snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class LogisticRegressionCV(BaseTransformer):
|
71
64
|
r"""Logistic Regression CV (aka logit, MaxEnt) classifier
|
72
65
|
For more details on this class, see [sklearn.linear_model.LogisticRegressionCV]
|
@@ -354,12 +347,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
354
347
|
)
|
355
348
|
return selected_cols
|
356
349
|
|
357
|
-
|
358
|
-
project=_PROJECT,
|
359
|
-
subproject=_SUBPROJECT,
|
360
|
-
custom_tags=dict([("autogen", True)]),
|
361
|
-
)
|
362
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
|
350
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
|
363
351
|
"""Fit the model according to the given training data
|
364
352
|
For more details on this function, see [sklearn.linear_model.LogisticRegressionCV.fit]
|
365
353
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV.fit)
|
@@ -386,12 +374,14 @@ class LogisticRegressionCV(BaseTransformer):
|
|
386
374
|
|
387
375
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
388
376
|
|
389
|
-
|
377
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
390
378
|
if SNOWML_SPROC_ENV in os.environ:
|
391
379
|
statement_params = telemetry.get_function_usage_statement_params(
|
392
380
|
project=_PROJECT,
|
393
381
|
subproject=_SUBPROJECT,
|
394
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
382
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
383
|
+
inspect.currentframe(), LogisticRegressionCV.__class__.__name__
|
384
|
+
),
|
395
385
|
api_calls=[Session.call],
|
396
386
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
397
387
|
)
|
@@ -412,27 +402,24 @@ class LogisticRegressionCV(BaseTransformer):
|
|
412
402
|
)
|
413
403
|
self._sklearn_object = model_trainer.train()
|
414
404
|
self._is_fitted = True
|
415
|
-
self.
|
405
|
+
self._generate_model_signatures(dataset)
|
416
406
|
return self
|
417
407
|
|
418
408
|
def _batch_inference_validate_snowpark(
|
419
409
|
self,
|
420
410
|
dataset: DataFrame,
|
421
411
|
inference_method: str,
|
422
|
-
) ->
|
423
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
424
|
-
return the available package that exists in the snowflake anaconda channel
|
412
|
+
) -> None:
|
413
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
425
414
|
|
426
415
|
Args:
|
427
416
|
dataset: snowpark dataframe
|
428
417
|
inference_method: the inference method such as predict, score...
|
429
|
-
|
418
|
+
|
430
419
|
Raises:
|
431
420
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
432
421
|
SnowflakeMLException: If the session is None, raise error
|
433
422
|
|
434
|
-
Returns:
|
435
|
-
A list of available package that exists in the snowflake anaconda channel
|
436
423
|
"""
|
437
424
|
if not self._is_fitted:
|
438
425
|
raise exceptions.SnowflakeMLException(
|
@@ -450,9 +437,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
450
437
|
"Session must not specified for snowpark dataset."
|
451
438
|
),
|
452
439
|
)
|
453
|
-
|
454
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
455
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
440
|
+
|
456
441
|
|
457
442
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
458
443
|
@telemetry.send_api_usage_telemetry(
|
@@ -488,7 +473,9 @@ class LogisticRegressionCV(BaseTransformer):
|
|
488
473
|
# when it is classifier, infer the datatype from label columns
|
489
474
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
490
475
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
491
|
-
label_cols_signatures = [
|
476
|
+
label_cols_signatures = [
|
477
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
478
|
+
]
|
492
479
|
if len(label_cols_signatures) == 0:
|
493
480
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
494
481
|
raise exceptions.SnowflakeMLException(
|
@@ -496,25 +483,23 @@ class LogisticRegressionCV(BaseTransformer):
|
|
496
483
|
original_exception=ValueError(error_str),
|
497
484
|
)
|
498
485
|
|
499
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
500
|
-
label_cols_signatures[0].as_snowpark_type()
|
501
|
-
)
|
486
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
502
487
|
|
503
|
-
self.
|
504
|
-
|
488
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
489
|
+
self._deps = self._get_dependencies()
|
490
|
+
assert isinstance(
|
491
|
+
dataset._session, Session
|
492
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
505
493
|
|
506
494
|
transform_kwargs = dict(
|
507
|
-
session
|
508
|
-
dependencies
|
509
|
-
drop_input_cols
|
510
|
-
expected_output_cols_type
|
495
|
+
session=dataset._session,
|
496
|
+
dependencies=self._deps,
|
497
|
+
drop_input_cols=self._drop_input_cols,
|
498
|
+
expected_output_cols_type=expected_type_inferred,
|
511
499
|
)
|
512
500
|
|
513
501
|
elif isinstance(dataset, pd.DataFrame):
|
514
|
-
transform_kwargs = dict(
|
515
|
-
snowpark_input_cols = self._snowpark_cols,
|
516
|
-
drop_input_cols = self._drop_input_cols
|
517
|
-
)
|
502
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
518
503
|
|
519
504
|
transform_handlers = ModelTransformerBuilder.build(
|
520
505
|
dataset=dataset,
|
@@ -554,7 +539,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
554
539
|
Transformed dataset.
|
555
540
|
"""
|
556
541
|
super()._check_dataset_type(dataset)
|
557
|
-
inference_method="transform"
|
542
|
+
inference_method = "transform"
|
558
543
|
|
559
544
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
560
545
|
# are specific to the type of dataset used.
|
@@ -584,24 +569,19 @@ class LogisticRegressionCV(BaseTransformer):
|
|
584
569
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
585
570
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
586
571
|
|
587
|
-
self.
|
588
|
-
|
589
|
-
inference_method=inference_method,
|
590
|
-
)
|
572
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
573
|
+
self._deps = self._get_dependencies()
|
591
574
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
592
575
|
|
593
576
|
transform_kwargs = dict(
|
594
|
-
session
|
595
|
-
dependencies
|
596
|
-
drop_input_cols
|
597
|
-
expected_output_cols_type
|
577
|
+
session=dataset._session,
|
578
|
+
dependencies=self._deps,
|
579
|
+
drop_input_cols=self._drop_input_cols,
|
580
|
+
expected_output_cols_type=expected_dtype,
|
598
581
|
)
|
599
582
|
|
600
583
|
elif isinstance(dataset, pd.DataFrame):
|
601
|
-
transform_kwargs = dict(
|
602
|
-
snowpark_input_cols = self._snowpark_cols,
|
603
|
-
drop_input_cols = self._drop_input_cols
|
604
|
-
)
|
584
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
605
585
|
|
606
586
|
transform_handlers = ModelTransformerBuilder.build(
|
607
587
|
dataset=dataset,
|
@@ -620,7 +600,11 @@ class LogisticRegressionCV(BaseTransformer):
|
|
620
600
|
return output_df
|
621
601
|
|
622
602
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
623
|
-
def fit_predict(
|
603
|
+
def fit_predict(
|
604
|
+
self,
|
605
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
606
|
+
output_cols_prefix: str = "fit_predict_",
|
607
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
624
608
|
""" Method not supported for this class.
|
625
609
|
|
626
610
|
|
@@ -645,22 +629,104 @@ class LogisticRegressionCV(BaseTransformer):
|
|
645
629
|
)
|
646
630
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
647
631
|
drop_input_cols=self._drop_input_cols,
|
648
|
-
expected_output_cols_list=
|
632
|
+
expected_output_cols_list=(
|
633
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
634
|
+
),
|
649
635
|
)
|
650
636
|
self._sklearn_object = fitted_estimator
|
651
637
|
self._is_fitted = True
|
652
638
|
return output_result
|
653
639
|
|
640
|
+
|
641
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
642
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
643
|
+
""" Method not supported for this class.
|
644
|
+
|
654
645
|
|
655
|
-
|
656
|
-
|
657
|
-
|
646
|
+
Raises:
|
647
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
648
|
+
|
649
|
+
Args:
|
650
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
651
|
+
Snowpark or Pandas DataFrame.
|
652
|
+
output_cols_prefix: Prefix for the response columns
|
658
653
|
Returns:
|
659
654
|
Transformed dataset.
|
660
655
|
"""
|
661
|
-
self.
|
662
|
-
|
663
|
-
|
656
|
+
self._infer_input_output_cols(dataset)
|
657
|
+
super()._check_dataset_type(dataset)
|
658
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
659
|
+
estimator=self._sklearn_object,
|
660
|
+
dataset=dataset,
|
661
|
+
input_cols=self.input_cols,
|
662
|
+
label_cols=self.label_cols,
|
663
|
+
sample_weight_col=self.sample_weight_col,
|
664
|
+
autogenerated=self._autogenerated,
|
665
|
+
subproject=_SUBPROJECT,
|
666
|
+
)
|
667
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
668
|
+
drop_input_cols=self._drop_input_cols,
|
669
|
+
expected_output_cols_list=self.output_cols,
|
670
|
+
)
|
671
|
+
self._sklearn_object = fitted_estimator
|
672
|
+
self._is_fitted = True
|
673
|
+
return output_result
|
674
|
+
|
675
|
+
|
676
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
677
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
678
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
679
|
+
"""
|
680
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
681
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
682
|
+
if output_cols:
|
683
|
+
output_cols = [
|
684
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
685
|
+
for c in output_cols
|
686
|
+
]
|
687
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
688
|
+
output_cols = [output_cols_prefix]
|
689
|
+
elif self._sklearn_object is not None:
|
690
|
+
classes = self._sklearn_object.classes_
|
691
|
+
if isinstance(classes, numpy.ndarray):
|
692
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
693
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
694
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
695
|
+
output_cols = []
|
696
|
+
for i, cl in enumerate(classes):
|
697
|
+
# For binary classification, there is only one output column for each class
|
698
|
+
# ndarray as the two classes are complementary.
|
699
|
+
if len(cl) == 2:
|
700
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
701
|
+
else:
|
702
|
+
output_cols.extend([
|
703
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
704
|
+
])
|
705
|
+
else:
|
706
|
+
output_cols = []
|
707
|
+
|
708
|
+
# Make sure column names are valid snowflake identifiers.
|
709
|
+
assert output_cols is not None # Make MyPy happy
|
710
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
711
|
+
|
712
|
+
return rv
|
713
|
+
|
714
|
+
def _align_expected_output_names(
|
715
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
716
|
+
) -> List[str]:
|
717
|
+
# in case the inferred output column names dimension is different
|
718
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
719
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
720
|
+
output_df_columns = list(output_df_pd.columns)
|
721
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
722
|
+
if self.sample_weight_col:
|
723
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
724
|
+
# if the dimension of inferred output column names is correct; use it
|
725
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
726
|
+
return expected_output_cols_list
|
727
|
+
# otherwise, use the sklearn estimator's output
|
728
|
+
else:
|
729
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
664
730
|
|
665
731
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
666
732
|
@telemetry.send_api_usage_telemetry(
|
@@ -694,24 +760,26 @@ class LogisticRegressionCV(BaseTransformer):
|
|
694
760
|
# are specific to the type of dataset used.
|
695
761
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
696
762
|
|
763
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
764
|
+
|
697
765
|
if isinstance(dataset, DataFrame):
|
698
|
-
self.
|
699
|
-
|
700
|
-
|
701
|
-
|
702
|
-
|
766
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
767
|
+
self._deps = self._get_dependencies()
|
768
|
+
assert isinstance(
|
769
|
+
dataset._session, Session
|
770
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
703
771
|
transform_kwargs = dict(
|
704
772
|
session=dataset._session,
|
705
773
|
dependencies=self._deps,
|
706
|
-
drop_input_cols
|
774
|
+
drop_input_cols=self._drop_input_cols,
|
707
775
|
expected_output_cols_type="float",
|
708
776
|
)
|
777
|
+
expected_output_cols = self._align_expected_output_names(
|
778
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
779
|
+
)
|
709
780
|
|
710
781
|
elif isinstance(dataset, pd.DataFrame):
|
711
|
-
transform_kwargs = dict(
|
712
|
-
snowpark_input_cols = self._snowpark_cols,
|
713
|
-
drop_input_cols = self._drop_input_cols
|
714
|
-
)
|
782
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
715
783
|
|
716
784
|
transform_handlers = ModelTransformerBuilder.build(
|
717
785
|
dataset=dataset,
|
@@ -723,7 +791,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
723
791
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
724
792
|
inference_method=inference_method,
|
725
793
|
input_cols=self.input_cols,
|
726
|
-
expected_output_cols=
|
794
|
+
expected_output_cols=expected_output_cols,
|
727
795
|
**transform_kwargs
|
728
796
|
)
|
729
797
|
return output_df
|
@@ -755,29 +823,30 @@ class LogisticRegressionCV(BaseTransformer):
|
|
755
823
|
Output dataset with log probability of the sample for each class in the model.
|
756
824
|
"""
|
757
825
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="predict_log_proba"
|
826
|
+
inference_method = "predict_log_proba"
|
827
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
759
828
|
|
760
829
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
830
|
# are specific to the type of dataset used.
|
762
831
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
832
|
|
764
833
|
if isinstance(dataset, DataFrame):
|
765
|
-
self.
|
766
|
-
|
767
|
-
|
768
|
-
|
769
|
-
|
834
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
835
|
+
self._deps = self._get_dependencies()
|
836
|
+
assert isinstance(
|
837
|
+
dataset._session, Session
|
838
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
770
839
|
transform_kwargs = dict(
|
771
840
|
session=dataset._session,
|
772
841
|
dependencies=self._deps,
|
773
|
-
drop_input_cols
|
842
|
+
drop_input_cols=self._drop_input_cols,
|
774
843
|
expected_output_cols_type="float",
|
775
844
|
)
|
845
|
+
expected_output_cols = self._align_expected_output_names(
|
846
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
847
|
+
)
|
776
848
|
elif isinstance(dataset, pd.DataFrame):
|
777
|
-
transform_kwargs = dict(
|
778
|
-
snowpark_input_cols = self._snowpark_cols,
|
779
|
-
drop_input_cols = self._drop_input_cols
|
780
|
-
)
|
849
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
781
850
|
|
782
851
|
transform_handlers = ModelTransformerBuilder.build(
|
783
852
|
dataset=dataset,
|
@@ -790,7 +859,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
790
859
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
791
860
|
inference_method=inference_method,
|
792
861
|
input_cols=self.input_cols,
|
793
|
-
expected_output_cols=
|
862
|
+
expected_output_cols=expected_output_cols,
|
794
863
|
**transform_kwargs
|
795
864
|
)
|
796
865
|
return output_df
|
@@ -818,30 +887,32 @@ class LogisticRegressionCV(BaseTransformer):
|
|
818
887
|
Output dataset with results of the decision function for the samples in input dataset.
|
819
888
|
"""
|
820
889
|
super()._check_dataset_type(dataset)
|
821
|
-
inference_method="decision_function"
|
890
|
+
inference_method = "decision_function"
|
822
891
|
|
823
892
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
824
893
|
# are specific to the type of dataset used.
|
825
894
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
826
895
|
|
896
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
897
|
+
|
827
898
|
if isinstance(dataset, DataFrame):
|
828
|
-
self.
|
829
|
-
|
830
|
-
|
831
|
-
|
832
|
-
|
899
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
900
|
+
self._deps = self._get_dependencies()
|
901
|
+
assert isinstance(
|
902
|
+
dataset._session, Session
|
903
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
833
904
|
transform_kwargs = dict(
|
834
905
|
session=dataset._session,
|
835
906
|
dependencies=self._deps,
|
836
|
-
drop_input_cols
|
907
|
+
drop_input_cols=self._drop_input_cols,
|
837
908
|
expected_output_cols_type="float",
|
838
909
|
)
|
910
|
+
expected_output_cols = self._align_expected_output_names(
|
911
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
912
|
+
)
|
839
913
|
|
840
914
|
elif isinstance(dataset, pd.DataFrame):
|
841
|
-
transform_kwargs = dict(
|
842
|
-
snowpark_input_cols = self._snowpark_cols,
|
843
|
-
drop_input_cols = self._drop_input_cols
|
844
|
-
)
|
915
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
845
916
|
|
846
917
|
transform_handlers = ModelTransformerBuilder.build(
|
847
918
|
dataset=dataset,
|
@@ -854,7 +925,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
854
925
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
855
926
|
inference_method=inference_method,
|
856
927
|
input_cols=self.input_cols,
|
857
|
-
expected_output_cols=
|
928
|
+
expected_output_cols=expected_output_cols,
|
858
929
|
**transform_kwargs
|
859
930
|
)
|
860
931
|
return output_df
|
@@ -883,17 +954,17 @@ class LogisticRegressionCV(BaseTransformer):
|
|
883
954
|
Output dataset with probability of the sample for each class in the model.
|
884
955
|
"""
|
885
956
|
super()._check_dataset_type(dataset)
|
886
|
-
inference_method="score_samples"
|
957
|
+
inference_method = "score_samples"
|
887
958
|
|
888
959
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
889
960
|
# are specific to the type of dataset used.
|
890
961
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
891
962
|
|
963
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
964
|
+
|
892
965
|
if isinstance(dataset, DataFrame):
|
893
|
-
self.
|
894
|
-
|
895
|
-
inference_method=inference_method,
|
896
|
-
)
|
966
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
967
|
+
self._deps = self._get_dependencies()
|
897
968
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
898
969
|
transform_kwargs = dict(
|
899
970
|
session=dataset._session,
|
@@ -901,6 +972,9 @@ class LogisticRegressionCV(BaseTransformer):
|
|
901
972
|
drop_input_cols = self._drop_input_cols,
|
902
973
|
expected_output_cols_type="float",
|
903
974
|
)
|
975
|
+
expected_output_cols = self._align_expected_output_names(
|
976
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
977
|
+
)
|
904
978
|
|
905
979
|
elif isinstance(dataset, pd.DataFrame):
|
906
980
|
transform_kwargs = dict(
|
@@ -919,7 +993,7 @@ class LogisticRegressionCV(BaseTransformer):
|
|
919
993
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
920
994
|
inference_method=inference_method,
|
921
995
|
input_cols=self.input_cols,
|
922
|
-
expected_output_cols=
|
996
|
+
expected_output_cols=expected_output_cols,
|
923
997
|
**transform_kwargs
|
924
998
|
)
|
925
999
|
return output_df
|
@@ -954,17 +1028,15 @@ class LogisticRegressionCV(BaseTransformer):
|
|
954
1028
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
955
1029
|
|
956
1030
|
if isinstance(dataset, DataFrame):
|
957
|
-
self.
|
958
|
-
|
959
|
-
inference_method="score",
|
960
|
-
)
|
1031
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
1032
|
+
self._deps = self._get_dependencies()
|
961
1033
|
selected_cols = self._get_active_columns()
|
962
1034
|
if len(selected_cols) > 0:
|
963
1035
|
dataset = dataset.select(selected_cols)
|
964
1036
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
965
1037
|
transform_kwargs = dict(
|
966
1038
|
session=dataset._session,
|
967
|
-
dependencies=
|
1039
|
+
dependencies=self._deps,
|
968
1040
|
score_sproc_imports=['sklearn'],
|
969
1041
|
)
|
970
1042
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -1029,11 +1101,8 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1029
1101
|
|
1030
1102
|
if isinstance(dataset, DataFrame):
|
1031
1103
|
|
1032
|
-
self.
|
1033
|
-
|
1034
|
-
inference_method=inference_method,
|
1035
|
-
|
1036
|
-
)
|
1104
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1105
|
+
self._deps = self._get_dependencies()
|
1037
1106
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
1038
1107
|
transform_kwargs = dict(
|
1039
1108
|
session = dataset._session,
|
@@ -1066,50 +1135,84 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1066
1135
|
)
|
1067
1136
|
return output_df
|
1068
1137
|
|
1138
|
+
|
1139
|
+
|
1140
|
+
def to_sklearn(self) -> Any:
|
1141
|
+
"""Get sklearn.linear_model.LogisticRegressionCV object.
|
1142
|
+
"""
|
1143
|
+
if self._sklearn_object is None:
|
1144
|
+
self._sklearn_object = self._create_sklearn_object()
|
1145
|
+
return self._sklearn_object
|
1146
|
+
|
1147
|
+
def to_xgboost(self) -> Any:
|
1148
|
+
raise exceptions.SnowflakeMLException(
|
1149
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1150
|
+
original_exception=AttributeError(
|
1151
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1152
|
+
"to_xgboost()",
|
1153
|
+
"to_sklearn()"
|
1154
|
+
)
|
1155
|
+
),
|
1156
|
+
)
|
1157
|
+
|
1158
|
+
def to_lightgbm(self) -> Any:
|
1159
|
+
raise exceptions.SnowflakeMLException(
|
1160
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1161
|
+
original_exception=AttributeError(
|
1162
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1163
|
+
"to_lightgbm()",
|
1164
|
+
"to_sklearn()"
|
1165
|
+
)
|
1166
|
+
),
|
1167
|
+
)
|
1168
|
+
|
1169
|
+
def _get_dependencies(self) -> List[str]:
|
1170
|
+
return self._deps
|
1171
|
+
|
1069
1172
|
|
1070
|
-
def
|
1173
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1071
1174
|
self._model_signature_dict = dict()
|
1072
1175
|
|
1073
1176
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1074
1177
|
|
1075
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1178
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1076
1179
|
outputs: List[BaseFeatureSpec] = []
|
1077
1180
|
if hasattr(self, "predict"):
|
1078
1181
|
# keep mypy happy
|
1079
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1182
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1080
1183
|
# For classifier, the type of predict is the same as the type of label
|
1081
|
-
if self._sklearn_object._estimator_type ==
|
1082
|
-
|
1184
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1185
|
+
# label columns is the desired type for output
|
1083
1186
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1084
1187
|
# rename the output columns
|
1085
1188
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1086
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1087
|
-
|
1088
|
-
|
1189
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1190
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1191
|
+
)
|
1089
1192
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1090
1193
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1091
|
-
# Clusterer returns int64 cluster labels.
|
1194
|
+
# Clusterer returns int64 cluster labels.
|
1092
1195
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1093
1196
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1094
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
-
|
1096
|
-
|
1097
|
-
|
1197
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1198
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1199
|
+
)
|
1200
|
+
|
1098
1201
|
# For regressor, the type of predict is float64
|
1099
|
-
elif self._sklearn_object._estimator_type ==
|
1202
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1100
1203
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1101
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1102
|
-
|
1103
|
-
|
1104
|
-
|
1204
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1205
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1206
|
+
)
|
1207
|
+
|
1105
1208
|
for prob_func in PROB_FUNCTIONS:
|
1106
1209
|
if hasattr(self, prob_func):
|
1107
1210
|
output_cols_prefix: str = f"{prob_func}_"
|
1108
1211
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1109
1212
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1110
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1111
|
-
|
1112
|
-
|
1213
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1214
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1215
|
+
)
|
1113
1216
|
|
1114
1217
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1115
1218
|
items = list(self._model_signature_dict.items())
|
@@ -1122,10 +1225,10 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1122
1225
|
"""Returns model signature of current class.
|
1123
1226
|
|
1124
1227
|
Raises:
|
1125
|
-
|
1228
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1126
1229
|
|
1127
1230
|
Returns:
|
1128
|
-
Dict
|
1231
|
+
Dict with each method and its input output signature
|
1129
1232
|
"""
|
1130
1233
|
if self._model_signature_dict is None:
|
1131
1234
|
raise exceptions.SnowflakeMLException(
|
@@ -1133,35 +1236,3 @@ class LogisticRegressionCV(BaseTransformer):
|
|
1133
1236
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1134
1237
|
)
|
1135
1238
|
return self._model_signature_dict
|
1136
|
-
|
1137
|
-
def to_sklearn(self) -> Any:
|
1138
|
-
"""Get sklearn.linear_model.LogisticRegressionCV object.
|
1139
|
-
"""
|
1140
|
-
if self._sklearn_object is None:
|
1141
|
-
self._sklearn_object = self._create_sklearn_object()
|
1142
|
-
return self._sklearn_object
|
1143
|
-
|
1144
|
-
def to_xgboost(self) -> Any:
|
1145
|
-
raise exceptions.SnowflakeMLException(
|
1146
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1147
|
-
original_exception=AttributeError(
|
1148
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1149
|
-
"to_xgboost()",
|
1150
|
-
"to_sklearn()"
|
1151
|
-
)
|
1152
|
-
),
|
1153
|
-
)
|
1154
|
-
|
1155
|
-
def to_lightgbm(self) -> Any:
|
1156
|
-
raise exceptions.SnowflakeMLException(
|
1157
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1158
|
-
original_exception=AttributeError(
|
1159
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1160
|
-
"to_lightgbm()",
|
1161
|
-
"to_sklearn()"
|
1162
|
-
)
|
1163
|
-
),
|
1164
|
-
)
|
1165
|
-
|
1166
|
-
def _get_dependencies(self) -> List[str]:
|
1167
|
-
return self._deps
|