snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.decomposition".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MiniBatchDictionaryLearning(BaseTransformer):
71
64
  r"""Mini-batch dictionary learning
72
65
  For more details on this class, see [sklearn.decomposition.MiniBatchDictionaryLearning]
@@ -339,12 +332,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
339
332
  )
340
333
  return selected_cols
341
334
 
342
- @telemetry.send_api_usage_telemetry(
343
- project=_PROJECT,
344
- subproject=_SUBPROJECT,
345
- custom_tags=dict([("autogen", True)]),
346
- )
347
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchDictionaryLearning":
335
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MiniBatchDictionaryLearning":
348
336
  """Fit the model from data in X
349
337
  For more details on this function, see [sklearn.decomposition.MiniBatchDictionaryLearning.fit]
350
338
  (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.html#sklearn.decomposition.MiniBatchDictionaryLearning.fit)
@@ -371,12 +359,14 @@ class MiniBatchDictionaryLearning(BaseTransformer):
371
359
 
372
360
  self._snowpark_cols = dataset.select(self.input_cols).columns
373
361
 
374
- # If we are already in a stored procedure, no need to kick off another one.
362
+ # If we are already in a stored procedure, no need to kick off another one.
375
363
  if SNOWML_SPROC_ENV in os.environ:
376
364
  statement_params = telemetry.get_function_usage_statement_params(
377
365
  project=_PROJECT,
378
366
  subproject=_SUBPROJECT,
379
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__),
367
+ function_name=telemetry.get_statement_params_full_func_name(
368
+ inspect.currentframe(), MiniBatchDictionaryLearning.__class__.__name__
369
+ ),
380
370
  api_calls=[Session.call],
381
371
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
382
372
  )
@@ -397,27 +387,24 @@ class MiniBatchDictionaryLearning(BaseTransformer):
397
387
  )
398
388
  self._sklearn_object = model_trainer.train()
399
389
  self._is_fitted = True
400
- self._get_model_signatures(dataset)
390
+ self._generate_model_signatures(dataset)
401
391
  return self
402
392
 
403
393
  def _batch_inference_validate_snowpark(
404
394
  self,
405
395
  dataset: DataFrame,
406
396
  inference_method: str,
407
- ) -> List[str]:
408
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
409
- return the available package that exists in the snowflake anaconda channel
397
+ ) -> None:
398
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
410
399
 
411
400
  Args:
412
401
  dataset: snowpark dataframe
413
402
  inference_method: the inference method such as predict, score...
414
-
403
+
415
404
  Raises:
416
405
  SnowflakeMLException: If the estimator is not fitted, raise error
417
406
  SnowflakeMLException: If the session is None, raise error
418
407
 
419
- Returns:
420
- A list of available package that exists in the snowflake anaconda channel
421
408
  """
422
409
  if not self._is_fitted:
423
410
  raise exceptions.SnowflakeMLException(
@@ -435,9 +422,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
435
422
  "Session must not specified for snowpark dataset."
436
423
  ),
437
424
  )
438
- # Validate that key package version in user workspace are supported in snowflake conda channel
439
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
440
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
425
+
441
426
 
442
427
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
443
428
  @telemetry.send_api_usage_telemetry(
@@ -471,7 +456,9 @@ class MiniBatchDictionaryLearning(BaseTransformer):
471
456
  # when it is classifier, infer the datatype from label columns
472
457
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
473
458
  # Batch inference takes a single expected output column type. Use the first columns type for now.
474
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
459
+ label_cols_signatures = [
460
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
461
+ ]
475
462
  if len(label_cols_signatures) == 0:
476
463
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
477
464
  raise exceptions.SnowflakeMLException(
@@ -479,25 +466,23 @@ class MiniBatchDictionaryLearning(BaseTransformer):
479
466
  original_exception=ValueError(error_str),
480
467
  )
481
468
 
482
- expected_type_inferred = convert_sp_to_sf_type(
483
- label_cols_signatures[0].as_snowpark_type()
484
- )
469
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
485
470
 
486
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
487
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
471
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
472
+ self._deps = self._get_dependencies()
473
+ assert isinstance(
474
+ dataset._session, Session
475
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
488
476
 
489
477
  transform_kwargs = dict(
490
- session = dataset._session,
491
- dependencies = self._deps,
492
- drop_input_cols = self._drop_input_cols,
493
- expected_output_cols_type = expected_type_inferred,
478
+ session=dataset._session,
479
+ dependencies=self._deps,
480
+ drop_input_cols=self._drop_input_cols,
481
+ expected_output_cols_type=expected_type_inferred,
494
482
  )
495
483
 
496
484
  elif isinstance(dataset, pd.DataFrame):
497
- transform_kwargs = dict(
498
- snowpark_input_cols = self._snowpark_cols,
499
- drop_input_cols = self._drop_input_cols
500
- )
485
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
501
486
 
502
487
  transform_handlers = ModelTransformerBuilder.build(
503
488
  dataset=dataset,
@@ -539,7 +524,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
539
524
  Transformed dataset.
540
525
  """
541
526
  super()._check_dataset_type(dataset)
542
- inference_method="transform"
527
+ inference_method = "transform"
543
528
 
544
529
  # This dictionary contains optional kwargs for batch inference. These kwargs
545
530
  # are specific to the type of dataset used.
@@ -569,24 +554,19 @@ class MiniBatchDictionaryLearning(BaseTransformer):
569
554
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
570
555
  expected_dtype = convert_sp_to_sf_type(output_types[0])
571
556
 
572
- self._deps = self._batch_inference_validate_snowpark(
573
- dataset=dataset,
574
- inference_method=inference_method,
575
- )
557
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
558
+ self._deps = self._get_dependencies()
576
559
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
577
560
 
578
561
  transform_kwargs = dict(
579
- session = dataset._session,
580
- dependencies = self._deps,
581
- drop_input_cols = self._drop_input_cols,
582
- expected_output_cols_type = expected_dtype,
562
+ session=dataset._session,
563
+ dependencies=self._deps,
564
+ drop_input_cols=self._drop_input_cols,
565
+ expected_output_cols_type=expected_dtype,
583
566
  )
584
567
 
585
568
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
569
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
570
 
591
571
  transform_handlers = ModelTransformerBuilder.build(
592
572
  dataset=dataset,
@@ -605,7 +585,11 @@ class MiniBatchDictionaryLearning(BaseTransformer):
605
585
  return output_df
606
586
 
607
587
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
608
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
588
+ def fit_predict(
589
+ self,
590
+ dataset: Union[DataFrame, pd.DataFrame],
591
+ output_cols_prefix: str = "fit_predict_",
592
+ ) -> Union[DataFrame, pd.DataFrame]:
609
593
  """ Method not supported for this class.
610
594
 
611
595
 
@@ -630,22 +614,106 @@ class MiniBatchDictionaryLearning(BaseTransformer):
630
614
  )
631
615
  output_result, fitted_estimator = model_trainer.train_fit_predict(
632
616
  drop_input_cols=self._drop_input_cols,
633
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
617
+ expected_output_cols_list=(
618
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
619
+ ),
634
620
  )
635
621
  self._sklearn_object = fitted_estimator
636
622
  self._is_fitted = True
637
623
  return output_result
638
624
 
625
+
626
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
627
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
628
+ """ Fit to data, then transform it
629
+ For more details on this function, see [sklearn.decomposition.MiniBatchDictionaryLearning.fit_transform]
630
+ (https://scikit-learn.org/stable/modules/generated/sklearn.decomposition.MiniBatchDictionaryLearning.html#sklearn.decomposition.MiniBatchDictionaryLearning.fit_transform)
631
+
632
+
633
+ Raises:
634
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
639
635
 
640
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
641
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
642
- """
636
+ Args:
637
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
638
+ Snowpark or Pandas DataFrame.
639
+ output_cols_prefix: Prefix for the response columns
643
640
  Returns:
644
641
  Transformed dataset.
645
642
  """
646
- self.fit(dataset)
647
- assert self._sklearn_object is not None
648
- return self._sklearn_object.embedding_
643
+ self._infer_input_output_cols(dataset)
644
+ super()._check_dataset_type(dataset)
645
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
646
+ estimator=self._sklearn_object,
647
+ dataset=dataset,
648
+ input_cols=self.input_cols,
649
+ label_cols=self.label_cols,
650
+ sample_weight_col=self.sample_weight_col,
651
+ autogenerated=self._autogenerated,
652
+ subproject=_SUBPROJECT,
653
+ )
654
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
655
+ drop_input_cols=self._drop_input_cols,
656
+ expected_output_cols_list=self.output_cols,
657
+ )
658
+ self._sklearn_object = fitted_estimator
659
+ self._is_fitted = True
660
+ return output_result
661
+
662
+
663
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
664
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
665
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
666
+ """
667
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
668
+ # The following condition is introduced for kneighbors methods, and not used in other methods
669
+ if output_cols:
670
+ output_cols = [
671
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
672
+ for c in output_cols
673
+ ]
674
+ elif getattr(self._sklearn_object, "classes_", None) is None:
675
+ output_cols = [output_cols_prefix]
676
+ elif self._sklearn_object is not None:
677
+ classes = self._sklearn_object.classes_
678
+ if isinstance(classes, numpy.ndarray):
679
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
680
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
681
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
682
+ output_cols = []
683
+ for i, cl in enumerate(classes):
684
+ # For binary classification, there is only one output column for each class
685
+ # ndarray as the two classes are complementary.
686
+ if len(cl) == 2:
687
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
688
+ else:
689
+ output_cols.extend([
690
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
691
+ ])
692
+ else:
693
+ output_cols = []
694
+
695
+ # Make sure column names are valid snowflake identifiers.
696
+ assert output_cols is not None # Make MyPy happy
697
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
698
+
699
+ return rv
700
+
701
+ def _align_expected_output_names(
702
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
703
+ ) -> List[str]:
704
+ # in case the inferred output column names dimension is different
705
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
706
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
707
+ output_df_columns = list(output_df_pd.columns)
708
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
709
+ if self.sample_weight_col:
710
+ output_df_columns_set -= set(self.sample_weight_col)
711
+ # if the dimension of inferred output column names is correct; use it
712
+ if len(expected_output_cols_list) == len(output_df_columns_set):
713
+ return expected_output_cols_list
714
+ # otherwise, use the sklearn estimator's output
715
+ else:
716
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
649
717
 
650
718
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
651
719
  @telemetry.send_api_usage_telemetry(
@@ -677,24 +745,26 @@ class MiniBatchDictionaryLearning(BaseTransformer):
677
745
  # are specific to the type of dataset used.
678
746
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
679
747
 
748
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
749
+
680
750
  if isinstance(dataset, DataFrame):
681
- self._deps = self._batch_inference_validate_snowpark(
682
- dataset=dataset,
683
- inference_method=inference_method,
684
- )
685
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
752
+ self._deps = self._get_dependencies()
753
+ assert isinstance(
754
+ dataset._session, Session
755
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
756
  transform_kwargs = dict(
687
757
  session=dataset._session,
688
758
  dependencies=self._deps,
689
- drop_input_cols = self._drop_input_cols,
759
+ drop_input_cols=self._drop_input_cols,
690
760
  expected_output_cols_type="float",
691
761
  )
762
+ expected_output_cols = self._align_expected_output_names(
763
+ inference_method, dataset, expected_output_cols, output_cols_prefix
764
+ )
692
765
 
693
766
  elif isinstance(dataset, pd.DataFrame):
694
- transform_kwargs = dict(
695
- snowpark_input_cols = self._snowpark_cols,
696
- drop_input_cols = self._drop_input_cols
697
- )
767
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
698
768
 
699
769
  transform_handlers = ModelTransformerBuilder.build(
700
770
  dataset=dataset,
@@ -706,7 +776,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
706
776
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
707
777
  inference_method=inference_method,
708
778
  input_cols=self.input_cols,
709
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
779
+ expected_output_cols=expected_output_cols,
710
780
  **transform_kwargs
711
781
  )
712
782
  return output_df
@@ -736,29 +806,30 @@ class MiniBatchDictionaryLearning(BaseTransformer):
736
806
  Output dataset with log probability of the sample for each class in the model.
737
807
  """
738
808
  super()._check_dataset_type(dataset)
739
- inference_method="predict_log_proba"
809
+ inference_method = "predict_log_proba"
810
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
740
811
 
741
812
  # This dictionary contains optional kwargs for batch inference. These kwargs
742
813
  # are specific to the type of dataset used.
743
814
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
744
815
 
745
816
  if isinstance(dataset, DataFrame):
746
- self._deps = self._batch_inference_validate_snowpark(
747
- dataset=dataset,
748
- inference_method=inference_method,
749
- )
750
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
817
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
818
+ self._deps = self._get_dependencies()
819
+ assert isinstance(
820
+ dataset._session, Session
821
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
822
  transform_kwargs = dict(
752
823
  session=dataset._session,
753
824
  dependencies=self._deps,
754
- drop_input_cols = self._drop_input_cols,
825
+ drop_input_cols=self._drop_input_cols,
755
826
  expected_output_cols_type="float",
756
827
  )
828
+ expected_output_cols = self._align_expected_output_names(
829
+ inference_method, dataset, expected_output_cols, output_cols_prefix
830
+ )
757
831
  elif isinstance(dataset, pd.DataFrame):
758
- transform_kwargs = dict(
759
- snowpark_input_cols = self._snowpark_cols,
760
- drop_input_cols = self._drop_input_cols
761
- )
832
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
762
833
 
763
834
  transform_handlers = ModelTransformerBuilder.build(
764
835
  dataset=dataset,
@@ -771,7 +842,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
771
842
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
772
843
  inference_method=inference_method,
773
844
  input_cols=self.input_cols,
774
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
845
+ expected_output_cols=expected_output_cols,
775
846
  **transform_kwargs
776
847
  )
777
848
  return output_df
@@ -797,30 +868,32 @@ class MiniBatchDictionaryLearning(BaseTransformer):
797
868
  Output dataset with results of the decision function for the samples in input dataset.
798
869
  """
799
870
  super()._check_dataset_type(dataset)
800
- inference_method="decision_function"
871
+ inference_method = "decision_function"
801
872
 
802
873
  # This dictionary contains optional kwargs for batch inference. These kwargs
803
874
  # are specific to the type of dataset used.
804
875
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
805
876
 
877
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
878
+
806
879
  if isinstance(dataset, DataFrame):
807
- self._deps = self._batch_inference_validate_snowpark(
808
- dataset=dataset,
809
- inference_method=inference_method,
810
- )
811
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
880
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
881
+ self._deps = self._get_dependencies()
882
+ assert isinstance(
883
+ dataset._session, Session
884
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
812
885
  transform_kwargs = dict(
813
886
  session=dataset._session,
814
887
  dependencies=self._deps,
815
- drop_input_cols = self._drop_input_cols,
888
+ drop_input_cols=self._drop_input_cols,
816
889
  expected_output_cols_type="float",
817
890
  )
891
+ expected_output_cols = self._align_expected_output_names(
892
+ inference_method, dataset, expected_output_cols, output_cols_prefix
893
+ )
818
894
 
819
895
  elif isinstance(dataset, pd.DataFrame):
820
- transform_kwargs = dict(
821
- snowpark_input_cols = self._snowpark_cols,
822
- drop_input_cols = self._drop_input_cols
823
- )
896
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
824
897
 
825
898
  transform_handlers = ModelTransformerBuilder.build(
826
899
  dataset=dataset,
@@ -833,7 +906,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
833
906
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
834
907
  inference_method=inference_method,
835
908
  input_cols=self.input_cols,
836
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
909
+ expected_output_cols=expected_output_cols,
837
910
  **transform_kwargs
838
911
  )
839
912
  return output_df
@@ -862,17 +935,17 @@ class MiniBatchDictionaryLearning(BaseTransformer):
862
935
  Output dataset with probability of the sample for each class in the model.
863
936
  """
864
937
  super()._check_dataset_type(dataset)
865
- inference_method="score_samples"
938
+ inference_method = "score_samples"
866
939
 
867
940
  # This dictionary contains optional kwargs for batch inference. These kwargs
868
941
  # are specific to the type of dataset used.
869
942
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
870
943
 
944
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
945
+
871
946
  if isinstance(dataset, DataFrame):
872
- self._deps = self._batch_inference_validate_snowpark(
873
- dataset=dataset,
874
- inference_method=inference_method,
875
- )
947
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
948
+ self._deps = self._get_dependencies()
876
949
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
877
950
  transform_kwargs = dict(
878
951
  session=dataset._session,
@@ -880,6 +953,9 @@ class MiniBatchDictionaryLearning(BaseTransformer):
880
953
  drop_input_cols = self._drop_input_cols,
881
954
  expected_output_cols_type="float",
882
955
  )
956
+ expected_output_cols = self._align_expected_output_names(
957
+ inference_method, dataset, expected_output_cols, output_cols_prefix
958
+ )
883
959
 
884
960
  elif isinstance(dataset, pd.DataFrame):
885
961
  transform_kwargs = dict(
@@ -898,7 +974,7 @@ class MiniBatchDictionaryLearning(BaseTransformer):
898
974
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
899
975
  inference_method=inference_method,
900
976
  input_cols=self.input_cols,
901
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
977
+ expected_output_cols=expected_output_cols,
902
978
  **transform_kwargs
903
979
  )
904
980
  return output_df
@@ -931,17 +1007,15 @@ class MiniBatchDictionaryLearning(BaseTransformer):
931
1007
  transform_kwargs: ScoreKwargsTypedDict = dict()
932
1008
 
933
1009
  if isinstance(dataset, DataFrame):
934
- self._deps = self._batch_inference_validate_snowpark(
935
- dataset=dataset,
936
- inference_method="score",
937
- )
1010
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1011
+ self._deps = self._get_dependencies()
938
1012
  selected_cols = self._get_active_columns()
939
1013
  if len(selected_cols) > 0:
940
1014
  dataset = dataset.select(selected_cols)
941
1015
  assert isinstance(dataset._session, Session) # keep mypy happy
942
1016
  transform_kwargs = dict(
943
1017
  session=dataset._session,
944
- dependencies=["snowflake-snowpark-python"] + self._deps,
1018
+ dependencies=self._deps,
945
1019
  score_sproc_imports=['sklearn'],
946
1020
  )
947
1021
  elif isinstance(dataset, pd.DataFrame):
@@ -1006,11 +1080,8 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1006
1080
 
1007
1081
  if isinstance(dataset, DataFrame):
1008
1082
 
1009
- self._deps = self._batch_inference_validate_snowpark(
1010
- dataset=dataset,
1011
- inference_method=inference_method,
1012
-
1013
- )
1083
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1084
+ self._deps = self._get_dependencies()
1014
1085
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1015
1086
  transform_kwargs = dict(
1016
1087
  session = dataset._session,
@@ -1043,50 +1114,84 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1043
1114
  )
1044
1115
  return output_df
1045
1116
 
1117
+
1118
+
1119
+ def to_sklearn(self) -> Any:
1120
+ """Get sklearn.decomposition.MiniBatchDictionaryLearning object.
1121
+ """
1122
+ if self._sklearn_object is None:
1123
+ self._sklearn_object = self._create_sklearn_object()
1124
+ return self._sklearn_object
1125
+
1126
+ def to_xgboost(self) -> Any:
1127
+ raise exceptions.SnowflakeMLException(
1128
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1129
+ original_exception=AttributeError(
1130
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1131
+ "to_xgboost()",
1132
+ "to_sklearn()"
1133
+ )
1134
+ ),
1135
+ )
1046
1136
 
1047
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1137
+ def to_lightgbm(self) -> Any:
1138
+ raise exceptions.SnowflakeMLException(
1139
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1140
+ original_exception=AttributeError(
1141
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1142
+ "to_lightgbm()",
1143
+ "to_sklearn()"
1144
+ )
1145
+ ),
1146
+ )
1147
+
1148
+ def _get_dependencies(self) -> List[str]:
1149
+ return self._deps
1150
+
1151
+
1152
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1048
1153
  self._model_signature_dict = dict()
1049
1154
 
1050
1155
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1051
1156
 
1052
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1157
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1053
1158
  outputs: List[BaseFeatureSpec] = []
1054
1159
  if hasattr(self, "predict"):
1055
1160
  # keep mypy happy
1056
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1161
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1057
1162
  # For classifier, the type of predict is the same as the type of label
1058
- if self._sklearn_object._estimator_type == 'classifier':
1059
- # label columns is the desired type for output
1163
+ if self._sklearn_object._estimator_type == "classifier":
1164
+ # label columns is the desired type for output
1060
1165
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1061
1166
  # rename the output columns
1062
1167
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1063
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1064
- ([] if self._drop_input_cols else inputs)
1065
- + outputs)
1168
+ self._model_signature_dict["predict"] = ModelSignature(
1169
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1170
+ )
1066
1171
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1067
1172
  # For outlier models, returns -1 for outliers and 1 for inliers.
1068
- # Clusterer returns int64 cluster labels.
1173
+ # Clusterer returns int64 cluster labels.
1069
1174
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1070
1175
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1071
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1072
- ([] if self._drop_input_cols else inputs)
1073
- + outputs)
1074
-
1176
+ self._model_signature_dict["predict"] = ModelSignature(
1177
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1178
+ )
1179
+
1075
1180
  # For regressor, the type of predict is float64
1076
- elif self._sklearn_object._estimator_type == 'regressor':
1181
+ elif self._sklearn_object._estimator_type == "regressor":
1077
1182
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1078
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1079
- ([] if self._drop_input_cols else inputs)
1080
- + outputs)
1081
-
1183
+ self._model_signature_dict["predict"] = ModelSignature(
1184
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1185
+ )
1186
+
1082
1187
  for prob_func in PROB_FUNCTIONS:
1083
1188
  if hasattr(self, prob_func):
1084
1189
  output_cols_prefix: str = f"{prob_func}_"
1085
1190
  output_column_names = self._get_output_column_names(output_cols_prefix)
1086
1191
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1087
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1088
- ([] if self._drop_input_cols else inputs)
1089
- + outputs)
1192
+ self._model_signature_dict[prob_func] = ModelSignature(
1193
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1194
+ )
1090
1195
 
1091
1196
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1092
1197
  items = list(self._model_signature_dict.items())
@@ -1099,10 +1204,10 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1099
1204
  """Returns model signature of current class.
1100
1205
 
1101
1206
  Raises:
1102
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1207
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1103
1208
 
1104
1209
  Returns:
1105
- Dict[str, ModelSignature]: each method and its input output signature
1210
+ Dict with each method and its input output signature
1106
1211
  """
1107
1212
  if self._model_signature_dict is None:
1108
1213
  raise exceptions.SnowflakeMLException(
@@ -1110,35 +1215,3 @@ class MiniBatchDictionaryLearning(BaseTransformer):
1110
1215
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1111
1216
  )
1112
1217
  return self._model_signature_dict
1113
-
1114
- def to_sklearn(self) -> Any:
1115
- """Get sklearn.decomposition.MiniBatchDictionaryLearning object.
1116
- """
1117
- if self._sklearn_object is None:
1118
- self._sklearn_object = self._create_sklearn_object()
1119
- return self._sklearn_object
1120
-
1121
- def to_xgboost(self) -> Any:
1122
- raise exceptions.SnowflakeMLException(
1123
- error_code=error_codes.METHOD_NOT_ALLOWED,
1124
- original_exception=AttributeError(
1125
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
- "to_xgboost()",
1127
- "to_sklearn()"
1128
- )
1129
- ),
1130
- )
1131
-
1132
- def to_lightgbm(self) -> Any:
1133
- raise exceptions.SnowflakeMLException(
1134
- error_code=error_codes.METHOD_NOT_ALLOWED,
1135
- original_exception=AttributeError(
1136
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1137
- "to_lightgbm()",
1138
- "to_sklearn()"
1139
- )
1140
- ),
1141
- )
1142
-
1143
- def _get_dependencies(self) -> List[str]:
1144
- return self._deps