snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class RidgeClassifierCV(BaseTransformer):
|
71
64
|
r"""Ridge classifier with built-in cross-validation
|
72
65
|
For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
|
@@ -248,12 +241,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
248
241
|
)
|
249
242
|
return selected_cols
|
250
243
|
|
251
|
-
|
252
|
-
project=_PROJECT,
|
253
|
-
subproject=_SUBPROJECT,
|
254
|
-
custom_tags=dict([("autogen", True)]),
|
255
|
-
)
|
256
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
|
244
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
|
257
245
|
"""Fit Ridge classifier with cv
|
258
246
|
For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.fit]
|
259
247
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html#sklearn.linear_model.RidgeClassifierCV.fit)
|
@@ -280,12 +268,14 @@ class RidgeClassifierCV(BaseTransformer):
|
|
280
268
|
|
281
269
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
282
270
|
|
283
|
-
|
271
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
284
272
|
if SNOWML_SPROC_ENV in os.environ:
|
285
273
|
statement_params = telemetry.get_function_usage_statement_params(
|
286
274
|
project=_PROJECT,
|
287
275
|
subproject=_SUBPROJECT,
|
288
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
276
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
277
|
+
inspect.currentframe(), RidgeClassifierCV.__class__.__name__
|
278
|
+
),
|
289
279
|
api_calls=[Session.call],
|
290
280
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
291
281
|
)
|
@@ -306,27 +296,24 @@ class RidgeClassifierCV(BaseTransformer):
|
|
306
296
|
)
|
307
297
|
self._sklearn_object = model_trainer.train()
|
308
298
|
self._is_fitted = True
|
309
|
-
self.
|
299
|
+
self._generate_model_signatures(dataset)
|
310
300
|
return self
|
311
301
|
|
312
302
|
def _batch_inference_validate_snowpark(
|
313
303
|
self,
|
314
304
|
dataset: DataFrame,
|
315
305
|
inference_method: str,
|
316
|
-
) ->
|
317
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
318
|
-
return the available package that exists in the snowflake anaconda channel
|
306
|
+
) -> None:
|
307
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
319
308
|
|
320
309
|
Args:
|
321
310
|
dataset: snowpark dataframe
|
322
311
|
inference_method: the inference method such as predict, score...
|
323
|
-
|
312
|
+
|
324
313
|
Raises:
|
325
314
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
326
315
|
SnowflakeMLException: If the session is None, raise error
|
327
316
|
|
328
|
-
Returns:
|
329
|
-
A list of available package that exists in the snowflake anaconda channel
|
330
317
|
"""
|
331
318
|
if not self._is_fitted:
|
332
319
|
raise exceptions.SnowflakeMLException(
|
@@ -344,9 +331,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
344
331
|
"Session must not specified for snowpark dataset."
|
345
332
|
),
|
346
333
|
)
|
347
|
-
|
348
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
349
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
334
|
+
|
350
335
|
|
351
336
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
352
337
|
@telemetry.send_api_usage_telemetry(
|
@@ -382,7 +367,9 @@ class RidgeClassifierCV(BaseTransformer):
|
|
382
367
|
# when it is classifier, infer the datatype from label columns
|
383
368
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
384
369
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
385
|
-
label_cols_signatures = [
|
370
|
+
label_cols_signatures = [
|
371
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
372
|
+
]
|
386
373
|
if len(label_cols_signatures) == 0:
|
387
374
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
388
375
|
raise exceptions.SnowflakeMLException(
|
@@ -390,25 +377,23 @@ class RidgeClassifierCV(BaseTransformer):
|
|
390
377
|
original_exception=ValueError(error_str),
|
391
378
|
)
|
392
379
|
|
393
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
394
|
-
label_cols_signatures[0].as_snowpark_type()
|
395
|
-
)
|
380
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
396
381
|
|
397
|
-
self.
|
398
|
-
|
382
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
383
|
+
self._deps = self._get_dependencies()
|
384
|
+
assert isinstance(
|
385
|
+
dataset._session, Session
|
386
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
399
387
|
|
400
388
|
transform_kwargs = dict(
|
401
|
-
session
|
402
|
-
dependencies
|
403
|
-
drop_input_cols
|
404
|
-
expected_output_cols_type
|
389
|
+
session=dataset._session,
|
390
|
+
dependencies=self._deps,
|
391
|
+
drop_input_cols=self._drop_input_cols,
|
392
|
+
expected_output_cols_type=expected_type_inferred,
|
405
393
|
)
|
406
394
|
|
407
395
|
elif isinstance(dataset, pd.DataFrame):
|
408
|
-
transform_kwargs = dict(
|
409
|
-
snowpark_input_cols = self._snowpark_cols,
|
410
|
-
drop_input_cols = self._drop_input_cols
|
411
|
-
)
|
396
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
412
397
|
|
413
398
|
transform_handlers = ModelTransformerBuilder.build(
|
414
399
|
dataset=dataset,
|
@@ -448,7 +433,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
448
433
|
Transformed dataset.
|
449
434
|
"""
|
450
435
|
super()._check_dataset_type(dataset)
|
451
|
-
inference_method="transform"
|
436
|
+
inference_method = "transform"
|
452
437
|
|
453
438
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
454
439
|
# are specific to the type of dataset used.
|
@@ -478,24 +463,19 @@ class RidgeClassifierCV(BaseTransformer):
|
|
478
463
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
479
464
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
480
465
|
|
481
|
-
self.
|
482
|
-
|
483
|
-
inference_method=inference_method,
|
484
|
-
)
|
466
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
467
|
+
self._deps = self._get_dependencies()
|
485
468
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
486
469
|
|
487
470
|
transform_kwargs = dict(
|
488
|
-
session
|
489
|
-
dependencies
|
490
|
-
drop_input_cols
|
491
|
-
expected_output_cols_type
|
471
|
+
session=dataset._session,
|
472
|
+
dependencies=self._deps,
|
473
|
+
drop_input_cols=self._drop_input_cols,
|
474
|
+
expected_output_cols_type=expected_dtype,
|
492
475
|
)
|
493
476
|
|
494
477
|
elif isinstance(dataset, pd.DataFrame):
|
495
|
-
transform_kwargs = dict(
|
496
|
-
snowpark_input_cols = self._snowpark_cols,
|
497
|
-
drop_input_cols = self._drop_input_cols
|
498
|
-
)
|
478
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
499
479
|
|
500
480
|
transform_handlers = ModelTransformerBuilder.build(
|
501
481
|
dataset=dataset,
|
@@ -514,7 +494,11 @@ class RidgeClassifierCV(BaseTransformer):
|
|
514
494
|
return output_df
|
515
495
|
|
516
496
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
517
|
-
def fit_predict(
|
497
|
+
def fit_predict(
|
498
|
+
self,
|
499
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
500
|
+
output_cols_prefix: str = "fit_predict_",
|
501
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
518
502
|
""" Method not supported for this class.
|
519
503
|
|
520
504
|
|
@@ -539,22 +523,104 @@ class RidgeClassifierCV(BaseTransformer):
|
|
539
523
|
)
|
540
524
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
541
525
|
drop_input_cols=self._drop_input_cols,
|
542
|
-
expected_output_cols_list=
|
526
|
+
expected_output_cols_list=(
|
527
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
528
|
+
),
|
543
529
|
)
|
544
530
|
self._sklearn_object = fitted_estimator
|
545
531
|
self._is_fitted = True
|
546
532
|
return output_result
|
547
533
|
|
534
|
+
|
535
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
536
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
537
|
+
""" Method not supported for this class.
|
538
|
+
|
548
539
|
|
549
|
-
|
550
|
-
|
551
|
-
|
540
|
+
Raises:
|
541
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
542
|
+
|
543
|
+
Args:
|
544
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
545
|
+
Snowpark or Pandas DataFrame.
|
546
|
+
output_cols_prefix: Prefix for the response columns
|
552
547
|
Returns:
|
553
548
|
Transformed dataset.
|
554
549
|
"""
|
555
|
-
self.
|
556
|
-
|
557
|
-
|
550
|
+
self._infer_input_output_cols(dataset)
|
551
|
+
super()._check_dataset_type(dataset)
|
552
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
553
|
+
estimator=self._sklearn_object,
|
554
|
+
dataset=dataset,
|
555
|
+
input_cols=self.input_cols,
|
556
|
+
label_cols=self.label_cols,
|
557
|
+
sample_weight_col=self.sample_weight_col,
|
558
|
+
autogenerated=self._autogenerated,
|
559
|
+
subproject=_SUBPROJECT,
|
560
|
+
)
|
561
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
562
|
+
drop_input_cols=self._drop_input_cols,
|
563
|
+
expected_output_cols_list=self.output_cols,
|
564
|
+
)
|
565
|
+
self._sklearn_object = fitted_estimator
|
566
|
+
self._is_fitted = True
|
567
|
+
return output_result
|
568
|
+
|
569
|
+
|
570
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
571
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
572
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
573
|
+
"""
|
574
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
575
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
576
|
+
if output_cols:
|
577
|
+
output_cols = [
|
578
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
579
|
+
for c in output_cols
|
580
|
+
]
|
581
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
582
|
+
output_cols = [output_cols_prefix]
|
583
|
+
elif self._sklearn_object is not None:
|
584
|
+
classes = self._sklearn_object.classes_
|
585
|
+
if isinstance(classes, numpy.ndarray):
|
586
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
587
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
588
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
589
|
+
output_cols = []
|
590
|
+
for i, cl in enumerate(classes):
|
591
|
+
# For binary classification, there is only one output column for each class
|
592
|
+
# ndarray as the two classes are complementary.
|
593
|
+
if len(cl) == 2:
|
594
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
595
|
+
else:
|
596
|
+
output_cols.extend([
|
597
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
598
|
+
])
|
599
|
+
else:
|
600
|
+
output_cols = []
|
601
|
+
|
602
|
+
# Make sure column names are valid snowflake identifiers.
|
603
|
+
assert output_cols is not None # Make MyPy happy
|
604
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
605
|
+
|
606
|
+
return rv
|
607
|
+
|
608
|
+
def _align_expected_output_names(
|
609
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
610
|
+
) -> List[str]:
|
611
|
+
# in case the inferred output column names dimension is different
|
612
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
613
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
614
|
+
output_df_columns = list(output_df_pd.columns)
|
615
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
616
|
+
if self.sample_weight_col:
|
617
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
618
|
+
# if the dimension of inferred output column names is correct; use it
|
619
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
620
|
+
return expected_output_cols_list
|
621
|
+
# otherwise, use the sklearn estimator's output
|
622
|
+
else:
|
623
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
558
624
|
|
559
625
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
560
626
|
@telemetry.send_api_usage_telemetry(
|
@@ -586,24 +652,26 @@ class RidgeClassifierCV(BaseTransformer):
|
|
586
652
|
# are specific to the type of dataset used.
|
587
653
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
588
654
|
|
655
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
656
|
+
|
589
657
|
if isinstance(dataset, DataFrame):
|
590
|
-
self.
|
591
|
-
|
592
|
-
|
593
|
-
|
594
|
-
|
658
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
659
|
+
self._deps = self._get_dependencies()
|
660
|
+
assert isinstance(
|
661
|
+
dataset._session, Session
|
662
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
595
663
|
transform_kwargs = dict(
|
596
664
|
session=dataset._session,
|
597
665
|
dependencies=self._deps,
|
598
|
-
drop_input_cols
|
666
|
+
drop_input_cols=self._drop_input_cols,
|
599
667
|
expected_output_cols_type="float",
|
600
668
|
)
|
669
|
+
expected_output_cols = self._align_expected_output_names(
|
670
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
671
|
+
)
|
601
672
|
|
602
673
|
elif isinstance(dataset, pd.DataFrame):
|
603
|
-
transform_kwargs = dict(
|
604
|
-
snowpark_input_cols = self._snowpark_cols,
|
605
|
-
drop_input_cols = self._drop_input_cols
|
606
|
-
)
|
674
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
607
675
|
|
608
676
|
transform_handlers = ModelTransformerBuilder.build(
|
609
677
|
dataset=dataset,
|
@@ -615,7 +683,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
615
683
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
616
684
|
inference_method=inference_method,
|
617
685
|
input_cols=self.input_cols,
|
618
|
-
expected_output_cols=
|
686
|
+
expected_output_cols=expected_output_cols,
|
619
687
|
**transform_kwargs
|
620
688
|
)
|
621
689
|
return output_df
|
@@ -645,29 +713,30 @@ class RidgeClassifierCV(BaseTransformer):
|
|
645
713
|
Output dataset with log probability of the sample for each class in the model.
|
646
714
|
"""
|
647
715
|
super()._check_dataset_type(dataset)
|
648
|
-
inference_method="predict_log_proba"
|
716
|
+
inference_method = "predict_log_proba"
|
717
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
649
718
|
|
650
719
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
651
720
|
# are specific to the type of dataset used.
|
652
721
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
653
722
|
|
654
723
|
if isinstance(dataset, DataFrame):
|
655
|
-
self.
|
656
|
-
|
657
|
-
|
658
|
-
|
659
|
-
|
724
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
725
|
+
self._deps = self._get_dependencies()
|
726
|
+
assert isinstance(
|
727
|
+
dataset._session, Session
|
728
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
660
729
|
transform_kwargs = dict(
|
661
730
|
session=dataset._session,
|
662
731
|
dependencies=self._deps,
|
663
|
-
drop_input_cols
|
732
|
+
drop_input_cols=self._drop_input_cols,
|
664
733
|
expected_output_cols_type="float",
|
665
734
|
)
|
735
|
+
expected_output_cols = self._align_expected_output_names(
|
736
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
737
|
+
)
|
666
738
|
elif isinstance(dataset, pd.DataFrame):
|
667
|
-
transform_kwargs = dict(
|
668
|
-
snowpark_input_cols = self._snowpark_cols,
|
669
|
-
drop_input_cols = self._drop_input_cols
|
670
|
-
)
|
739
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
671
740
|
|
672
741
|
transform_handlers = ModelTransformerBuilder.build(
|
673
742
|
dataset=dataset,
|
@@ -680,7 +749,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
680
749
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
681
750
|
inference_method=inference_method,
|
682
751
|
input_cols=self.input_cols,
|
683
|
-
expected_output_cols=
|
752
|
+
expected_output_cols=expected_output_cols,
|
684
753
|
**transform_kwargs
|
685
754
|
)
|
686
755
|
return output_df
|
@@ -708,30 +777,32 @@ class RidgeClassifierCV(BaseTransformer):
|
|
708
777
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
778
|
"""
|
710
779
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
780
|
+
inference_method = "decision_function"
|
712
781
|
|
713
782
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
783
|
# are specific to the type of dataset used.
|
715
784
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
785
|
|
786
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
787
|
+
|
717
788
|
if isinstance(dataset, DataFrame):
|
718
|
-
self.
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
789
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
790
|
+
self._deps = self._get_dependencies()
|
791
|
+
assert isinstance(
|
792
|
+
dataset._session, Session
|
793
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
794
|
transform_kwargs = dict(
|
724
795
|
session=dataset._session,
|
725
796
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
797
|
+
drop_input_cols=self._drop_input_cols,
|
727
798
|
expected_output_cols_type="float",
|
728
799
|
)
|
800
|
+
expected_output_cols = self._align_expected_output_names(
|
801
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
802
|
+
)
|
729
803
|
|
730
804
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
805
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
806
|
|
736
807
|
transform_handlers = ModelTransformerBuilder.build(
|
737
808
|
dataset=dataset,
|
@@ -744,7 +815,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
744
815
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
816
|
inference_method=inference_method,
|
746
817
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
818
|
+
expected_output_cols=expected_output_cols,
|
748
819
|
**transform_kwargs
|
749
820
|
)
|
750
821
|
return output_df
|
@@ -773,17 +844,17 @@ class RidgeClassifierCV(BaseTransformer):
|
|
773
844
|
Output dataset with probability of the sample for each class in the model.
|
774
845
|
"""
|
775
846
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
847
|
+
inference_method = "score_samples"
|
777
848
|
|
778
849
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
850
|
# are specific to the type of dataset used.
|
780
851
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
852
|
|
853
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
854
|
+
|
782
855
|
if isinstance(dataset, DataFrame):
|
783
|
-
self.
|
784
|
-
|
785
|
-
inference_method=inference_method,
|
786
|
-
)
|
856
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
857
|
+
self._deps = self._get_dependencies()
|
787
858
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
788
859
|
transform_kwargs = dict(
|
789
860
|
session=dataset._session,
|
@@ -791,6 +862,9 @@ class RidgeClassifierCV(BaseTransformer):
|
|
791
862
|
drop_input_cols = self._drop_input_cols,
|
792
863
|
expected_output_cols_type="float",
|
793
864
|
)
|
865
|
+
expected_output_cols = self._align_expected_output_names(
|
866
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
867
|
+
)
|
794
868
|
|
795
869
|
elif isinstance(dataset, pd.DataFrame):
|
796
870
|
transform_kwargs = dict(
|
@@ -809,7 +883,7 @@ class RidgeClassifierCV(BaseTransformer):
|
|
809
883
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
884
|
inference_method=inference_method,
|
811
885
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
886
|
+
expected_output_cols=expected_output_cols,
|
813
887
|
**transform_kwargs
|
814
888
|
)
|
815
889
|
return output_df
|
@@ -844,17 +918,15 @@ class RidgeClassifierCV(BaseTransformer):
|
|
844
918
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
845
919
|
|
846
920
|
if isinstance(dataset, DataFrame):
|
847
|
-
self.
|
848
|
-
|
849
|
-
inference_method="score",
|
850
|
-
)
|
921
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
922
|
+
self._deps = self._get_dependencies()
|
851
923
|
selected_cols = self._get_active_columns()
|
852
924
|
if len(selected_cols) > 0:
|
853
925
|
dataset = dataset.select(selected_cols)
|
854
926
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
855
927
|
transform_kwargs = dict(
|
856
928
|
session=dataset._session,
|
857
|
-
dependencies=
|
929
|
+
dependencies=self._deps,
|
858
930
|
score_sproc_imports=['sklearn'],
|
859
931
|
)
|
860
932
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -919,11 +991,8 @@ class RidgeClassifierCV(BaseTransformer):
|
|
919
991
|
|
920
992
|
if isinstance(dataset, DataFrame):
|
921
993
|
|
922
|
-
self.
|
923
|
-
|
924
|
-
inference_method=inference_method,
|
925
|
-
|
926
|
-
)
|
994
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
995
|
+
self._deps = self._get_dependencies()
|
927
996
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
928
997
|
transform_kwargs = dict(
|
929
998
|
session = dataset._session,
|
@@ -956,50 +1025,84 @@ class RidgeClassifierCV(BaseTransformer):
|
|
956
1025
|
)
|
957
1026
|
return output_df
|
958
1027
|
|
1028
|
+
|
1029
|
+
|
1030
|
+
def to_sklearn(self) -> Any:
|
1031
|
+
"""Get sklearn.linear_model.RidgeClassifierCV object.
|
1032
|
+
"""
|
1033
|
+
if self._sklearn_object is None:
|
1034
|
+
self._sklearn_object = self._create_sklearn_object()
|
1035
|
+
return self._sklearn_object
|
1036
|
+
|
1037
|
+
def to_xgboost(self) -> Any:
|
1038
|
+
raise exceptions.SnowflakeMLException(
|
1039
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
+
original_exception=AttributeError(
|
1041
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
+
"to_xgboost()",
|
1043
|
+
"to_sklearn()"
|
1044
|
+
)
|
1045
|
+
),
|
1046
|
+
)
|
1047
|
+
|
1048
|
+
def to_lightgbm(self) -> Any:
|
1049
|
+
raise exceptions.SnowflakeMLException(
|
1050
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
+
original_exception=AttributeError(
|
1052
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
+
"to_lightgbm()",
|
1054
|
+
"to_sklearn()"
|
1055
|
+
)
|
1056
|
+
),
|
1057
|
+
)
|
1058
|
+
|
1059
|
+
def _get_dependencies(self) -> List[str]:
|
1060
|
+
return self._deps
|
1061
|
+
|
959
1062
|
|
960
|
-
def
|
1063
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
961
1064
|
self._model_signature_dict = dict()
|
962
1065
|
|
963
1066
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
964
1067
|
|
965
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1068
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
966
1069
|
outputs: List[BaseFeatureSpec] = []
|
967
1070
|
if hasattr(self, "predict"):
|
968
1071
|
# keep mypy happy
|
969
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1072
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
970
1073
|
# For classifier, the type of predict is the same as the type of label
|
971
|
-
if self._sklearn_object._estimator_type ==
|
972
|
-
|
1074
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1075
|
+
# label columns is the desired type for output
|
973
1076
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
974
1077
|
# rename the output columns
|
975
1078
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
976
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
977
|
-
|
978
|
-
|
1079
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1080
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1081
|
+
)
|
979
1082
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
980
1083
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
981
|
-
# Clusterer returns int64 cluster labels.
|
1084
|
+
# Clusterer returns int64 cluster labels.
|
982
1085
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
983
1086
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
984
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
985
|
-
|
986
|
-
|
987
|
-
|
1087
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1088
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1089
|
+
)
|
1090
|
+
|
988
1091
|
# For regressor, the type of predict is float64
|
989
|
-
elif self._sklearn_object._estimator_type ==
|
1092
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
990
1093
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
991
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
992
|
-
|
993
|
-
|
994
|
-
|
1094
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
1097
|
+
|
995
1098
|
for prob_func in PROB_FUNCTIONS:
|
996
1099
|
if hasattr(self, prob_func):
|
997
1100
|
output_cols_prefix: str = f"{prob_func}_"
|
998
1101
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
999
1102
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1000
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1001
|
-
|
1002
|
-
|
1103
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1104
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1105
|
+
)
|
1003
1106
|
|
1004
1107
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1005
1108
|
items = list(self._model_signature_dict.items())
|
@@ -1012,10 +1115,10 @@ class RidgeClassifierCV(BaseTransformer):
|
|
1012
1115
|
"""Returns model signature of current class.
|
1013
1116
|
|
1014
1117
|
Raises:
|
1015
|
-
|
1118
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1016
1119
|
|
1017
1120
|
Returns:
|
1018
|
-
Dict
|
1121
|
+
Dict with each method and its input output signature
|
1019
1122
|
"""
|
1020
1123
|
if self._model_signature_dict is None:
|
1021
1124
|
raise exceptions.SnowflakeMLException(
|
@@ -1023,35 +1126,3 @@ class RidgeClassifierCV(BaseTransformer):
|
|
1023
1126
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1024
1127
|
)
|
1025
1128
|
return self._model_signature_dict
|
1026
|
-
|
1027
|
-
def to_sklearn(self) -> Any:
|
1028
|
-
"""Get sklearn.linear_model.RidgeClassifierCV object.
|
1029
|
-
"""
|
1030
|
-
if self._sklearn_object is None:
|
1031
|
-
self._sklearn_object = self._create_sklearn_object()
|
1032
|
-
return self._sklearn_object
|
1033
|
-
|
1034
|
-
def to_xgboost(self) -> Any:
|
1035
|
-
raise exceptions.SnowflakeMLException(
|
1036
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1037
|
-
original_exception=AttributeError(
|
1038
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1039
|
-
"to_xgboost()",
|
1040
|
-
"to_sklearn()"
|
1041
|
-
)
|
1042
|
-
),
|
1043
|
-
)
|
1044
|
-
|
1045
|
-
def to_lightgbm(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_lightgbm()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def _get_dependencies(self) -> List[str]:
|
1057
|
-
return self._deps
|