snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RidgeClassifierCV(BaseTransformer):
71
64
  r"""Ridge classifier with built-in cross-validation
72
65
  For more details on this class, see [sklearn.linear_model.RidgeClassifierCV]
@@ -248,12 +241,7 @@ class RidgeClassifierCV(BaseTransformer):
248
241
  )
249
242
  return selected_cols
250
243
 
251
- @telemetry.send_api_usage_telemetry(
252
- project=_PROJECT,
253
- subproject=_SUBPROJECT,
254
- custom_tags=dict([("autogen", True)]),
255
- )
256
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
244
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RidgeClassifierCV":
257
245
  """Fit Ridge classifier with cv
258
246
  For more details on this function, see [sklearn.linear_model.RidgeClassifierCV.fit]
259
247
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifierCV.html#sklearn.linear_model.RidgeClassifierCV.fit)
@@ -280,12 +268,14 @@ class RidgeClassifierCV(BaseTransformer):
280
268
 
281
269
  self._snowpark_cols = dataset.select(self.input_cols).columns
282
270
 
283
- # If we are already in a stored procedure, no need to kick off another one.
271
+ # If we are already in a stored procedure, no need to kick off another one.
284
272
  if SNOWML_SPROC_ENV in os.environ:
285
273
  statement_params = telemetry.get_function_usage_statement_params(
286
274
  project=_PROJECT,
287
275
  subproject=_SUBPROJECT,
288
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RidgeClassifierCV.__class__.__name__),
276
+ function_name=telemetry.get_statement_params_full_func_name(
277
+ inspect.currentframe(), RidgeClassifierCV.__class__.__name__
278
+ ),
289
279
  api_calls=[Session.call],
290
280
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
291
281
  )
@@ -306,27 +296,24 @@ class RidgeClassifierCV(BaseTransformer):
306
296
  )
307
297
  self._sklearn_object = model_trainer.train()
308
298
  self._is_fitted = True
309
- self._get_model_signatures(dataset)
299
+ self._generate_model_signatures(dataset)
310
300
  return self
311
301
 
312
302
  def _batch_inference_validate_snowpark(
313
303
  self,
314
304
  dataset: DataFrame,
315
305
  inference_method: str,
316
- ) -> List[str]:
317
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
318
- return the available package that exists in the snowflake anaconda channel
306
+ ) -> None:
307
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
319
308
 
320
309
  Args:
321
310
  dataset: snowpark dataframe
322
311
  inference_method: the inference method such as predict, score...
323
-
312
+
324
313
  Raises:
325
314
  SnowflakeMLException: If the estimator is not fitted, raise error
326
315
  SnowflakeMLException: If the session is None, raise error
327
316
 
328
- Returns:
329
- A list of available package that exists in the snowflake anaconda channel
330
317
  """
331
318
  if not self._is_fitted:
332
319
  raise exceptions.SnowflakeMLException(
@@ -344,9 +331,7 @@ class RidgeClassifierCV(BaseTransformer):
344
331
  "Session must not specified for snowpark dataset."
345
332
  ),
346
333
  )
347
- # Validate that key package version in user workspace are supported in snowflake conda channel
348
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
349
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
334
+
350
335
 
351
336
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
352
337
  @telemetry.send_api_usage_telemetry(
@@ -382,7 +367,9 @@ class RidgeClassifierCV(BaseTransformer):
382
367
  # when it is classifier, infer the datatype from label columns
383
368
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
384
369
  # Batch inference takes a single expected output column type. Use the first columns type for now.
385
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
370
+ label_cols_signatures = [
371
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
372
+ ]
386
373
  if len(label_cols_signatures) == 0:
387
374
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
388
375
  raise exceptions.SnowflakeMLException(
@@ -390,25 +377,23 @@ class RidgeClassifierCV(BaseTransformer):
390
377
  original_exception=ValueError(error_str),
391
378
  )
392
379
 
393
- expected_type_inferred = convert_sp_to_sf_type(
394
- label_cols_signatures[0].as_snowpark_type()
395
- )
380
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
396
381
 
397
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
382
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
+ self._deps = self._get_dependencies()
384
+ assert isinstance(
385
+ dataset._session, Session
386
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
387
 
400
388
  transform_kwargs = dict(
401
- session = dataset._session,
402
- dependencies = self._deps,
403
- drop_input_cols = self._drop_input_cols,
404
- expected_output_cols_type = expected_type_inferred,
389
+ session=dataset._session,
390
+ dependencies=self._deps,
391
+ drop_input_cols=self._drop_input_cols,
392
+ expected_output_cols_type=expected_type_inferred,
405
393
  )
406
394
 
407
395
  elif isinstance(dataset, pd.DataFrame):
408
- transform_kwargs = dict(
409
- snowpark_input_cols = self._snowpark_cols,
410
- drop_input_cols = self._drop_input_cols
411
- )
396
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
412
397
 
413
398
  transform_handlers = ModelTransformerBuilder.build(
414
399
  dataset=dataset,
@@ -448,7 +433,7 @@ class RidgeClassifierCV(BaseTransformer):
448
433
  Transformed dataset.
449
434
  """
450
435
  super()._check_dataset_type(dataset)
451
- inference_method="transform"
436
+ inference_method = "transform"
452
437
 
453
438
  # This dictionary contains optional kwargs for batch inference. These kwargs
454
439
  # are specific to the type of dataset used.
@@ -478,24 +463,19 @@ class RidgeClassifierCV(BaseTransformer):
478
463
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
479
464
  expected_dtype = convert_sp_to_sf_type(output_types[0])
480
465
 
481
- self._deps = self._batch_inference_validate_snowpark(
482
- dataset=dataset,
483
- inference_method=inference_method,
484
- )
466
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
467
+ self._deps = self._get_dependencies()
485
468
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
486
469
 
487
470
  transform_kwargs = dict(
488
- session = dataset._session,
489
- dependencies = self._deps,
490
- drop_input_cols = self._drop_input_cols,
491
- expected_output_cols_type = expected_dtype,
471
+ session=dataset._session,
472
+ dependencies=self._deps,
473
+ drop_input_cols=self._drop_input_cols,
474
+ expected_output_cols_type=expected_dtype,
492
475
  )
493
476
 
494
477
  elif isinstance(dataset, pd.DataFrame):
495
- transform_kwargs = dict(
496
- snowpark_input_cols = self._snowpark_cols,
497
- drop_input_cols = self._drop_input_cols
498
- )
478
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
499
479
 
500
480
  transform_handlers = ModelTransformerBuilder.build(
501
481
  dataset=dataset,
@@ -514,7 +494,11 @@ class RidgeClassifierCV(BaseTransformer):
514
494
  return output_df
515
495
 
516
496
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
517
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
497
+ def fit_predict(
498
+ self,
499
+ dataset: Union[DataFrame, pd.DataFrame],
500
+ output_cols_prefix: str = "fit_predict_",
501
+ ) -> Union[DataFrame, pd.DataFrame]:
518
502
  """ Method not supported for this class.
519
503
 
520
504
 
@@ -539,22 +523,104 @@ class RidgeClassifierCV(BaseTransformer):
539
523
  )
540
524
  output_result, fitted_estimator = model_trainer.train_fit_predict(
541
525
  drop_input_cols=self._drop_input_cols,
542
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
526
+ expected_output_cols_list=(
527
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
528
+ ),
543
529
  )
544
530
  self._sklearn_object = fitted_estimator
545
531
  self._is_fitted = True
546
532
  return output_result
547
533
 
534
+
535
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
536
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
537
+ """ Method not supported for this class.
538
+
548
539
 
549
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
550
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
551
- """
540
+ Raises:
541
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
542
+
543
+ Args:
544
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
545
+ Snowpark or Pandas DataFrame.
546
+ output_cols_prefix: Prefix for the response columns
552
547
  Returns:
553
548
  Transformed dataset.
554
549
  """
555
- self.fit(dataset)
556
- assert self._sklearn_object is not None
557
- return self._sklearn_object.embedding_
550
+ self._infer_input_output_cols(dataset)
551
+ super()._check_dataset_type(dataset)
552
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
553
+ estimator=self._sklearn_object,
554
+ dataset=dataset,
555
+ input_cols=self.input_cols,
556
+ label_cols=self.label_cols,
557
+ sample_weight_col=self.sample_weight_col,
558
+ autogenerated=self._autogenerated,
559
+ subproject=_SUBPROJECT,
560
+ )
561
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
562
+ drop_input_cols=self._drop_input_cols,
563
+ expected_output_cols_list=self.output_cols,
564
+ )
565
+ self._sklearn_object = fitted_estimator
566
+ self._is_fitted = True
567
+ return output_result
568
+
569
+
570
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
571
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
572
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
573
+ """
574
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
575
+ # The following condition is introduced for kneighbors methods, and not used in other methods
576
+ if output_cols:
577
+ output_cols = [
578
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
579
+ for c in output_cols
580
+ ]
581
+ elif getattr(self._sklearn_object, "classes_", None) is None:
582
+ output_cols = [output_cols_prefix]
583
+ elif self._sklearn_object is not None:
584
+ classes = self._sklearn_object.classes_
585
+ if isinstance(classes, numpy.ndarray):
586
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
587
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
588
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
589
+ output_cols = []
590
+ for i, cl in enumerate(classes):
591
+ # For binary classification, there is only one output column for each class
592
+ # ndarray as the two classes are complementary.
593
+ if len(cl) == 2:
594
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
595
+ else:
596
+ output_cols.extend([
597
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
598
+ ])
599
+ else:
600
+ output_cols = []
601
+
602
+ # Make sure column names are valid snowflake identifiers.
603
+ assert output_cols is not None # Make MyPy happy
604
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
605
+
606
+ return rv
607
+
608
+ def _align_expected_output_names(
609
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
610
+ ) -> List[str]:
611
+ # in case the inferred output column names dimension is different
612
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
613
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
614
+ output_df_columns = list(output_df_pd.columns)
615
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
616
+ if self.sample_weight_col:
617
+ output_df_columns_set -= set(self.sample_weight_col)
618
+ # if the dimension of inferred output column names is correct; use it
619
+ if len(expected_output_cols_list) == len(output_df_columns_set):
620
+ return expected_output_cols_list
621
+ # otherwise, use the sklearn estimator's output
622
+ else:
623
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
558
624
 
559
625
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
560
626
  @telemetry.send_api_usage_telemetry(
@@ -586,24 +652,26 @@ class RidgeClassifierCV(BaseTransformer):
586
652
  # are specific to the type of dataset used.
587
653
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
588
654
 
655
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
656
+
589
657
  if isinstance(dataset, DataFrame):
590
- self._deps = self._batch_inference_validate_snowpark(
591
- dataset=dataset,
592
- inference_method=inference_method,
593
- )
594
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
658
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
659
+ self._deps = self._get_dependencies()
660
+ assert isinstance(
661
+ dataset._session, Session
662
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
595
663
  transform_kwargs = dict(
596
664
  session=dataset._session,
597
665
  dependencies=self._deps,
598
- drop_input_cols = self._drop_input_cols,
666
+ drop_input_cols=self._drop_input_cols,
599
667
  expected_output_cols_type="float",
600
668
  )
669
+ expected_output_cols = self._align_expected_output_names(
670
+ inference_method, dataset, expected_output_cols, output_cols_prefix
671
+ )
601
672
 
602
673
  elif isinstance(dataset, pd.DataFrame):
603
- transform_kwargs = dict(
604
- snowpark_input_cols = self._snowpark_cols,
605
- drop_input_cols = self._drop_input_cols
606
- )
674
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
607
675
 
608
676
  transform_handlers = ModelTransformerBuilder.build(
609
677
  dataset=dataset,
@@ -615,7 +683,7 @@ class RidgeClassifierCV(BaseTransformer):
615
683
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
616
684
  inference_method=inference_method,
617
685
  input_cols=self.input_cols,
618
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
686
+ expected_output_cols=expected_output_cols,
619
687
  **transform_kwargs
620
688
  )
621
689
  return output_df
@@ -645,29 +713,30 @@ class RidgeClassifierCV(BaseTransformer):
645
713
  Output dataset with log probability of the sample for each class in the model.
646
714
  """
647
715
  super()._check_dataset_type(dataset)
648
- inference_method="predict_log_proba"
716
+ inference_method = "predict_log_proba"
717
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
649
718
 
650
719
  # This dictionary contains optional kwargs for batch inference. These kwargs
651
720
  # are specific to the type of dataset used.
652
721
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
653
722
 
654
723
  if isinstance(dataset, DataFrame):
655
- self._deps = self._batch_inference_validate_snowpark(
656
- dataset=dataset,
657
- inference_method=inference_method,
658
- )
659
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
724
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
725
+ self._deps = self._get_dependencies()
726
+ assert isinstance(
727
+ dataset._session, Session
728
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
729
  transform_kwargs = dict(
661
730
  session=dataset._session,
662
731
  dependencies=self._deps,
663
- drop_input_cols = self._drop_input_cols,
732
+ drop_input_cols=self._drop_input_cols,
664
733
  expected_output_cols_type="float",
665
734
  )
735
+ expected_output_cols = self._align_expected_output_names(
736
+ inference_method, dataset, expected_output_cols, output_cols_prefix
737
+ )
666
738
  elif isinstance(dataset, pd.DataFrame):
667
- transform_kwargs = dict(
668
- snowpark_input_cols = self._snowpark_cols,
669
- drop_input_cols = self._drop_input_cols
670
- )
739
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
671
740
 
672
741
  transform_handlers = ModelTransformerBuilder.build(
673
742
  dataset=dataset,
@@ -680,7 +749,7 @@ class RidgeClassifierCV(BaseTransformer):
680
749
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
681
750
  inference_method=inference_method,
682
751
  input_cols=self.input_cols,
683
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
752
+ expected_output_cols=expected_output_cols,
684
753
  **transform_kwargs
685
754
  )
686
755
  return output_df
@@ -708,30 +777,32 @@ class RidgeClassifierCV(BaseTransformer):
708
777
  Output dataset with results of the decision function for the samples in input dataset.
709
778
  """
710
779
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
780
+ inference_method = "decision_function"
712
781
 
713
782
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
783
  # are specific to the type of dataset used.
715
784
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
785
 
786
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
787
+
717
788
  if isinstance(dataset, DataFrame):
718
- self._deps = self._batch_inference_validate_snowpark(
719
- dataset=dataset,
720
- inference_method=inference_method,
721
- )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
789
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
790
+ self._deps = self._get_dependencies()
791
+ assert isinstance(
792
+ dataset._session, Session
793
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
794
  transform_kwargs = dict(
724
795
  session=dataset._session,
725
796
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
797
+ drop_input_cols=self._drop_input_cols,
727
798
  expected_output_cols_type="float",
728
799
  )
800
+ expected_output_cols = self._align_expected_output_names(
801
+ inference_method, dataset, expected_output_cols, output_cols_prefix
802
+ )
729
803
 
730
804
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
805
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
806
 
736
807
  transform_handlers = ModelTransformerBuilder.build(
737
808
  dataset=dataset,
@@ -744,7 +815,7 @@ class RidgeClassifierCV(BaseTransformer):
744
815
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
816
  inference_method=inference_method,
746
817
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
818
+ expected_output_cols=expected_output_cols,
748
819
  **transform_kwargs
749
820
  )
750
821
  return output_df
@@ -773,17 +844,17 @@ class RidgeClassifierCV(BaseTransformer):
773
844
  Output dataset with probability of the sample for each class in the model.
774
845
  """
775
846
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
847
+ inference_method = "score_samples"
777
848
 
778
849
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
850
  # are specific to the type of dataset used.
780
851
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
852
 
853
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
854
+
782
855
  if isinstance(dataset, DataFrame):
783
- self._deps = self._batch_inference_validate_snowpark(
784
- dataset=dataset,
785
- inference_method=inference_method,
786
- )
856
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
857
+ self._deps = self._get_dependencies()
787
858
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
859
  transform_kwargs = dict(
789
860
  session=dataset._session,
@@ -791,6 +862,9 @@ class RidgeClassifierCV(BaseTransformer):
791
862
  drop_input_cols = self._drop_input_cols,
792
863
  expected_output_cols_type="float",
793
864
  )
865
+ expected_output_cols = self._align_expected_output_names(
866
+ inference_method, dataset, expected_output_cols, output_cols_prefix
867
+ )
794
868
 
795
869
  elif isinstance(dataset, pd.DataFrame):
796
870
  transform_kwargs = dict(
@@ -809,7 +883,7 @@ class RidgeClassifierCV(BaseTransformer):
809
883
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
884
  inference_method=inference_method,
811
885
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
886
+ expected_output_cols=expected_output_cols,
813
887
  **transform_kwargs
814
888
  )
815
889
  return output_df
@@ -844,17 +918,15 @@ class RidgeClassifierCV(BaseTransformer):
844
918
  transform_kwargs: ScoreKwargsTypedDict = dict()
845
919
 
846
920
  if isinstance(dataset, DataFrame):
847
- self._deps = self._batch_inference_validate_snowpark(
848
- dataset=dataset,
849
- inference_method="score",
850
- )
921
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
922
+ self._deps = self._get_dependencies()
851
923
  selected_cols = self._get_active_columns()
852
924
  if len(selected_cols) > 0:
853
925
  dataset = dataset.select(selected_cols)
854
926
  assert isinstance(dataset._session, Session) # keep mypy happy
855
927
  transform_kwargs = dict(
856
928
  session=dataset._session,
857
- dependencies=["snowflake-snowpark-python"] + self._deps,
929
+ dependencies=self._deps,
858
930
  score_sproc_imports=['sklearn'],
859
931
  )
860
932
  elif isinstance(dataset, pd.DataFrame):
@@ -919,11 +991,8 @@ class RidgeClassifierCV(BaseTransformer):
919
991
 
920
992
  if isinstance(dataset, DataFrame):
921
993
 
922
- self._deps = self._batch_inference_validate_snowpark(
923
- dataset=dataset,
924
- inference_method=inference_method,
925
-
926
- )
994
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
995
+ self._deps = self._get_dependencies()
927
996
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
928
997
  transform_kwargs = dict(
929
998
  session = dataset._session,
@@ -956,50 +1025,84 @@ class RidgeClassifierCV(BaseTransformer):
956
1025
  )
957
1026
  return output_df
958
1027
 
1028
+
1029
+
1030
+ def to_sklearn(self) -> Any:
1031
+ """Get sklearn.linear_model.RidgeClassifierCV object.
1032
+ """
1033
+ if self._sklearn_object is None:
1034
+ self._sklearn_object = self._create_sklearn_object()
1035
+ return self._sklearn_object
1036
+
1037
+ def to_xgboost(self) -> Any:
1038
+ raise exceptions.SnowflakeMLException(
1039
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1040
+ original_exception=AttributeError(
1041
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
+ "to_xgboost()",
1043
+ "to_sklearn()"
1044
+ )
1045
+ ),
1046
+ )
1047
+
1048
+ def to_lightgbm(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_lightgbm()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
1058
+
1059
+ def _get_dependencies(self) -> List[str]:
1060
+ return self._deps
1061
+
959
1062
 
960
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1063
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
961
1064
  self._model_signature_dict = dict()
962
1065
 
963
1066
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
964
1067
 
965
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1068
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
966
1069
  outputs: List[BaseFeatureSpec] = []
967
1070
  if hasattr(self, "predict"):
968
1071
  # keep mypy happy
969
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1072
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
970
1073
  # For classifier, the type of predict is the same as the type of label
971
- if self._sklearn_object._estimator_type == 'classifier':
972
- # label columns is the desired type for output
1074
+ if self._sklearn_object._estimator_type == "classifier":
1075
+ # label columns is the desired type for output
973
1076
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
974
1077
  # rename the output columns
975
1078
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
1079
+ self._model_signature_dict["predict"] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
979
1082
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
980
1083
  # For outlier models, returns -1 for outliers and 1 for inliers.
981
- # Clusterer returns int64 cluster labels.
1084
+ # Clusterer returns int64 cluster labels.
982
1085
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
983
1086
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
987
-
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
1090
+
988
1091
  # For regressor, the type of predict is float64
989
- elif self._sklearn_object._estimator_type == 'regressor':
1092
+ elif self._sklearn_object._estimator_type == "regressor":
990
1093
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
991
- self._model_signature_dict["predict"] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
994
-
1094
+ self._model_signature_dict["predict"] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
1097
+
995
1098
  for prob_func in PROB_FUNCTIONS:
996
1099
  if hasattr(self, prob_func):
997
1100
  output_cols_prefix: str = f"{prob_func}_"
998
1101
  output_column_names = self._get_output_column_names(output_cols_prefix)
999
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1000
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1001
- ([] if self._drop_input_cols else inputs)
1002
- + outputs)
1103
+ self._model_signature_dict[prob_func] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1003
1106
 
1004
1107
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1005
1108
  items = list(self._model_signature_dict.items())
@@ -1012,10 +1115,10 @@ class RidgeClassifierCV(BaseTransformer):
1012
1115
  """Returns model signature of current class.
1013
1116
 
1014
1117
  Raises:
1015
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1118
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1016
1119
 
1017
1120
  Returns:
1018
- Dict[str, ModelSignature]: each method and its input output signature
1121
+ Dict with each method and its input output signature
1019
1122
  """
1020
1123
  if self._model_signature_dict is None:
1021
1124
  raise exceptions.SnowflakeMLException(
@@ -1023,35 +1126,3 @@ class RidgeClassifierCV(BaseTransformer):
1023
1126
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1024
1127
  )
1025
1128
  return self._model_signature_dict
1026
-
1027
- def to_sklearn(self) -> Any:
1028
- """Get sklearn.linear_model.RidgeClassifierCV object.
1029
- """
1030
- if self._sklearn_object is None:
1031
- self._sklearn_object = self._create_sklearn_object()
1032
- return self._sklearn_object
1033
-
1034
- def to_xgboost(self) -> Any:
1035
- raise exceptions.SnowflakeMLException(
1036
- error_code=error_codes.METHOD_NOT_ALLOWED,
1037
- original_exception=AttributeError(
1038
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1039
- "to_xgboost()",
1040
- "to_sklearn()"
1041
- )
1042
- ),
1043
- )
1044
-
1045
- def to_lightgbm(self) -> Any:
1046
- raise exceptions.SnowflakeMLException(
1047
- error_code=error_codes.METHOD_NOT_ALLOWED,
1048
- original_exception=AttributeError(
1049
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1050
- "to_lightgbm()",
1051
- "to_sklearn()"
1052
- )
1053
- ),
1054
- )
1055
-
1056
- def _get_dependencies(self) -> List[str]:
1057
- return self._deps