snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -34,6 +34,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
34
34
  BatchInferenceKwargsTypedDict,
35
35
  ScoreKwargsTypedDict
36
36
  )
37
+ from snowflake.ml.model._signatures import utils as model_signature_utils
38
+ from snowflake.ml.model.model_signature import (
39
+ BaseFeatureSpec,
40
+ DataType,
41
+ FeatureSpec,
42
+ ModelSignature,
43
+ _infer_signature,
44
+ _rename_signature_with_snowflake_identifiers,
45
+ )
37
46
 
38
47
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
39
48
 
@@ -44,16 +53,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
44
53
  validate_sklearn_args,
45
54
  )
46
55
 
47
- from snowflake.ml.model.model_signature import (
48
- DataType,
49
- FeatureSpec,
50
- ModelSignature,
51
- _infer_signature,
52
- _rename_signature_with_snowflake_identifiers,
53
- BaseFeatureSpec,
54
- )
55
- from snowflake.ml.model._signatures import utils as model_signature_utils
56
-
57
56
  _PROJECT = "ModelDevelopment"
58
57
  # Derive subproject from module name by removing "sklearn"
59
58
  # and converting module name from underscore to CamelCase
@@ -62,12 +61,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
62
61
 
63
62
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
64
63
 
65
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
66
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
67
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
68
- return check
69
-
70
-
71
64
  class SelectFpr(BaseTransformer):
72
65
  r"""Filter: Select the pvalues below alpha based on a FPR test
73
66
  For more details on this class, see [sklearn.feature_selection.SelectFpr]
@@ -205,12 +198,7 @@ class SelectFpr(BaseTransformer):
205
198
  )
206
199
  return selected_cols
207
200
 
208
- @telemetry.send_api_usage_telemetry(
209
- project=_PROJECT,
210
- subproject=_SUBPROJECT,
211
- custom_tags=dict([("autogen", True)]),
212
- )
213
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SelectFpr":
201
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SelectFpr":
214
202
  """Run score function on (X, y) and get the appropriate features
215
203
  For more details on this function, see [sklearn.feature_selection.SelectFpr.fit]
216
204
  (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFpr.html#sklearn.feature_selection.SelectFpr.fit)
@@ -237,12 +225,14 @@ class SelectFpr(BaseTransformer):
237
225
 
238
226
  self._snowpark_cols = dataset.select(self.input_cols).columns
239
227
 
240
- # If we are already in a stored procedure, no need to kick off another one.
228
+ # If we are already in a stored procedure, no need to kick off another one.
241
229
  if SNOWML_SPROC_ENV in os.environ:
242
230
  statement_params = telemetry.get_function_usage_statement_params(
243
231
  project=_PROJECT,
244
232
  subproject=_SUBPROJECT,
245
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SelectFpr.__class__.__name__),
233
+ function_name=telemetry.get_statement_params_full_func_name(
234
+ inspect.currentframe(), SelectFpr.__class__.__name__
235
+ ),
246
236
  api_calls=[Session.call],
247
237
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
248
238
  )
@@ -263,27 +253,24 @@ class SelectFpr(BaseTransformer):
263
253
  )
264
254
  self._sklearn_object = model_trainer.train()
265
255
  self._is_fitted = True
266
- self._get_model_signatures(dataset)
256
+ self._generate_model_signatures(dataset)
267
257
  return self
268
258
 
269
259
  def _batch_inference_validate_snowpark(
270
260
  self,
271
261
  dataset: DataFrame,
272
262
  inference_method: str,
273
- ) -> List[str]:
274
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
275
- return the available package that exists in the snowflake anaconda channel
263
+ ) -> None:
264
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
276
265
 
277
266
  Args:
278
267
  dataset: snowpark dataframe
279
268
  inference_method: the inference method such as predict, score...
280
-
269
+
281
270
  Raises:
282
271
  SnowflakeMLException: If the estimator is not fitted, raise error
283
272
  SnowflakeMLException: If the session is None, raise error
284
273
 
285
- Returns:
286
- A list of available package that exists in the snowflake anaconda channel
287
274
  """
288
275
  if not self._is_fitted:
289
276
  raise exceptions.SnowflakeMLException(
@@ -301,9 +288,7 @@ class SelectFpr(BaseTransformer):
301
288
  "Session must not specified for snowpark dataset."
302
289
  ),
303
290
  )
304
- # Validate that key package version in user workspace are supported in snowflake conda channel
305
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
306
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
291
+
307
292
 
308
293
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
309
294
  @telemetry.send_api_usage_telemetry(
@@ -337,7 +322,9 @@ class SelectFpr(BaseTransformer):
337
322
  # when it is classifier, infer the datatype from label columns
338
323
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
339
324
  # Batch inference takes a single expected output column type. Use the first columns type for now.
340
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
325
+ label_cols_signatures = [
326
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
327
+ ]
341
328
  if len(label_cols_signatures) == 0:
342
329
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
343
330
  raise exceptions.SnowflakeMLException(
@@ -345,25 +332,23 @@ class SelectFpr(BaseTransformer):
345
332
  original_exception=ValueError(error_str),
346
333
  )
347
334
 
348
- expected_type_inferred = convert_sp_to_sf_type(
349
- label_cols_signatures[0].as_snowpark_type()
350
- )
335
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
351
336
 
352
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
353
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
337
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
338
+ self._deps = self._get_dependencies()
339
+ assert isinstance(
340
+ dataset._session, Session
341
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
354
342
 
355
343
  transform_kwargs = dict(
356
- session = dataset._session,
357
- dependencies = self._deps,
358
- drop_input_cols = self._drop_input_cols,
359
- expected_output_cols_type = expected_type_inferred,
344
+ session=dataset._session,
345
+ dependencies=self._deps,
346
+ drop_input_cols=self._drop_input_cols,
347
+ expected_output_cols_type=expected_type_inferred,
360
348
  )
361
349
 
362
350
  elif isinstance(dataset, pd.DataFrame):
363
- transform_kwargs = dict(
364
- snowpark_input_cols = self._snowpark_cols,
365
- drop_input_cols = self._drop_input_cols
366
- )
351
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
367
352
 
368
353
  transform_handlers = ModelTransformerBuilder.build(
369
354
  dataset=dataset,
@@ -405,7 +390,7 @@ class SelectFpr(BaseTransformer):
405
390
  Transformed dataset.
406
391
  """
407
392
  super()._check_dataset_type(dataset)
408
- inference_method="transform"
393
+ inference_method = "transform"
409
394
 
410
395
  # This dictionary contains optional kwargs for batch inference. These kwargs
411
396
  # are specific to the type of dataset used.
@@ -435,24 +420,19 @@ class SelectFpr(BaseTransformer):
435
420
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
436
421
  expected_dtype = convert_sp_to_sf_type(output_types[0])
437
422
 
438
- self._deps = self._batch_inference_validate_snowpark(
439
- dataset=dataset,
440
- inference_method=inference_method,
441
- )
423
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
424
+ self._deps = self._get_dependencies()
442
425
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
443
426
 
444
427
  transform_kwargs = dict(
445
- session = dataset._session,
446
- dependencies = self._deps,
447
- drop_input_cols = self._drop_input_cols,
448
- expected_output_cols_type = expected_dtype,
428
+ session=dataset._session,
429
+ dependencies=self._deps,
430
+ drop_input_cols=self._drop_input_cols,
431
+ expected_output_cols_type=expected_dtype,
449
432
  )
450
433
 
451
434
  elif isinstance(dataset, pd.DataFrame):
452
- transform_kwargs = dict(
453
- snowpark_input_cols = self._snowpark_cols,
454
- drop_input_cols = self._drop_input_cols
455
- )
435
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
456
436
 
457
437
  transform_handlers = ModelTransformerBuilder.build(
458
438
  dataset=dataset,
@@ -471,7 +451,11 @@ class SelectFpr(BaseTransformer):
471
451
  return output_df
472
452
 
473
453
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
474
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
454
+ def fit_predict(
455
+ self,
456
+ dataset: Union[DataFrame, pd.DataFrame],
457
+ output_cols_prefix: str = "fit_predict_",
458
+ ) -> Union[DataFrame, pd.DataFrame]:
475
459
  """ Method not supported for this class.
476
460
 
477
461
 
@@ -496,22 +480,106 @@ class SelectFpr(BaseTransformer):
496
480
  )
497
481
  output_result, fitted_estimator = model_trainer.train_fit_predict(
498
482
  drop_input_cols=self._drop_input_cols,
499
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
483
+ expected_output_cols_list=(
484
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
485
+ ),
500
486
  )
501
487
  self._sklearn_object = fitted_estimator
502
488
  self._is_fitted = True
503
489
  return output_result
504
490
 
491
+
492
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
493
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
494
+ """ Fit to data, then transform it
495
+ For more details on this function, see [sklearn.feature_selection.SelectFpr.fit_transform]
496
+ (https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectFpr.html#sklearn.feature_selection.SelectFpr.fit_transform)
497
+
498
+
499
+ Raises:
500
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
505
501
 
506
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
507
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
508
- """
502
+ Args:
503
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
504
+ Snowpark or Pandas DataFrame.
505
+ output_cols_prefix: Prefix for the response columns
509
506
  Returns:
510
507
  Transformed dataset.
511
508
  """
512
- self.fit(dataset)
513
- assert self._sklearn_object is not None
514
- return self._sklearn_object.embedding_
509
+ self._infer_input_output_cols(dataset)
510
+ super()._check_dataset_type(dataset)
511
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
512
+ estimator=self._sklearn_object,
513
+ dataset=dataset,
514
+ input_cols=self.input_cols,
515
+ label_cols=self.label_cols,
516
+ sample_weight_col=self.sample_weight_col,
517
+ autogenerated=self._autogenerated,
518
+ subproject=_SUBPROJECT,
519
+ )
520
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
521
+ drop_input_cols=self._drop_input_cols,
522
+ expected_output_cols_list=self.output_cols,
523
+ )
524
+ self._sklearn_object = fitted_estimator
525
+ self._is_fitted = True
526
+ return output_result
527
+
528
+
529
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
530
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
531
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
532
+ """
533
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
534
+ # The following condition is introduced for kneighbors methods, and not used in other methods
535
+ if output_cols:
536
+ output_cols = [
537
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
538
+ for c in output_cols
539
+ ]
540
+ elif getattr(self._sklearn_object, "classes_", None) is None:
541
+ output_cols = [output_cols_prefix]
542
+ elif self._sklearn_object is not None:
543
+ classes = self._sklearn_object.classes_
544
+ if isinstance(classes, numpy.ndarray):
545
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
546
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
547
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
548
+ output_cols = []
549
+ for i, cl in enumerate(classes):
550
+ # For binary classification, there is only one output column for each class
551
+ # ndarray as the two classes are complementary.
552
+ if len(cl) == 2:
553
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
554
+ else:
555
+ output_cols.extend([
556
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
557
+ ])
558
+ else:
559
+ output_cols = []
560
+
561
+ # Make sure column names are valid snowflake identifiers.
562
+ assert output_cols is not None # Make MyPy happy
563
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
564
+
565
+ return rv
566
+
567
+ def _align_expected_output_names(
568
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
569
+ ) -> List[str]:
570
+ # in case the inferred output column names dimension is different
571
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
572
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
573
+ output_df_columns = list(output_df_pd.columns)
574
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
575
+ if self.sample_weight_col:
576
+ output_df_columns_set -= set(self.sample_weight_col)
577
+ # if the dimension of inferred output column names is correct; use it
578
+ if len(expected_output_cols_list) == len(output_df_columns_set):
579
+ return expected_output_cols_list
580
+ # otherwise, use the sklearn estimator's output
581
+ else:
582
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
515
583
 
516
584
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
517
585
  @telemetry.send_api_usage_telemetry(
@@ -543,24 +611,26 @@ class SelectFpr(BaseTransformer):
543
611
  # are specific to the type of dataset used.
544
612
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
545
613
 
614
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
615
+
546
616
  if isinstance(dataset, DataFrame):
547
- self._deps = self._batch_inference_validate_snowpark(
548
- dataset=dataset,
549
- inference_method=inference_method,
550
- )
551
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
617
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
618
+ self._deps = self._get_dependencies()
619
+ assert isinstance(
620
+ dataset._session, Session
621
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
552
622
  transform_kwargs = dict(
553
623
  session=dataset._session,
554
624
  dependencies=self._deps,
555
- drop_input_cols = self._drop_input_cols,
625
+ drop_input_cols=self._drop_input_cols,
556
626
  expected_output_cols_type="float",
557
627
  )
628
+ expected_output_cols = self._align_expected_output_names(
629
+ inference_method, dataset, expected_output_cols, output_cols_prefix
630
+ )
558
631
 
559
632
  elif isinstance(dataset, pd.DataFrame):
560
- transform_kwargs = dict(
561
- snowpark_input_cols = self._snowpark_cols,
562
- drop_input_cols = self._drop_input_cols
563
- )
633
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
564
634
 
565
635
  transform_handlers = ModelTransformerBuilder.build(
566
636
  dataset=dataset,
@@ -572,7 +642,7 @@ class SelectFpr(BaseTransformer):
572
642
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
573
643
  inference_method=inference_method,
574
644
  input_cols=self.input_cols,
575
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
645
+ expected_output_cols=expected_output_cols,
576
646
  **transform_kwargs
577
647
  )
578
648
  return output_df
@@ -602,29 +672,30 @@ class SelectFpr(BaseTransformer):
602
672
  Output dataset with log probability of the sample for each class in the model.
603
673
  """
604
674
  super()._check_dataset_type(dataset)
605
- inference_method="predict_log_proba"
675
+ inference_method = "predict_log_proba"
676
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
606
677
 
607
678
  # This dictionary contains optional kwargs for batch inference. These kwargs
608
679
  # are specific to the type of dataset used.
609
680
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
610
681
 
611
682
  if isinstance(dataset, DataFrame):
612
- self._deps = self._batch_inference_validate_snowpark(
613
- dataset=dataset,
614
- inference_method=inference_method,
615
- )
616
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
684
+ self._deps = self._get_dependencies()
685
+ assert isinstance(
686
+ dataset._session, Session
687
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
617
688
  transform_kwargs = dict(
618
689
  session=dataset._session,
619
690
  dependencies=self._deps,
620
- drop_input_cols = self._drop_input_cols,
691
+ drop_input_cols=self._drop_input_cols,
621
692
  expected_output_cols_type="float",
622
693
  )
694
+ expected_output_cols = self._align_expected_output_names(
695
+ inference_method, dataset, expected_output_cols, output_cols_prefix
696
+ )
623
697
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
698
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
699
 
629
700
  transform_handlers = ModelTransformerBuilder.build(
630
701
  dataset=dataset,
@@ -637,7 +708,7 @@ class SelectFpr(BaseTransformer):
637
708
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
638
709
  inference_method=inference_method,
639
710
  input_cols=self.input_cols,
640
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
711
+ expected_output_cols=expected_output_cols,
641
712
  **transform_kwargs
642
713
  )
643
714
  return output_df
@@ -663,30 +734,32 @@ class SelectFpr(BaseTransformer):
663
734
  Output dataset with results of the decision function for the samples in input dataset.
664
735
  """
665
736
  super()._check_dataset_type(dataset)
666
- inference_method="decision_function"
737
+ inference_method = "decision_function"
667
738
 
668
739
  # This dictionary contains optional kwargs for batch inference. These kwargs
669
740
  # are specific to the type of dataset used.
670
741
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
671
742
 
743
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
744
+
672
745
  if isinstance(dataset, DataFrame):
673
- self._deps = self._batch_inference_validate_snowpark(
674
- dataset=dataset,
675
- inference_method=inference_method,
676
- )
677
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
746
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
747
+ self._deps = self._get_dependencies()
748
+ assert isinstance(
749
+ dataset._session, Session
750
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
751
  transform_kwargs = dict(
679
752
  session=dataset._session,
680
753
  dependencies=self._deps,
681
- drop_input_cols = self._drop_input_cols,
754
+ drop_input_cols=self._drop_input_cols,
682
755
  expected_output_cols_type="float",
683
756
  )
757
+ expected_output_cols = self._align_expected_output_names(
758
+ inference_method, dataset, expected_output_cols, output_cols_prefix
759
+ )
684
760
 
685
761
  elif isinstance(dataset, pd.DataFrame):
686
- transform_kwargs = dict(
687
- snowpark_input_cols = self._snowpark_cols,
688
- drop_input_cols = self._drop_input_cols
689
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
690
763
 
691
764
  transform_handlers = ModelTransformerBuilder.build(
692
765
  dataset=dataset,
@@ -699,7 +772,7 @@ class SelectFpr(BaseTransformer):
699
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
700
773
  inference_method=inference_method,
701
774
  input_cols=self.input_cols,
702
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
703
776
  **transform_kwargs
704
777
  )
705
778
  return output_df
@@ -728,17 +801,17 @@ class SelectFpr(BaseTransformer):
728
801
  Output dataset with probability of the sample for each class in the model.
729
802
  """
730
803
  super()._check_dataset_type(dataset)
731
- inference_method="score_samples"
804
+ inference_method = "score_samples"
732
805
 
733
806
  # This dictionary contains optional kwargs for batch inference. These kwargs
734
807
  # are specific to the type of dataset used.
735
808
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
736
809
 
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
811
+
737
812
  if isinstance(dataset, DataFrame):
738
- self._deps = self._batch_inference_validate_snowpark(
739
- dataset=dataset,
740
- inference_method=inference_method,
741
- )
813
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
814
+ self._deps = self._get_dependencies()
742
815
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
743
816
  transform_kwargs = dict(
744
817
  session=dataset._session,
@@ -746,6 +819,9 @@ class SelectFpr(BaseTransformer):
746
819
  drop_input_cols = self._drop_input_cols,
747
820
  expected_output_cols_type="float",
748
821
  )
822
+ expected_output_cols = self._align_expected_output_names(
823
+ inference_method, dataset, expected_output_cols, output_cols_prefix
824
+ )
749
825
 
750
826
  elif isinstance(dataset, pd.DataFrame):
751
827
  transform_kwargs = dict(
@@ -764,7 +840,7 @@ class SelectFpr(BaseTransformer):
764
840
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
765
841
  inference_method=inference_method,
766
842
  input_cols=self.input_cols,
767
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
843
+ expected_output_cols=expected_output_cols,
768
844
  **transform_kwargs
769
845
  )
770
846
  return output_df
@@ -797,17 +873,15 @@ class SelectFpr(BaseTransformer):
797
873
  transform_kwargs: ScoreKwargsTypedDict = dict()
798
874
 
799
875
  if isinstance(dataset, DataFrame):
800
- self._deps = self._batch_inference_validate_snowpark(
801
- dataset=dataset,
802
- inference_method="score",
803
- )
876
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
877
+ self._deps = self._get_dependencies()
804
878
  selected_cols = self._get_active_columns()
805
879
  if len(selected_cols) > 0:
806
880
  dataset = dataset.select(selected_cols)
807
881
  assert isinstance(dataset._session, Session) # keep mypy happy
808
882
  transform_kwargs = dict(
809
883
  session=dataset._session,
810
- dependencies=["snowflake-snowpark-python"] + self._deps,
884
+ dependencies=self._deps,
811
885
  score_sproc_imports=['sklearn'],
812
886
  )
813
887
  elif isinstance(dataset, pd.DataFrame):
@@ -872,11 +946,8 @@ class SelectFpr(BaseTransformer):
872
946
 
873
947
  if isinstance(dataset, DataFrame):
874
948
 
875
- self._deps = self._batch_inference_validate_snowpark(
876
- dataset=dataset,
877
- inference_method=inference_method,
878
-
879
- )
949
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
950
+ self._deps = self._get_dependencies()
880
951
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
881
952
  transform_kwargs = dict(
882
953
  session = dataset._session,
@@ -909,50 +980,84 @@ class SelectFpr(BaseTransformer):
909
980
  )
910
981
  return output_df
911
982
 
983
+
984
+
985
+ def to_sklearn(self) -> Any:
986
+ """Get sklearn.feature_selection.SelectFpr object.
987
+ """
988
+ if self._sklearn_object is None:
989
+ self._sklearn_object = self._create_sklearn_object()
990
+ return self._sklearn_object
991
+
992
+ def to_xgboost(self) -> Any:
993
+ raise exceptions.SnowflakeMLException(
994
+ error_code=error_codes.METHOD_NOT_ALLOWED,
995
+ original_exception=AttributeError(
996
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
997
+ "to_xgboost()",
998
+ "to_sklearn()"
999
+ )
1000
+ ),
1001
+ )
912
1002
 
913
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1003
+ def to_lightgbm(self) -> Any:
1004
+ raise exceptions.SnowflakeMLException(
1005
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1006
+ original_exception=AttributeError(
1007
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1008
+ "to_lightgbm()",
1009
+ "to_sklearn()"
1010
+ )
1011
+ ),
1012
+ )
1013
+
1014
+ def _get_dependencies(self) -> List[str]:
1015
+ return self._deps
1016
+
1017
+
1018
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
914
1019
  self._model_signature_dict = dict()
915
1020
 
916
1021
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
917
1022
 
918
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1023
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
919
1024
  outputs: List[BaseFeatureSpec] = []
920
1025
  if hasattr(self, "predict"):
921
1026
  # keep mypy happy
922
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1027
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
923
1028
  # For classifier, the type of predict is the same as the type of label
924
- if self._sklearn_object._estimator_type == 'classifier':
925
- # label columns is the desired type for output
1029
+ if self._sklearn_object._estimator_type == "classifier":
1030
+ # label columns is the desired type for output
926
1031
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
927
1032
  # rename the output columns
928
1033
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
929
- self._model_signature_dict["predict"] = ModelSignature(inputs,
930
- ([] if self._drop_input_cols else inputs)
931
- + outputs)
1034
+ self._model_signature_dict["predict"] = ModelSignature(
1035
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1036
+ )
932
1037
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
933
1038
  # For outlier models, returns -1 for outliers and 1 for inliers.
934
- # Clusterer returns int64 cluster labels.
1039
+ # Clusterer returns int64 cluster labels.
935
1040
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
936
1041
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
937
- self._model_signature_dict["predict"] = ModelSignature(inputs,
938
- ([] if self._drop_input_cols else inputs)
939
- + outputs)
940
-
1042
+ self._model_signature_dict["predict"] = ModelSignature(
1043
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1044
+ )
1045
+
941
1046
  # For regressor, the type of predict is float64
942
- elif self._sklearn_object._estimator_type == 'regressor':
1047
+ elif self._sklearn_object._estimator_type == "regressor":
943
1048
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
944
- self._model_signature_dict["predict"] = ModelSignature(inputs,
945
- ([] if self._drop_input_cols else inputs)
946
- + outputs)
947
-
1049
+ self._model_signature_dict["predict"] = ModelSignature(
1050
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1051
+ )
1052
+
948
1053
  for prob_func in PROB_FUNCTIONS:
949
1054
  if hasattr(self, prob_func):
950
1055
  output_cols_prefix: str = f"{prob_func}_"
951
1056
  output_column_names = self._get_output_column_names(output_cols_prefix)
952
1057
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
953
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
1058
+ self._model_signature_dict[prob_func] = ModelSignature(
1059
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1060
+ )
956
1061
 
957
1062
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
958
1063
  items = list(self._model_signature_dict.items())
@@ -965,10 +1070,10 @@ class SelectFpr(BaseTransformer):
965
1070
  """Returns model signature of current class.
966
1071
 
967
1072
  Raises:
968
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1073
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
969
1074
 
970
1075
  Returns:
971
- Dict[str, ModelSignature]: each method and its input output signature
1076
+ Dict with each method and its input output signature
972
1077
  """
973
1078
  if self._model_signature_dict is None:
974
1079
  raise exceptions.SnowflakeMLException(
@@ -976,35 +1081,3 @@ class SelectFpr(BaseTransformer):
976
1081
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
977
1082
  )
978
1083
  return self._model_signature_dict
979
-
980
- def to_sklearn(self) -> Any:
981
- """Get sklearn.feature_selection.SelectFpr object.
982
- """
983
- if self._sklearn_object is None:
984
- self._sklearn_object = self._create_sklearn_object()
985
- return self._sklearn_object
986
-
987
- def to_xgboost(self) -> Any:
988
- raise exceptions.SnowflakeMLException(
989
- error_code=error_codes.METHOD_NOT_ALLOWED,
990
- original_exception=AttributeError(
991
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
992
- "to_xgboost()",
993
- "to_sklearn()"
994
- )
995
- ),
996
- )
997
-
998
- def to_lightgbm(self) -> Any:
999
- raise exceptions.SnowflakeMLException(
1000
- error_code=error_codes.METHOD_NOT_ALLOWED,
1001
- original_exception=AttributeError(
1002
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1003
- "to_lightgbm()",
1004
- "to_sklearn()"
1005
- )
1006
- ),
1007
- )
1008
-
1009
- def _get_dependencies(self) -> List[str]:
1010
- return self._deps