snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LassoLarsCV(BaseTransformer):
71
64
  r"""Cross-validated Lasso, using the LARS algorithm
72
65
  For more details on this class, see [sklearn.linear_model.LassoLarsCV]
@@ -283,12 +276,7 @@ class LassoLarsCV(BaseTransformer):
283
276
  )
284
277
  return selected_cols
285
278
 
286
- @telemetry.send_api_usage_telemetry(
287
- project=_PROJECT,
288
- subproject=_SUBPROJECT,
289
- custom_tags=dict([("autogen", True)]),
290
- )
291
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoLarsCV":
279
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LassoLarsCV":
292
280
  """Fit the model using X, y as training data
293
281
  For more details on this function, see [sklearn.linear_model.LassoLarsCV.fit]
294
282
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LassoLarsCV.html#sklearn.linear_model.LassoLarsCV.fit)
@@ -315,12 +303,14 @@ class LassoLarsCV(BaseTransformer):
315
303
 
316
304
  self._snowpark_cols = dataset.select(self.input_cols).columns
317
305
 
318
- # If we are already in a stored procedure, no need to kick off another one.
306
+ # If we are already in a stored procedure, no need to kick off another one.
319
307
  if SNOWML_SPROC_ENV in os.environ:
320
308
  statement_params = telemetry.get_function_usage_statement_params(
321
309
  project=_PROJECT,
322
310
  subproject=_SUBPROJECT,
323
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LassoLarsCV.__class__.__name__),
311
+ function_name=telemetry.get_statement_params_full_func_name(
312
+ inspect.currentframe(), LassoLarsCV.__class__.__name__
313
+ ),
324
314
  api_calls=[Session.call],
325
315
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
326
316
  )
@@ -341,27 +331,24 @@ class LassoLarsCV(BaseTransformer):
341
331
  )
342
332
  self._sklearn_object = model_trainer.train()
343
333
  self._is_fitted = True
344
- self._get_model_signatures(dataset)
334
+ self._generate_model_signatures(dataset)
345
335
  return self
346
336
 
347
337
  def _batch_inference_validate_snowpark(
348
338
  self,
349
339
  dataset: DataFrame,
350
340
  inference_method: str,
351
- ) -> List[str]:
352
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
353
- return the available package that exists in the snowflake anaconda channel
341
+ ) -> None:
342
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
354
343
 
355
344
  Args:
356
345
  dataset: snowpark dataframe
357
346
  inference_method: the inference method such as predict, score...
358
-
347
+
359
348
  Raises:
360
349
  SnowflakeMLException: If the estimator is not fitted, raise error
361
350
  SnowflakeMLException: If the session is None, raise error
362
351
 
363
- Returns:
364
- A list of available package that exists in the snowflake anaconda channel
365
352
  """
366
353
  if not self._is_fitted:
367
354
  raise exceptions.SnowflakeMLException(
@@ -379,9 +366,7 @@ class LassoLarsCV(BaseTransformer):
379
366
  "Session must not specified for snowpark dataset."
380
367
  ),
381
368
  )
382
- # Validate that key package version in user workspace are supported in snowflake conda channel
383
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
384
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
369
+
385
370
 
386
371
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
387
372
  @telemetry.send_api_usage_telemetry(
@@ -417,7 +402,9 @@ class LassoLarsCV(BaseTransformer):
417
402
  # when it is classifier, infer the datatype from label columns
418
403
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
419
404
  # Batch inference takes a single expected output column type. Use the first columns type for now.
420
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
405
+ label_cols_signatures = [
406
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
407
+ ]
421
408
  if len(label_cols_signatures) == 0:
422
409
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
423
410
  raise exceptions.SnowflakeMLException(
@@ -425,25 +412,23 @@ class LassoLarsCV(BaseTransformer):
425
412
  original_exception=ValueError(error_str),
426
413
  )
427
414
 
428
- expected_type_inferred = convert_sp_to_sf_type(
429
- label_cols_signatures[0].as_snowpark_type()
430
- )
415
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
431
416
 
432
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
433
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
417
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
418
+ self._deps = self._get_dependencies()
419
+ assert isinstance(
420
+ dataset._session, Session
421
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
434
422
 
435
423
  transform_kwargs = dict(
436
- session = dataset._session,
437
- dependencies = self._deps,
438
- drop_input_cols = self._drop_input_cols,
439
- expected_output_cols_type = expected_type_inferred,
424
+ session=dataset._session,
425
+ dependencies=self._deps,
426
+ drop_input_cols=self._drop_input_cols,
427
+ expected_output_cols_type=expected_type_inferred,
440
428
  )
441
429
 
442
430
  elif isinstance(dataset, pd.DataFrame):
443
- transform_kwargs = dict(
444
- snowpark_input_cols = self._snowpark_cols,
445
- drop_input_cols = self._drop_input_cols
446
- )
431
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
447
432
 
448
433
  transform_handlers = ModelTransformerBuilder.build(
449
434
  dataset=dataset,
@@ -483,7 +468,7 @@ class LassoLarsCV(BaseTransformer):
483
468
  Transformed dataset.
484
469
  """
485
470
  super()._check_dataset_type(dataset)
486
- inference_method="transform"
471
+ inference_method = "transform"
487
472
 
488
473
  # This dictionary contains optional kwargs for batch inference. These kwargs
489
474
  # are specific to the type of dataset used.
@@ -513,24 +498,19 @@ class LassoLarsCV(BaseTransformer):
513
498
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
514
499
  expected_dtype = convert_sp_to_sf_type(output_types[0])
515
500
 
516
- self._deps = self._batch_inference_validate_snowpark(
517
- dataset=dataset,
518
- inference_method=inference_method,
519
- )
501
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
502
+ self._deps = self._get_dependencies()
520
503
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
521
504
 
522
505
  transform_kwargs = dict(
523
- session = dataset._session,
524
- dependencies = self._deps,
525
- drop_input_cols = self._drop_input_cols,
526
- expected_output_cols_type = expected_dtype,
506
+ session=dataset._session,
507
+ dependencies=self._deps,
508
+ drop_input_cols=self._drop_input_cols,
509
+ expected_output_cols_type=expected_dtype,
527
510
  )
528
511
 
529
512
  elif isinstance(dataset, pd.DataFrame):
530
- transform_kwargs = dict(
531
- snowpark_input_cols = self._snowpark_cols,
532
- drop_input_cols = self._drop_input_cols
533
- )
513
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
534
514
 
535
515
  transform_handlers = ModelTransformerBuilder.build(
536
516
  dataset=dataset,
@@ -549,7 +529,11 @@ class LassoLarsCV(BaseTransformer):
549
529
  return output_df
550
530
 
551
531
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
552
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
532
+ def fit_predict(
533
+ self,
534
+ dataset: Union[DataFrame, pd.DataFrame],
535
+ output_cols_prefix: str = "fit_predict_",
536
+ ) -> Union[DataFrame, pd.DataFrame]:
553
537
  """ Method not supported for this class.
554
538
 
555
539
 
@@ -574,22 +558,104 @@ class LassoLarsCV(BaseTransformer):
574
558
  )
575
559
  output_result, fitted_estimator = model_trainer.train_fit_predict(
576
560
  drop_input_cols=self._drop_input_cols,
577
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
561
+ expected_output_cols_list=(
562
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
563
+ ),
578
564
  )
579
565
  self._sklearn_object = fitted_estimator
580
566
  self._is_fitted = True
581
567
  return output_result
582
568
 
569
+
570
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
571
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
572
+ """ Method not supported for this class.
573
+
583
574
 
584
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
585
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
586
- """
575
+ Raises:
576
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
577
+
578
+ Args:
579
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
580
+ Snowpark or Pandas DataFrame.
581
+ output_cols_prefix: Prefix for the response columns
587
582
  Returns:
588
583
  Transformed dataset.
589
584
  """
590
- self.fit(dataset)
591
- assert self._sklearn_object is not None
592
- return self._sklearn_object.embedding_
585
+ self._infer_input_output_cols(dataset)
586
+ super()._check_dataset_type(dataset)
587
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
588
+ estimator=self._sklearn_object,
589
+ dataset=dataset,
590
+ input_cols=self.input_cols,
591
+ label_cols=self.label_cols,
592
+ sample_weight_col=self.sample_weight_col,
593
+ autogenerated=self._autogenerated,
594
+ subproject=_SUBPROJECT,
595
+ )
596
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
597
+ drop_input_cols=self._drop_input_cols,
598
+ expected_output_cols_list=self.output_cols,
599
+ )
600
+ self._sklearn_object = fitted_estimator
601
+ self._is_fitted = True
602
+ return output_result
603
+
604
+
605
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
606
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
607
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
608
+ """
609
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
610
+ # The following condition is introduced for kneighbors methods, and not used in other methods
611
+ if output_cols:
612
+ output_cols = [
613
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
614
+ for c in output_cols
615
+ ]
616
+ elif getattr(self._sklearn_object, "classes_", None) is None:
617
+ output_cols = [output_cols_prefix]
618
+ elif self._sklearn_object is not None:
619
+ classes = self._sklearn_object.classes_
620
+ if isinstance(classes, numpy.ndarray):
621
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
622
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
623
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
624
+ output_cols = []
625
+ for i, cl in enumerate(classes):
626
+ # For binary classification, there is only one output column for each class
627
+ # ndarray as the two classes are complementary.
628
+ if len(cl) == 2:
629
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
630
+ else:
631
+ output_cols.extend([
632
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
633
+ ])
634
+ else:
635
+ output_cols = []
636
+
637
+ # Make sure column names are valid snowflake identifiers.
638
+ assert output_cols is not None # Make MyPy happy
639
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
640
+
641
+ return rv
642
+
643
+ def _align_expected_output_names(
644
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
645
+ ) -> List[str]:
646
+ # in case the inferred output column names dimension is different
647
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
648
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
649
+ output_df_columns = list(output_df_pd.columns)
650
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
651
+ if self.sample_weight_col:
652
+ output_df_columns_set -= set(self.sample_weight_col)
653
+ # if the dimension of inferred output column names is correct; use it
654
+ if len(expected_output_cols_list) == len(output_df_columns_set):
655
+ return expected_output_cols_list
656
+ # otherwise, use the sklearn estimator's output
657
+ else:
658
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
593
659
 
594
660
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
595
661
  @telemetry.send_api_usage_telemetry(
@@ -621,24 +687,26 @@ class LassoLarsCV(BaseTransformer):
621
687
  # are specific to the type of dataset used.
622
688
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
623
689
 
690
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
691
+
624
692
  if isinstance(dataset, DataFrame):
625
- self._deps = self._batch_inference_validate_snowpark(
626
- dataset=dataset,
627
- inference_method=inference_method,
628
- )
629
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
693
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
694
+ self._deps = self._get_dependencies()
695
+ assert isinstance(
696
+ dataset._session, Session
697
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
630
698
  transform_kwargs = dict(
631
699
  session=dataset._session,
632
700
  dependencies=self._deps,
633
- drop_input_cols = self._drop_input_cols,
701
+ drop_input_cols=self._drop_input_cols,
634
702
  expected_output_cols_type="float",
635
703
  )
704
+ expected_output_cols = self._align_expected_output_names(
705
+ inference_method, dataset, expected_output_cols, output_cols_prefix
706
+ )
636
707
 
637
708
  elif isinstance(dataset, pd.DataFrame):
638
- transform_kwargs = dict(
639
- snowpark_input_cols = self._snowpark_cols,
640
- drop_input_cols = self._drop_input_cols
641
- )
709
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
642
710
 
643
711
  transform_handlers = ModelTransformerBuilder.build(
644
712
  dataset=dataset,
@@ -650,7 +718,7 @@ class LassoLarsCV(BaseTransformer):
650
718
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
651
719
  inference_method=inference_method,
652
720
  input_cols=self.input_cols,
653
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
721
+ expected_output_cols=expected_output_cols,
654
722
  **transform_kwargs
655
723
  )
656
724
  return output_df
@@ -680,29 +748,30 @@ class LassoLarsCV(BaseTransformer):
680
748
  Output dataset with log probability of the sample for each class in the model.
681
749
  """
682
750
  super()._check_dataset_type(dataset)
683
- inference_method="predict_log_proba"
751
+ inference_method = "predict_log_proba"
752
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
684
753
 
685
754
  # This dictionary contains optional kwargs for batch inference. These kwargs
686
755
  # are specific to the type of dataset used.
687
756
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
688
757
 
689
758
  if isinstance(dataset, DataFrame):
690
- self._deps = self._batch_inference_validate_snowpark(
691
- dataset=dataset,
692
- inference_method=inference_method,
693
- )
694
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
759
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
760
+ self._deps = self._get_dependencies()
761
+ assert isinstance(
762
+ dataset._session, Session
763
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
764
  transform_kwargs = dict(
696
765
  session=dataset._session,
697
766
  dependencies=self._deps,
698
- drop_input_cols = self._drop_input_cols,
767
+ drop_input_cols=self._drop_input_cols,
699
768
  expected_output_cols_type="float",
700
769
  )
770
+ expected_output_cols = self._align_expected_output_names(
771
+ inference_method, dataset, expected_output_cols, output_cols_prefix
772
+ )
701
773
  elif isinstance(dataset, pd.DataFrame):
702
- transform_kwargs = dict(
703
- snowpark_input_cols = self._snowpark_cols,
704
- drop_input_cols = self._drop_input_cols
705
- )
774
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
706
775
 
707
776
  transform_handlers = ModelTransformerBuilder.build(
708
777
  dataset=dataset,
@@ -715,7 +784,7 @@ class LassoLarsCV(BaseTransformer):
715
784
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
716
785
  inference_method=inference_method,
717
786
  input_cols=self.input_cols,
718
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
787
+ expected_output_cols=expected_output_cols,
719
788
  **transform_kwargs
720
789
  )
721
790
  return output_df
@@ -741,30 +810,32 @@ class LassoLarsCV(BaseTransformer):
741
810
  Output dataset with results of the decision function for the samples in input dataset.
742
811
  """
743
812
  super()._check_dataset_type(dataset)
744
- inference_method="decision_function"
813
+ inference_method = "decision_function"
745
814
 
746
815
  # This dictionary contains optional kwargs for batch inference. These kwargs
747
816
  # are specific to the type of dataset used.
748
817
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
749
818
 
819
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
820
+
750
821
  if isinstance(dataset, DataFrame):
751
- self._deps = self._batch_inference_validate_snowpark(
752
- dataset=dataset,
753
- inference_method=inference_method,
754
- )
755
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
822
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
823
+ self._deps = self._get_dependencies()
824
+ assert isinstance(
825
+ dataset._session, Session
826
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
827
  transform_kwargs = dict(
757
828
  session=dataset._session,
758
829
  dependencies=self._deps,
759
- drop_input_cols = self._drop_input_cols,
830
+ drop_input_cols=self._drop_input_cols,
760
831
  expected_output_cols_type="float",
761
832
  )
833
+ expected_output_cols = self._align_expected_output_names(
834
+ inference_method, dataset, expected_output_cols, output_cols_prefix
835
+ )
762
836
 
763
837
  elif isinstance(dataset, pd.DataFrame):
764
- transform_kwargs = dict(
765
- snowpark_input_cols = self._snowpark_cols,
766
- drop_input_cols = self._drop_input_cols
767
- )
838
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
768
839
 
769
840
  transform_handlers = ModelTransformerBuilder.build(
770
841
  dataset=dataset,
@@ -777,7 +848,7 @@ class LassoLarsCV(BaseTransformer):
777
848
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
778
849
  inference_method=inference_method,
779
850
  input_cols=self.input_cols,
780
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
851
+ expected_output_cols=expected_output_cols,
781
852
  **transform_kwargs
782
853
  )
783
854
  return output_df
@@ -806,17 +877,17 @@ class LassoLarsCV(BaseTransformer):
806
877
  Output dataset with probability of the sample for each class in the model.
807
878
  """
808
879
  super()._check_dataset_type(dataset)
809
- inference_method="score_samples"
880
+ inference_method = "score_samples"
810
881
 
811
882
  # This dictionary contains optional kwargs for batch inference. These kwargs
812
883
  # are specific to the type of dataset used.
813
884
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
814
885
 
886
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
887
+
815
888
  if isinstance(dataset, DataFrame):
816
- self._deps = self._batch_inference_validate_snowpark(
817
- dataset=dataset,
818
- inference_method=inference_method,
819
- )
889
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
890
+ self._deps = self._get_dependencies()
820
891
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
821
892
  transform_kwargs = dict(
822
893
  session=dataset._session,
@@ -824,6 +895,9 @@ class LassoLarsCV(BaseTransformer):
824
895
  drop_input_cols = self._drop_input_cols,
825
896
  expected_output_cols_type="float",
826
897
  )
898
+ expected_output_cols = self._align_expected_output_names(
899
+ inference_method, dataset, expected_output_cols, output_cols_prefix
900
+ )
827
901
 
828
902
  elif isinstance(dataset, pd.DataFrame):
829
903
  transform_kwargs = dict(
@@ -842,7 +916,7 @@ class LassoLarsCV(BaseTransformer):
842
916
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
843
917
  inference_method=inference_method,
844
918
  input_cols=self.input_cols,
845
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
919
+ expected_output_cols=expected_output_cols,
846
920
  **transform_kwargs
847
921
  )
848
922
  return output_df
@@ -877,17 +951,15 @@ class LassoLarsCV(BaseTransformer):
877
951
  transform_kwargs: ScoreKwargsTypedDict = dict()
878
952
 
879
953
  if isinstance(dataset, DataFrame):
880
- self._deps = self._batch_inference_validate_snowpark(
881
- dataset=dataset,
882
- inference_method="score",
883
- )
954
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
955
+ self._deps = self._get_dependencies()
884
956
  selected_cols = self._get_active_columns()
885
957
  if len(selected_cols) > 0:
886
958
  dataset = dataset.select(selected_cols)
887
959
  assert isinstance(dataset._session, Session) # keep mypy happy
888
960
  transform_kwargs = dict(
889
961
  session=dataset._session,
890
- dependencies=["snowflake-snowpark-python"] + self._deps,
962
+ dependencies=self._deps,
891
963
  score_sproc_imports=['sklearn'],
892
964
  )
893
965
  elif isinstance(dataset, pd.DataFrame):
@@ -952,11 +1024,8 @@ class LassoLarsCV(BaseTransformer):
952
1024
 
953
1025
  if isinstance(dataset, DataFrame):
954
1026
 
955
- self._deps = self._batch_inference_validate_snowpark(
956
- dataset=dataset,
957
- inference_method=inference_method,
958
-
959
- )
1027
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1028
+ self._deps = self._get_dependencies()
960
1029
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
961
1030
  transform_kwargs = dict(
962
1031
  session = dataset._session,
@@ -989,50 +1058,84 @@ class LassoLarsCV(BaseTransformer):
989
1058
  )
990
1059
  return output_df
991
1060
 
1061
+
1062
+
1063
+ def to_sklearn(self) -> Any:
1064
+ """Get sklearn.linear_model.LassoLarsCV object.
1065
+ """
1066
+ if self._sklearn_object is None:
1067
+ self._sklearn_object = self._create_sklearn_object()
1068
+ return self._sklearn_object
1069
+
1070
+ def to_xgboost(self) -> Any:
1071
+ raise exceptions.SnowflakeMLException(
1072
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1073
+ original_exception=AttributeError(
1074
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1075
+ "to_xgboost()",
1076
+ "to_sklearn()"
1077
+ )
1078
+ ),
1079
+ )
1080
+
1081
+ def to_lightgbm(self) -> Any:
1082
+ raise exceptions.SnowflakeMLException(
1083
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1084
+ original_exception=AttributeError(
1085
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
+ "to_lightgbm()",
1087
+ "to_sklearn()"
1088
+ )
1089
+ ),
1090
+ )
1091
+
1092
+ def _get_dependencies(self) -> List[str]:
1093
+ return self._deps
1094
+
992
1095
 
993
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1096
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
994
1097
  self._model_signature_dict = dict()
995
1098
 
996
1099
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
997
1100
 
998
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1101
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
999
1102
  outputs: List[BaseFeatureSpec] = []
1000
1103
  if hasattr(self, "predict"):
1001
1104
  # keep mypy happy
1002
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1105
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1003
1106
  # For classifier, the type of predict is the same as the type of label
1004
- if self._sklearn_object._estimator_type == 'classifier':
1005
- # label columns is the desired type for output
1107
+ if self._sklearn_object._estimator_type == "classifier":
1108
+ # label columns is the desired type for output
1006
1109
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1007
1110
  # rename the output columns
1008
1111
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1009
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1112
+ self._model_signature_dict["predict"] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1012
1115
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1013
1116
  # For outlier models, returns -1 for outliers and 1 for inliers.
1014
- # Clusterer returns int64 cluster labels.
1117
+ # Clusterer returns int64 cluster labels.
1015
1118
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1016
1119
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1017
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1020
-
1120
+ self._model_signature_dict["predict"] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1123
+
1021
1124
  # For regressor, the type of predict is float64
1022
- elif self._sklearn_object._estimator_type == 'regressor':
1125
+ elif self._sklearn_object._estimator_type == "regressor":
1023
1126
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1024
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1025
- ([] if self._drop_input_cols else inputs)
1026
- + outputs)
1027
-
1127
+ self._model_signature_dict["predict"] = ModelSignature(
1128
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1129
+ )
1130
+
1028
1131
  for prob_func in PROB_FUNCTIONS:
1029
1132
  if hasattr(self, prob_func):
1030
1133
  output_cols_prefix: str = f"{prob_func}_"
1031
1134
  output_column_names = self._get_output_column_names(output_cols_prefix)
1032
1135
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1033
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1034
- ([] if self._drop_input_cols else inputs)
1035
- + outputs)
1136
+ self._model_signature_dict[prob_func] = ModelSignature(
1137
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1138
+ )
1036
1139
 
1037
1140
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1038
1141
  items = list(self._model_signature_dict.items())
@@ -1045,10 +1148,10 @@ class LassoLarsCV(BaseTransformer):
1045
1148
  """Returns model signature of current class.
1046
1149
 
1047
1150
  Raises:
1048
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1151
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1049
1152
 
1050
1153
  Returns:
1051
- Dict[str, ModelSignature]: each method and its input output signature
1154
+ Dict with each method and its input output signature
1052
1155
  """
1053
1156
  if self._model_signature_dict is None:
1054
1157
  raise exceptions.SnowflakeMLException(
@@ -1056,35 +1159,3 @@ class LassoLarsCV(BaseTransformer):
1056
1159
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1057
1160
  )
1058
1161
  return self._model_signature_dict
1059
-
1060
- def to_sklearn(self) -> Any:
1061
- """Get sklearn.linear_model.LassoLarsCV object.
1062
- """
1063
- if self._sklearn_object is None:
1064
- self._sklearn_object = self._create_sklearn_object()
1065
- return self._sklearn_object
1066
-
1067
- def to_xgboost(self) -> Any:
1068
- raise exceptions.SnowflakeMLException(
1069
- error_code=error_codes.METHOD_NOT_ALLOWED,
1070
- original_exception=AttributeError(
1071
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1072
- "to_xgboost()",
1073
- "to_sklearn()"
1074
- )
1075
- ),
1076
- )
1077
-
1078
- def to_lightgbm(self) -> Any:
1079
- raise exceptions.SnowflakeMLException(
1080
- error_code=error_codes.METHOD_NOT_ALLOWED,
1081
- original_exception=AttributeError(
1082
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1083
- "to_lightgbm()",
1084
- "to_sklearn()"
1085
- )
1086
- ),
1087
- )
1088
-
1089
- def _get_dependencies(self) -> List[str]:
1090
- return self._deps