,
543
+ autogenerated=self._autogenerated,
544
+ subproject=_SUBPROJECT,
545
+ )
546
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
547
+ drop_input_cols=self._drop_input_cols,
548
+ expected_output_cols_list=self.output_cols,
549
+ )
550
+ self._sklearn_object = fitted_estimator
551
+ self._is_fitted = True
552
+ return output_result
553
+
554
+
555
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
556
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
557
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
558
+ """
559
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
560
+ # The following condition is introduced for kneighbors methods, and not used in other methods
561
+ if output_cols:
562
+ output_cols = [
563
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
564
+ for c in output_cols
565
+ ]
566
+ elif getattr(self._sklearn_object, "classes_", None) is None:
567
+ output_cols = [output_cols_prefix]
568
+ elif self._sklearn_object is not None:
569
+ classes = self._sklearn_object.classes_
570
+ if isinstance(classes, numpy.ndarray):
571
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
572
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
573
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
574
+ output_cols = []
575
+ for i, cl in enumerate(classes):
576
+ # For binary classification, there is only one output column for each class
577
+ # ndarray as the two classes are complementary.
578
+ if len(cl) == 2:
579
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
580
+ else:
581
+ output_cols.extend([
582
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
583
+ ])
584
+ else:
585
+ output_cols = []
586
+
587
+ # Make sure column names are valid snowflake identifiers.
588
+ assert output_cols is not None # Make MyPy happy
589
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
590
+
591
+ return rv
592
+
593
+ def _align_expected_output_names(
594
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
595
+ ) -> List[str]:
596
+ # in case the inferred output column names dimension is different
597
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
598
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
599
+ output_df_columns = list(output_df_pd.columns)
600
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
601
+ if self.sample_weight_col:
602
+ output_df_columns_set -= set(self.sample_weight_col)
603
+ # if the dimension of inferred output column names is correct; use it
604
+ if len(expected_output_cols_list) == len(output_df_columns_set):
605
+ return expected_output_cols_list
606
+ # otherwise, use the sklearn estimator's output
607
+ else:
608
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
543
609
 
544
610
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
545
611
  @telemetry.send_api_usage_telemetry(
@@ -573,24 +639,26 @@ class LGBMClassifier(BaseTransformer):
573
639
  # are specific to the type of dataset used.
574
640
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
575
641
 
642
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
643
+
576
644
  if isinstance(dataset, DataFrame):
577
- self._deps = self._batch_inference_validate_snowpark(
578
- dataset=dataset,
579
- inference_method=inference_method,
580
- )
581
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
645
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
646
+ self._deps = self._get_dependencies()
647
+ assert isinstance(
648
+ dataset._session, Session
649
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
582
650
  transform_kwargs = dict(
583
651
  session=dataset._session,
584
652
  dependencies=self._deps,
585
- drop_input_cols = self._drop_input_cols,
653
+ drop_input_cols=self._drop_input_cols,
586
654
  expected_output_cols_type="float",
587
655
  )
656
+ expected_output_cols = self._align_expected_output_names(
657
+ inference_method, dataset, expected_output_cols, output_cols_prefix
658
+ )
588
659
 
589
660
  elif isinstance(dataset, pd.DataFrame):
590
- transform_kwargs = dict(
591
- snowpark_input_cols = self._snowpark_cols,
592
- drop_input_cols = self._drop_input_cols
593
- )
661
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
594
662
 
595
663
  transform_handlers = ModelTransformerBuilder.build(
596
664
  dataset=dataset,
@@ -602,7 +670,7 @@ class LGBMClassifier(BaseTransformer):
602
670
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
603
671
  inference_method=inference_method,
604
672
  input_cols=self.input_cols,
605
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
673
+ expected_output_cols=expected_output_cols,
606
674
  **transform_kwargs
607
675
  )
608
676
  return output_df
@@ -634,29 +702,30 @@ class LGBMClassifier(BaseTransformer):
634
702
  Output dataset with log probability of the sample for each class in the model.
635
703
  """
636
704
  super()._check_dataset_type(dataset)
637
- inference_method="predict_log_proba"
705
+ inference_method = "predict_log_proba"
706
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
638
707
 
639
708
  # This dictionary contains optional kwargs for batch inference. These kwargs
640
709
  # are specific to the type of dataset used.
641
710
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
642
711
 
643
712
  if isinstance(dataset, DataFrame):
644
- self._deps = self._batch_inference_validate_snowpark(
645
- dataset=dataset,
646
- inference_method=inference_method,
647
- )
648
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
713
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
714
+ self._deps = self._get_dependencies()
715
+ assert isinstance(
716
+ dataset._session, Session
717
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
718
  transform_kwargs = dict(
650
719
  session=dataset._session,
651
720
  dependencies=self._deps,
652
- drop_input_cols = self._drop_input_cols,
721
+ drop_input_cols=self._drop_input_cols,
653
722
  expected_output_cols_type="float",
654
723
  )
724
+ expected_output_cols = self._align_expected_output_names(
725
+ inference_method, dataset, expected_output_cols, output_cols_prefix
726
+ )
655
727
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
728
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
729
 
661
730
  transform_handlers = ModelTransformerBuilder.build(
662
731
  dataset=dataset,
@@ -669,7 +738,7 @@ class LGBMClassifier(BaseTransformer):
669
738
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
670
739
  inference_method=inference_method,
671
740
  input_cols=self.input_cols,
672
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
741
+ expected_output_cols=expected_output_cols,
673
742
  **transform_kwargs
674
743
  )
675
744
  return output_df
@@ -695,30 +764,32 @@ class LGBMClassifier(BaseTransformer):
695
764
  Output dataset with results of the decision function for the samples in input dataset.
696
765
  """
697
766
  super()._check_dataset_type(dataset)
698
- inference_method="decision_function"
767
+ inference_method = "decision_function"
699
768
 
700
769
  # This dictionary contains optional kwargs for batch inference. These kwargs
701
770
  # are specific to the type of dataset used.
702
771
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
703
772
 
773
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
774
+
704
775
  if isinstance(dataset, DataFrame):
705
- self._deps = self._batch_inference_validate_snowpark(
706
- dataset=dataset,
707
- inference_method=inference_method,
708
- )
709
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
777
+ self._deps = self._get_dependencies()
778
+ assert isinstance(
779
+ dataset._session, Session
780
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
781
  transform_kwargs = dict(
711
782
  session=dataset._session,
712
783
  dependencies=self._deps,
713
- drop_input_cols = self._drop_input_cols,
784
+ drop_input_cols=self._drop_input_cols,
714
785
  expected_output_cols_type="float",
715
786
  )
787
+ expected_output_cols = self._align_expected_output_names(
788
+ inference_method, dataset, expected_output_cols, output_cols_prefix
789
+ )
716
790
 
717
791
  elif isinstance(dataset, pd.DataFrame):
718
- transform_kwargs = dict(
719
- snowpark_input_cols = self._snowpark_cols,
720
- drop_input_cols = self._drop_input_cols
721
- )
792
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
722
793
 
723
794
  transform_handlers = ModelTransformerBuilder.build(
724
795
  dataset=dataset,
@@ -731,7 +802,7 @@ class LGBMClassifier(BaseTransformer):
731
802
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
732
803
  inference_method=inference_method,
733
804
  input_cols=self.input_cols,
734
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
805
+ expected_output_cols=expected_output_cols,
735
806
  **transform_kwargs
736
807
  )
737
808
  return output_df
@@ -760,17 +831,17 @@ class LGBMClassifier(BaseTransformer):
760
831
  Output dataset with probability of the sample for each class in the model.
761
832
  """
762
833
  super()._check_dataset_type(dataset)
763
- inference_method="score_samples"
834
+ inference_method = "score_samples"
764
835
 
765
836
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
837
  # are specific to the type of dataset used.
767
838
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
839
 
840
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
841
+
769
842
  if isinstance(dataset, DataFrame):
770
- self._deps = self._batch_inference_validate_snowpark(
771
- dataset=dataset,
772
- inference_method=inference_method,
773
- )
843
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
844
+ self._deps = self._get_dependencies()
774
845
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
846
  transform_kwargs = dict(
776
847
  session=dataset._session,
@@ -778,6 +849,9 @@ class LGBMClassifier(BaseTransformer):
778
849
  drop_input_cols = self._drop_input_cols,
779
850
  expected_output_cols_type="float",
780
851
  )
852
+ expected_output_cols = self._align_expected_output_names(
853
+ inference_method, dataset, expected_output_cols, output_cols_prefix
854
+ )
781
855
 
782
856
  elif isinstance(dataset, pd.DataFrame):
783
857
  transform_kwargs = dict(
@@ -796,7 +870,7 @@ class LGBMClassifier(BaseTransformer):
796
870
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
797
871
  inference_method=inference_method,
798
872
  input_cols=self.input_cols,
799
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
873
+ expected_output_cols=expected_output_cols,
800
874
  **transform_kwargs
801
875
  )
802
876
  return output_df
@@ -831,17 +905,15 @@ class LGBMClassifier(BaseTransformer):
831
905
  transform_kwargs: ScoreKwargsTypedDict = dict()
832
906
 
833
907
  if isinstance(dataset, DataFrame):
834
- self._deps = self._batch_inference_validate_snowpark(
835
- dataset=dataset,
836
- inference_method="score",
837
- )
908
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
909
+ self._deps = self._get_dependencies()
838
910
  selected_cols = self._get_active_columns()
839
911
  if len(selected_cols) > 0:
840
912
  dataset = dataset.select(selected_cols)
841
913
  assert isinstance(dataset._session, Session) # keep mypy happy
842
914
  transform_kwargs = dict(
843
915
  session=dataset._session,
844
- dependencies=["snowflake-snowpark-python"] + self._deps,
916
+ dependencies=self._deps,
845
917
  score_sproc_imports=['lightgbm', 'sklearn'],
846
918
  )
847
919
  elif isinstance(dataset, pd.DataFrame):
@@ -906,11 +978,8 @@ class LGBMClassifier(BaseTransformer):
906
978
 
907
979
  if isinstance(dataset, DataFrame):
908
980
 
909
- self._deps = self._batch_inference_validate_snowpark(
910
- dataset=dataset,
911
- inference_method=inference_method,
912
-
913
- )
981
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
982
+ self._deps = self._get_dependencies()
914
983
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
915
984
  transform_kwargs = dict(
916
985
  session = dataset._session,
@@ -943,50 +1012,84 @@ class LGBMClassifier(BaseTransformer):
943
1012
  )
944
1013
  return output_df
945
1014
 
1015
+
1016
+
1017
+ def to_lightgbm(self) -> Any:
1018
+ """Get lightgbm.LGBMClassifier object.
1019
+ """
1020
+ if self._sklearn_object is None:
1021
+ self._sklearn_object = self._create_sklearn_object()
1022
+ return self._sklearn_object
1023
+
1024
+ def to_sklearn(self) -> Any:
1025
+ raise exceptions.SnowflakeMLException(
1026
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1027
+ original_exception=AttributeError(
1028
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1029
+ "to_sklearn()",
1030
+ "to_lightgbm()"
1031
+ )
1032
+ ),
1033
+ )
1034
+
1035
+ def to_xgboost(self) -> Any:
1036
+ raise exceptions.SnowflakeMLException(
1037
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1038
+ original_exception=AttributeError(
1039
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1040
+ "to_xgboost()",
1041
+ "to_lightgbm()"
1042
+ )
1043
+ ),
1044
+ )
1045
+
1046
+ def _get_dependencies(self) -> List[str]:
1047
+ return self._deps
1048
+
946
1049
 
947
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1050
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
948
1051
  self._model_signature_dict = dict()
949
1052
 
950
1053
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
951
1054
 
952
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1055
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
953
1056
  outputs: List[BaseFeatureSpec] = []
954
1057
  if hasattr(self, "predict"):
955
1058
  # keep mypy happy
956
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1059
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
957
1060
  # For classifier, the type of predict is the same as the type of label
958
- if self._sklearn_object._estimator_type == 'classifier':
959
- # label columns is the desired type for output
1061
+ if self._sklearn_object._estimator_type == "classifier":
1062
+ # label columns is the desired type for output
960
1063
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
961
1064
  # rename the output columns
962
1065
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
963
- self._model_signature_dict["predict"] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
966
1069
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
967
1070
  # For outlier models, returns -1 for outliers and 1 for inliers.
968
- # Clusterer returns int64 cluster labels.
1071
+ # Clusterer returns int64 cluster labels.
969
1072
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
970
1073
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
971
- self._model_signature_dict["predict"] = ModelSignature(inputs,
972
- ([] if self._drop_input_cols else inputs)
973
- + outputs)
974
-
1074
+ self._model_signature_dict["predict"] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
1077
+
975
1078
  # For regressor, the type of predict is float64
976
- elif self._sklearn_object._estimator_type == 'regressor':
1079
+ elif self._sklearn_object._estimator_type == "regressor":
977
1080
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
978
- self._model_signature_dict["predict"] = ModelSignature(inputs,
979
- ([] if self._drop_input_cols else inputs)
980
- + outputs)
981
-
1081
+ self._model_signature_dict["predict"] = ModelSignature(
1082
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1083
+ )
1084
+
982
1085
  for prob_func in PROB_FUNCTIONS:
983
1086
  if hasattr(self, prob_func):
984
1087
  output_cols_prefix: str = f"{prob_func}_"
985
1088
  output_column_names = self._get_output_column_names(output_cols_prefix)
986
1089
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
987
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
988
- ([] if self._drop_input_cols else inputs)
989
- + outputs)
1090
+ self._model_signature_dict[prob_func] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
990
1093
 
991
1094
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
992
1095
  items = list(self._model_signature_dict.items())
@@ -999,10 +1102,10 @@ class LGBMClassifier(BaseTransformer):
999
1102
  """Returns model signature of current class.
1000
1103
 
1001
1104
  Raises:
1002
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1105
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1003
1106
 
1004
1107
  Returns:
1005
- Dict[str, ModelSignature]: each method and its input output signature
1108
+ Dict with each method and its input output signature
1006
1109
  """
1007
1110
  if self._model_signature_dict is None:
1008
1111
  raise exceptions.SnowflakeMLException(
@@ -1010,35 +1113,3 @@ class LGBMClassifier(BaseTransformer):
1010
1113
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1011
1114
  )
1012
1115
  return self._model_signature_dict
1013
-
1014
- def to_lightgbm(self) -> Any:
1015
- """Get lightgbm.LGBMClassifier object.
1016
- """
1017
- if self._sklearn_object is None:
1018
- self._sklearn_object = self._create_sklearn_object()
1019
- return self._sklearn_object
1020
-
1021
- def to_sklearn(self) -> Any:
1022
- raise exceptions.SnowflakeMLException(
1023
- error_code=error_codes.METHOD_NOT_ALLOWED,
1024
- original_exception=AttributeError(
1025
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1026
- "to_sklearn()",
1027
- "to_lightgbm()"
1028
- )
1029
- ),
1030
- )
1031
-
1032
- def to_xgboost(self) -> Any:
1033
- raise exceptions.SnowflakeMLException(
1034
- error_code=error_codes.METHOD_NOT_ALLOWED,
1035
- original_exception=AttributeError(
1036
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
- "to_xgboost()",
1038
- "to_lightgbm()"
1039
- )
1040
- ),
1041
- )
1042
-
1043
- def _get_dependencies(self) -> List[str]:
1044
- return self._deps