snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class VotingRegressor(BaseTransformer):
|
71
64
|
r"""Prediction voting regressor for unfitted estimators
|
72
65
|
For more details on this class, see [sklearn.ensemble.VotingRegressor]
|
@@ -219,12 +212,7 @@ class VotingRegressor(BaseTransformer):
|
|
219
212
|
)
|
220
213
|
return selected_cols
|
221
214
|
|
222
|
-
|
223
|
-
project=_PROJECT,
|
224
|
-
subproject=_SUBPROJECT,
|
225
|
-
custom_tags=dict([("autogen", True)]),
|
226
|
-
)
|
227
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingRegressor":
|
215
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingRegressor":
|
228
216
|
"""Fit the estimators
|
229
217
|
For more details on this function, see [sklearn.ensemble.VotingRegressor.fit]
|
230
218
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html#sklearn.ensemble.VotingRegressor.fit)
|
@@ -251,12 +239,14 @@ class VotingRegressor(BaseTransformer):
|
|
251
239
|
|
252
240
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
253
241
|
|
254
|
-
|
242
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
255
243
|
if SNOWML_SPROC_ENV in os.environ:
|
256
244
|
statement_params = telemetry.get_function_usage_statement_params(
|
257
245
|
project=_PROJECT,
|
258
246
|
subproject=_SUBPROJECT,
|
259
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
247
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
248
|
+
inspect.currentframe(), VotingRegressor.__class__.__name__
|
249
|
+
),
|
260
250
|
api_calls=[Session.call],
|
261
251
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
262
252
|
)
|
@@ -277,27 +267,24 @@ class VotingRegressor(BaseTransformer):
|
|
277
267
|
)
|
278
268
|
self._sklearn_object = model_trainer.train()
|
279
269
|
self._is_fitted = True
|
280
|
-
self.
|
270
|
+
self._generate_model_signatures(dataset)
|
281
271
|
return self
|
282
272
|
|
283
273
|
def _batch_inference_validate_snowpark(
|
284
274
|
self,
|
285
275
|
dataset: DataFrame,
|
286
276
|
inference_method: str,
|
287
|
-
) ->
|
288
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
289
|
-
return the available package that exists in the snowflake anaconda channel
|
277
|
+
) -> None:
|
278
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
290
279
|
|
291
280
|
Args:
|
292
281
|
dataset: snowpark dataframe
|
293
282
|
inference_method: the inference method such as predict, score...
|
294
|
-
|
283
|
+
|
295
284
|
Raises:
|
296
285
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
297
286
|
SnowflakeMLException: If the session is None, raise error
|
298
287
|
|
299
|
-
Returns:
|
300
|
-
A list of available package that exists in the snowflake anaconda channel
|
301
288
|
"""
|
302
289
|
if not self._is_fitted:
|
303
290
|
raise exceptions.SnowflakeMLException(
|
@@ -315,9 +302,7 @@ class VotingRegressor(BaseTransformer):
|
|
315
302
|
"Session must not specified for snowpark dataset."
|
316
303
|
),
|
317
304
|
)
|
318
|
-
|
319
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
320
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
305
|
+
|
321
306
|
|
322
307
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
323
308
|
@telemetry.send_api_usage_telemetry(
|
@@ -353,7 +338,9 @@ class VotingRegressor(BaseTransformer):
|
|
353
338
|
# when it is classifier, infer the datatype from label columns
|
354
339
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
355
340
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
356
|
-
label_cols_signatures = [
|
341
|
+
label_cols_signatures = [
|
342
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
343
|
+
]
|
357
344
|
if len(label_cols_signatures) == 0:
|
358
345
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
359
346
|
raise exceptions.SnowflakeMLException(
|
@@ -361,25 +348,23 @@ class VotingRegressor(BaseTransformer):
|
|
361
348
|
original_exception=ValueError(error_str),
|
362
349
|
)
|
363
350
|
|
364
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
365
|
-
label_cols_signatures[0].as_snowpark_type()
|
366
|
-
)
|
351
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
367
352
|
|
368
|
-
self.
|
369
|
-
|
353
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
354
|
+
self._deps = self._get_dependencies()
|
355
|
+
assert isinstance(
|
356
|
+
dataset._session, Session
|
357
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
370
358
|
|
371
359
|
transform_kwargs = dict(
|
372
|
-
session
|
373
|
-
dependencies
|
374
|
-
drop_input_cols
|
375
|
-
expected_output_cols_type
|
360
|
+
session=dataset._session,
|
361
|
+
dependencies=self._deps,
|
362
|
+
drop_input_cols=self._drop_input_cols,
|
363
|
+
expected_output_cols_type=expected_type_inferred,
|
376
364
|
)
|
377
365
|
|
378
366
|
elif isinstance(dataset, pd.DataFrame):
|
379
|
-
transform_kwargs = dict(
|
380
|
-
snowpark_input_cols = self._snowpark_cols,
|
381
|
-
drop_input_cols = self._drop_input_cols
|
382
|
-
)
|
367
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
383
368
|
|
384
369
|
transform_handlers = ModelTransformerBuilder.build(
|
385
370
|
dataset=dataset,
|
@@ -421,7 +406,7 @@ class VotingRegressor(BaseTransformer):
|
|
421
406
|
Transformed dataset.
|
422
407
|
"""
|
423
408
|
super()._check_dataset_type(dataset)
|
424
|
-
inference_method="transform"
|
409
|
+
inference_method = "transform"
|
425
410
|
|
426
411
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
427
412
|
# are specific to the type of dataset used.
|
@@ -451,24 +436,19 @@ class VotingRegressor(BaseTransformer):
|
|
451
436
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
452
437
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
453
438
|
|
454
|
-
self.
|
455
|
-
|
456
|
-
inference_method=inference_method,
|
457
|
-
)
|
439
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
440
|
+
self._deps = self._get_dependencies()
|
458
441
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
459
442
|
|
460
443
|
transform_kwargs = dict(
|
461
|
-
session
|
462
|
-
dependencies
|
463
|
-
drop_input_cols
|
464
|
-
expected_output_cols_type
|
444
|
+
session=dataset._session,
|
445
|
+
dependencies=self._deps,
|
446
|
+
drop_input_cols=self._drop_input_cols,
|
447
|
+
expected_output_cols_type=expected_dtype,
|
465
448
|
)
|
466
449
|
|
467
450
|
elif isinstance(dataset, pd.DataFrame):
|
468
|
-
transform_kwargs = dict(
|
469
|
-
snowpark_input_cols = self._snowpark_cols,
|
470
|
-
drop_input_cols = self._drop_input_cols
|
471
|
-
)
|
451
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
472
452
|
|
473
453
|
transform_handlers = ModelTransformerBuilder.build(
|
474
454
|
dataset=dataset,
|
@@ -487,7 +467,11 @@ class VotingRegressor(BaseTransformer):
|
|
487
467
|
return output_df
|
488
468
|
|
489
469
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
490
|
-
def fit_predict(
|
470
|
+
def fit_predict(
|
471
|
+
self,
|
472
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
473
|
+
output_cols_prefix: str = "fit_predict_",
|
474
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
491
475
|
""" Method not supported for this class.
|
492
476
|
|
493
477
|
|
@@ -512,22 +496,106 @@ class VotingRegressor(BaseTransformer):
|
|
512
496
|
)
|
513
497
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
514
498
|
drop_input_cols=self._drop_input_cols,
|
515
|
-
expected_output_cols_list=
|
499
|
+
expected_output_cols_list=(
|
500
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
501
|
+
),
|
516
502
|
)
|
517
503
|
self._sklearn_object = fitted_estimator
|
518
504
|
self._is_fitted = True
|
519
505
|
return output_result
|
520
506
|
|
507
|
+
|
508
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
509
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
510
|
+
""" Return class labels or probabilities for each estimator
|
511
|
+
For more details on this function, see [sklearn.ensemble.VotingRegressor.fit_transform]
|
512
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingRegressor.html#sklearn.ensemble.VotingRegressor.fit_transform)
|
513
|
+
|
514
|
+
|
515
|
+
Raises:
|
516
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
521
517
|
|
522
|
-
|
523
|
-
|
524
|
-
|
518
|
+
Args:
|
519
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
520
|
+
Snowpark or Pandas DataFrame.
|
521
|
+
output_cols_prefix: Prefix for the response columns
|
525
522
|
Returns:
|
526
523
|
Transformed dataset.
|
527
524
|
"""
|
528
|
-
self.
|
529
|
-
|
530
|
-
|
525
|
+
self._infer_input_output_cols(dataset)
|
526
|
+
super()._check_dataset_type(dataset)
|
527
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
528
|
+
estimator=self._sklearn_object,
|
529
|
+
dataset=dataset,
|
530
|
+
input_cols=self.input_cols,
|
531
|
+
label_cols=self.label_cols,
|
532
|
+
sample_weight_col=self.sample_weight_col,
|
533
|
+
autogenerated=self._autogenerated,
|
534
|
+
subproject=_SUBPROJECT,
|
535
|
+
)
|
536
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
537
|
+
drop_input_cols=self._drop_input_cols,
|
538
|
+
expected_output_cols_list=self.output_cols,
|
539
|
+
)
|
540
|
+
self._sklearn_object = fitted_estimator
|
541
|
+
self._is_fitted = True
|
542
|
+
return output_result
|
543
|
+
|
544
|
+
|
545
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
546
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
547
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
548
|
+
"""
|
549
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
550
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
551
|
+
if output_cols:
|
552
|
+
output_cols = [
|
553
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
554
|
+
for c in output_cols
|
555
|
+
]
|
556
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
557
|
+
output_cols = [output_cols_prefix]
|
558
|
+
elif self._sklearn_object is not None:
|
559
|
+
classes = self._sklearn_object.classes_
|
560
|
+
if isinstance(classes, numpy.ndarray):
|
561
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
562
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
563
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
564
|
+
output_cols = []
|
565
|
+
for i, cl in enumerate(classes):
|
566
|
+
# For binary classification, there is only one output column for each class
|
567
|
+
# ndarray as the two classes are complementary.
|
568
|
+
if len(cl) == 2:
|
569
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
570
|
+
else:
|
571
|
+
output_cols.extend([
|
572
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
573
|
+
])
|
574
|
+
else:
|
575
|
+
output_cols = []
|
576
|
+
|
577
|
+
# Make sure column names are valid snowflake identifiers.
|
578
|
+
assert output_cols is not None # Make MyPy happy
|
579
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
580
|
+
|
581
|
+
return rv
|
582
|
+
|
583
|
+
def _align_expected_output_names(
|
584
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
585
|
+
) -> List[str]:
|
586
|
+
# in case the inferred output column names dimension is different
|
587
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
588
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
589
|
+
output_df_columns = list(output_df_pd.columns)
|
590
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
591
|
+
if self.sample_weight_col:
|
592
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
593
|
+
# if the dimension of inferred output column names is correct; use it
|
594
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
595
|
+
return expected_output_cols_list
|
596
|
+
# otherwise, use the sklearn estimator's output
|
597
|
+
else:
|
598
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
531
599
|
|
532
600
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
533
601
|
@telemetry.send_api_usage_telemetry(
|
@@ -559,24 +627,26 @@ class VotingRegressor(BaseTransformer):
|
|
559
627
|
# are specific to the type of dataset used.
|
560
628
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
561
629
|
|
630
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
631
|
+
|
562
632
|
if isinstance(dataset, DataFrame):
|
563
|
-
self.
|
564
|
-
|
565
|
-
|
566
|
-
|
567
|
-
|
633
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
634
|
+
self._deps = self._get_dependencies()
|
635
|
+
assert isinstance(
|
636
|
+
dataset._session, Session
|
637
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
568
638
|
transform_kwargs = dict(
|
569
639
|
session=dataset._session,
|
570
640
|
dependencies=self._deps,
|
571
|
-
drop_input_cols
|
641
|
+
drop_input_cols=self._drop_input_cols,
|
572
642
|
expected_output_cols_type="float",
|
573
643
|
)
|
644
|
+
expected_output_cols = self._align_expected_output_names(
|
645
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
646
|
+
)
|
574
647
|
|
575
648
|
elif isinstance(dataset, pd.DataFrame):
|
576
|
-
transform_kwargs = dict(
|
577
|
-
snowpark_input_cols = self._snowpark_cols,
|
578
|
-
drop_input_cols = self._drop_input_cols
|
579
|
-
)
|
649
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
580
650
|
|
581
651
|
transform_handlers = ModelTransformerBuilder.build(
|
582
652
|
dataset=dataset,
|
@@ -588,7 +658,7 @@ class VotingRegressor(BaseTransformer):
|
|
588
658
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
589
659
|
inference_method=inference_method,
|
590
660
|
input_cols=self.input_cols,
|
591
|
-
expected_output_cols=
|
661
|
+
expected_output_cols=expected_output_cols,
|
592
662
|
**transform_kwargs
|
593
663
|
)
|
594
664
|
return output_df
|
@@ -618,29 +688,30 @@ class VotingRegressor(BaseTransformer):
|
|
618
688
|
Output dataset with log probability of the sample for each class in the model.
|
619
689
|
"""
|
620
690
|
super()._check_dataset_type(dataset)
|
621
|
-
inference_method="predict_log_proba"
|
691
|
+
inference_method = "predict_log_proba"
|
692
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
622
693
|
|
623
694
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
624
695
|
# are specific to the type of dataset used.
|
625
696
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
626
697
|
|
627
698
|
if isinstance(dataset, DataFrame):
|
628
|
-
self.
|
629
|
-
|
630
|
-
|
631
|
-
|
632
|
-
|
699
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
700
|
+
self._deps = self._get_dependencies()
|
701
|
+
assert isinstance(
|
702
|
+
dataset._session, Session
|
703
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
633
704
|
transform_kwargs = dict(
|
634
705
|
session=dataset._session,
|
635
706
|
dependencies=self._deps,
|
636
|
-
drop_input_cols
|
707
|
+
drop_input_cols=self._drop_input_cols,
|
637
708
|
expected_output_cols_type="float",
|
638
709
|
)
|
710
|
+
expected_output_cols = self._align_expected_output_names(
|
711
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
712
|
+
)
|
639
713
|
elif isinstance(dataset, pd.DataFrame):
|
640
|
-
transform_kwargs = dict(
|
641
|
-
snowpark_input_cols = self._snowpark_cols,
|
642
|
-
drop_input_cols = self._drop_input_cols
|
643
|
-
)
|
714
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
644
715
|
|
645
716
|
transform_handlers = ModelTransformerBuilder.build(
|
646
717
|
dataset=dataset,
|
@@ -653,7 +724,7 @@ class VotingRegressor(BaseTransformer):
|
|
653
724
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
654
725
|
inference_method=inference_method,
|
655
726
|
input_cols=self.input_cols,
|
656
|
-
expected_output_cols=
|
727
|
+
expected_output_cols=expected_output_cols,
|
657
728
|
**transform_kwargs
|
658
729
|
)
|
659
730
|
return output_df
|
@@ -679,30 +750,32 @@ class VotingRegressor(BaseTransformer):
|
|
679
750
|
Output dataset with results of the decision function for the samples in input dataset.
|
680
751
|
"""
|
681
752
|
super()._check_dataset_type(dataset)
|
682
|
-
inference_method="decision_function"
|
753
|
+
inference_method = "decision_function"
|
683
754
|
|
684
755
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
685
756
|
# are specific to the type of dataset used.
|
686
757
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
687
758
|
|
759
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
760
|
+
|
688
761
|
if isinstance(dataset, DataFrame):
|
689
|
-
self.
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
762
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
763
|
+
self._deps = self._get_dependencies()
|
764
|
+
assert isinstance(
|
765
|
+
dataset._session, Session
|
766
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
694
767
|
transform_kwargs = dict(
|
695
768
|
session=dataset._session,
|
696
769
|
dependencies=self._deps,
|
697
|
-
drop_input_cols
|
770
|
+
drop_input_cols=self._drop_input_cols,
|
698
771
|
expected_output_cols_type="float",
|
699
772
|
)
|
773
|
+
expected_output_cols = self._align_expected_output_names(
|
774
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
775
|
+
)
|
700
776
|
|
701
777
|
elif isinstance(dataset, pd.DataFrame):
|
702
|
-
transform_kwargs = dict(
|
703
|
-
snowpark_input_cols = self._snowpark_cols,
|
704
|
-
drop_input_cols = self._drop_input_cols
|
705
|
-
)
|
778
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
706
779
|
|
707
780
|
transform_handlers = ModelTransformerBuilder.build(
|
708
781
|
dataset=dataset,
|
@@ -715,7 +788,7 @@ class VotingRegressor(BaseTransformer):
|
|
715
788
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
716
789
|
inference_method=inference_method,
|
717
790
|
input_cols=self.input_cols,
|
718
|
-
expected_output_cols=
|
791
|
+
expected_output_cols=expected_output_cols,
|
719
792
|
**transform_kwargs
|
720
793
|
)
|
721
794
|
return output_df
|
@@ -744,17 +817,17 @@ class VotingRegressor(BaseTransformer):
|
|
744
817
|
Output dataset with probability of the sample for each class in the model.
|
745
818
|
"""
|
746
819
|
super()._check_dataset_type(dataset)
|
747
|
-
inference_method="score_samples"
|
820
|
+
inference_method = "score_samples"
|
748
821
|
|
749
822
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
750
823
|
# are specific to the type of dataset used.
|
751
824
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
752
825
|
|
826
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
827
|
+
|
753
828
|
if isinstance(dataset, DataFrame):
|
754
|
-
self.
|
755
|
-
|
756
|
-
inference_method=inference_method,
|
757
|
-
)
|
829
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
830
|
+
self._deps = self._get_dependencies()
|
758
831
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
759
832
|
transform_kwargs = dict(
|
760
833
|
session=dataset._session,
|
@@ -762,6 +835,9 @@ class VotingRegressor(BaseTransformer):
|
|
762
835
|
drop_input_cols = self._drop_input_cols,
|
763
836
|
expected_output_cols_type="float",
|
764
837
|
)
|
838
|
+
expected_output_cols = self._align_expected_output_names(
|
839
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
840
|
+
)
|
765
841
|
|
766
842
|
elif isinstance(dataset, pd.DataFrame):
|
767
843
|
transform_kwargs = dict(
|
@@ -780,7 +856,7 @@ class VotingRegressor(BaseTransformer):
|
|
780
856
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
781
857
|
inference_method=inference_method,
|
782
858
|
input_cols=self.input_cols,
|
783
|
-
expected_output_cols=
|
859
|
+
expected_output_cols=expected_output_cols,
|
784
860
|
**transform_kwargs
|
785
861
|
)
|
786
862
|
return output_df
|
@@ -815,17 +891,15 @@ class VotingRegressor(BaseTransformer):
|
|
815
891
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
816
892
|
|
817
893
|
if isinstance(dataset, DataFrame):
|
818
|
-
self.
|
819
|
-
|
820
|
-
inference_method="score",
|
821
|
-
)
|
894
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
895
|
+
self._deps = self._get_dependencies()
|
822
896
|
selected_cols = self._get_active_columns()
|
823
897
|
if len(selected_cols) > 0:
|
824
898
|
dataset = dataset.select(selected_cols)
|
825
899
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
826
900
|
transform_kwargs = dict(
|
827
901
|
session=dataset._session,
|
828
|
-
dependencies=
|
902
|
+
dependencies=self._deps,
|
829
903
|
score_sproc_imports=['sklearn'],
|
830
904
|
)
|
831
905
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -890,11 +964,8 @@ class VotingRegressor(BaseTransformer):
|
|
890
964
|
|
891
965
|
if isinstance(dataset, DataFrame):
|
892
966
|
|
893
|
-
self.
|
894
|
-
|
895
|
-
inference_method=inference_method,
|
896
|
-
|
897
|
-
)
|
967
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
968
|
+
self._deps = self._get_dependencies()
|
898
969
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
899
970
|
transform_kwargs = dict(
|
900
971
|
session = dataset._session,
|
@@ -927,50 +998,84 @@ class VotingRegressor(BaseTransformer):
|
|
927
998
|
)
|
928
999
|
return output_df
|
929
1000
|
|
1001
|
+
|
1002
|
+
|
1003
|
+
def to_sklearn(self) -> Any:
|
1004
|
+
"""Get sklearn.ensemble.VotingRegressor object.
|
1005
|
+
"""
|
1006
|
+
if self._sklearn_object is None:
|
1007
|
+
self._sklearn_object = self._create_sklearn_object()
|
1008
|
+
return self._sklearn_object
|
1009
|
+
|
1010
|
+
def to_xgboost(self) -> Any:
|
1011
|
+
raise exceptions.SnowflakeMLException(
|
1012
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1013
|
+
original_exception=AttributeError(
|
1014
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1015
|
+
"to_xgboost()",
|
1016
|
+
"to_sklearn()"
|
1017
|
+
)
|
1018
|
+
),
|
1019
|
+
)
|
930
1020
|
|
931
|
-
def
|
1021
|
+
def to_lightgbm(self) -> Any:
|
1022
|
+
raise exceptions.SnowflakeMLException(
|
1023
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1024
|
+
original_exception=AttributeError(
|
1025
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1026
|
+
"to_lightgbm()",
|
1027
|
+
"to_sklearn()"
|
1028
|
+
)
|
1029
|
+
),
|
1030
|
+
)
|
1031
|
+
|
1032
|
+
def _get_dependencies(self) -> List[str]:
|
1033
|
+
return self._deps
|
1034
|
+
|
1035
|
+
|
1036
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
932
1037
|
self._model_signature_dict = dict()
|
933
1038
|
|
934
1039
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
935
1040
|
|
936
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1041
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
937
1042
|
outputs: List[BaseFeatureSpec] = []
|
938
1043
|
if hasattr(self, "predict"):
|
939
1044
|
# keep mypy happy
|
940
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1045
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
941
1046
|
# For classifier, the type of predict is the same as the type of label
|
942
|
-
if self._sklearn_object._estimator_type ==
|
943
|
-
|
1047
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1048
|
+
# label columns is the desired type for output
|
944
1049
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
945
1050
|
# rename the output columns
|
946
1051
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
947
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
948
|
-
|
949
|
-
|
1052
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1053
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1054
|
+
)
|
950
1055
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
951
1056
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
952
|
-
# Clusterer returns int64 cluster labels.
|
1057
|
+
# Clusterer returns int64 cluster labels.
|
953
1058
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
954
1059
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
955
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
956
|
-
|
957
|
-
|
958
|
-
|
1060
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1061
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1062
|
+
)
|
1063
|
+
|
959
1064
|
# For regressor, the type of predict is float64
|
960
|
-
elif self._sklearn_object._estimator_type ==
|
1065
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
961
1066
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
962
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
963
|
-
|
964
|
-
|
965
|
-
|
1067
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1068
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1069
|
+
)
|
1070
|
+
|
966
1071
|
for prob_func in PROB_FUNCTIONS:
|
967
1072
|
if hasattr(self, prob_func):
|
968
1073
|
output_cols_prefix: str = f"{prob_func}_"
|
969
1074
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
970
1075
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
971
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
972
|
-
|
973
|
-
|
1076
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
974
1079
|
|
975
1080
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
976
1081
|
items = list(self._model_signature_dict.items())
|
@@ -983,10 +1088,10 @@ class VotingRegressor(BaseTransformer):
|
|
983
1088
|
"""Returns model signature of current class.
|
984
1089
|
|
985
1090
|
Raises:
|
986
|
-
|
1091
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
987
1092
|
|
988
1093
|
Returns:
|
989
|
-
Dict
|
1094
|
+
Dict with each method and its input output signature
|
990
1095
|
"""
|
991
1096
|
if self._model_signature_dict is None:
|
992
1097
|
raise exceptions.SnowflakeMLException(
|
@@ -994,35 +1099,3 @@ class VotingRegressor(BaseTransformer):
|
|
994
1099
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
995
1100
|
)
|
996
1101
|
return self._model_signature_dict
|
997
|
-
|
998
|
-
def to_sklearn(self) -> Any:
|
999
|
-
"""Get sklearn.ensemble.VotingRegressor object.
|
1000
|
-
"""
|
1001
|
-
if self._sklearn_object is None:
|
1002
|
-
self._sklearn_object = self._create_sklearn_object()
|
1003
|
-
return self._sklearn_object
|
1004
|
-
|
1005
|
-
def to_xgboost(self) -> Any:
|
1006
|
-
raise exceptions.SnowflakeMLException(
|
1007
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1008
|
-
original_exception=AttributeError(
|
1009
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1010
|
-
"to_xgboost()",
|
1011
|
-
"to_sklearn()"
|
1012
|
-
)
|
1013
|
-
),
|
1014
|
-
)
|
1015
|
-
|
1016
|
-
def to_lightgbm(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_lightgbm()",
|
1022
|
-
"to_sklearn()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def _get_dependencies(self) -> List[str]:
|
1028
|
-
return self._deps
|