snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LogisticRegressionCV(BaseTransformer):
71
64
  r"""Logistic Regression CV (aka logit, MaxEnt) classifier
72
65
  For more details on this class, see [sklearn.linear_model.LogisticRegressionCV]
@@ -354,12 +347,7 @@ class LogisticRegressionCV(BaseTransformer):
354
347
  )
355
348
  return selected_cols
356
349
 
357
- @telemetry.send_api_usage_telemetry(
358
- project=_PROJECT,
359
- subproject=_SUBPROJECT,
360
- custom_tags=dict([("autogen", True)]),
361
- )
362
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
350
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegressionCV":
363
351
  """Fit the model according to the given training data
364
352
  For more details on this function, see [sklearn.linear_model.LogisticRegressionCV.fit]
365
353
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html#sklearn.linear_model.LogisticRegressionCV.fit)
@@ -386,12 +374,14 @@ class LogisticRegressionCV(BaseTransformer):
386
374
 
387
375
  self._snowpark_cols = dataset.select(self.input_cols).columns
388
376
 
389
- # If we are already in a stored procedure, no need to kick off another one.
377
+ # If we are already in a stored procedure, no need to kick off another one.
390
378
  if SNOWML_SPROC_ENV in os.environ:
391
379
  statement_params = telemetry.get_function_usage_statement_params(
392
380
  project=_PROJECT,
393
381
  subproject=_SUBPROJECT,
394
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegressionCV.__class__.__name__),
382
+ function_name=telemetry.get_statement_params_full_func_name(
383
+ inspect.currentframe(), LogisticRegressionCV.__class__.__name__
384
+ ),
395
385
  api_calls=[Session.call],
396
386
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
397
387
  )
@@ -412,27 +402,24 @@ class LogisticRegressionCV(BaseTransformer):
412
402
  )
413
403
  self._sklearn_object = model_trainer.train()
414
404
  self._is_fitted = True
415
- self._get_model_signatures(dataset)
405
+ self._generate_model_signatures(dataset)
416
406
  return self
417
407
 
418
408
  def _batch_inference_validate_snowpark(
419
409
  self,
420
410
  dataset: DataFrame,
421
411
  inference_method: str,
422
- ) -> List[str]:
423
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
424
- return the available package that exists in the snowflake anaconda channel
412
+ ) -> None:
413
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
425
414
 
426
415
  Args:
427
416
  dataset: snowpark dataframe
428
417
  inference_method: the inference method such as predict, score...
429
-
418
+
430
419
  Raises:
431
420
  SnowflakeMLException: If the estimator is not fitted, raise error
432
421
  SnowflakeMLException: If the session is None, raise error
433
422
 
434
- Returns:
435
- A list of available package that exists in the snowflake anaconda channel
436
423
  """
437
424
  if not self._is_fitted:
438
425
  raise exceptions.SnowflakeMLException(
@@ -450,9 +437,7 @@ class LogisticRegressionCV(BaseTransformer):
450
437
  "Session must not specified for snowpark dataset."
451
438
  ),
452
439
  )
453
- # Validate that key package version in user workspace are supported in snowflake conda channel
454
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
455
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
440
+
456
441
 
457
442
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
458
443
  @telemetry.send_api_usage_telemetry(
@@ -488,7 +473,9 @@ class LogisticRegressionCV(BaseTransformer):
488
473
  # when it is classifier, infer the datatype from label columns
489
474
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
490
475
  # Batch inference takes a single expected output column type. Use the first columns type for now.
491
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
476
+ label_cols_signatures = [
477
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
478
+ ]
492
479
  if len(label_cols_signatures) == 0:
493
480
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
494
481
  raise exceptions.SnowflakeMLException(
@@ -496,25 +483,23 @@ class LogisticRegressionCV(BaseTransformer):
496
483
  original_exception=ValueError(error_str),
497
484
  )
498
485
 
499
- expected_type_inferred = convert_sp_to_sf_type(
500
- label_cols_signatures[0].as_snowpark_type()
501
- )
486
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
502
487
 
503
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
504
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
488
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
489
+ self._deps = self._get_dependencies()
490
+ assert isinstance(
491
+ dataset._session, Session
492
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
505
493
 
506
494
  transform_kwargs = dict(
507
- session = dataset._session,
508
- dependencies = self._deps,
509
- drop_input_cols = self._drop_input_cols,
510
- expected_output_cols_type = expected_type_inferred,
495
+ session=dataset._session,
496
+ dependencies=self._deps,
497
+ drop_input_cols=self._drop_input_cols,
498
+ expected_output_cols_type=expected_type_inferred,
511
499
  )
512
500
 
513
501
  elif isinstance(dataset, pd.DataFrame):
514
- transform_kwargs = dict(
515
- snowpark_input_cols = self._snowpark_cols,
516
- drop_input_cols = self._drop_input_cols
517
- )
502
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
518
503
 
519
504
  transform_handlers = ModelTransformerBuilder.build(
520
505
  dataset=dataset,
@@ -554,7 +539,7 @@ class LogisticRegressionCV(BaseTransformer):
554
539
  Transformed dataset.
555
540
  """
556
541
  super()._check_dataset_type(dataset)
557
- inference_method="transform"
542
+ inference_method = "transform"
558
543
 
559
544
  # This dictionary contains optional kwargs for batch inference. These kwargs
560
545
  # are specific to the type of dataset used.
@@ -584,24 +569,19 @@ class LogisticRegressionCV(BaseTransformer):
584
569
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
585
570
  expected_dtype = convert_sp_to_sf_type(output_types[0])
586
571
 
587
- self._deps = self._batch_inference_validate_snowpark(
588
- dataset=dataset,
589
- inference_method=inference_method,
590
- )
572
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
573
+ self._deps = self._get_dependencies()
591
574
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
592
575
 
593
576
  transform_kwargs = dict(
594
- session = dataset._session,
595
- dependencies = self._deps,
596
- drop_input_cols = self._drop_input_cols,
597
- expected_output_cols_type = expected_dtype,
577
+ session=dataset._session,
578
+ dependencies=self._deps,
579
+ drop_input_cols=self._drop_input_cols,
580
+ expected_output_cols_type=expected_dtype,
598
581
  )
599
582
 
600
583
  elif isinstance(dataset, pd.DataFrame):
601
- transform_kwargs = dict(
602
- snowpark_input_cols = self._snowpark_cols,
603
- drop_input_cols = self._drop_input_cols
604
- )
584
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
605
585
 
606
586
  transform_handlers = ModelTransformerBuilder.build(
607
587
  dataset=dataset,
@@ -620,7 +600,11 @@ class LogisticRegressionCV(BaseTransformer):
620
600
  return output_df
621
601
 
622
602
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
623
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
603
+ def fit_predict(
604
+ self,
605
+ dataset: Union[DataFrame, pd.DataFrame],
606
+ output_cols_prefix: str = "fit_predict_",
607
+ ) -> Union[DataFrame, pd.DataFrame]:
624
608
  """ Method not supported for this class.
625
609
 
626
610
 
@@ -645,22 +629,104 @@ class LogisticRegressionCV(BaseTransformer):
645
629
  )
646
630
  output_result, fitted_estimator = model_trainer.train_fit_predict(
647
631
  drop_input_cols=self._drop_input_cols,
648
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
632
+ expected_output_cols_list=(
633
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
634
+ ),
649
635
  )
650
636
  self._sklearn_object = fitted_estimator
651
637
  self._is_fitted = True
652
638
  return output_result
653
639
 
640
+
641
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
642
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
643
+ """ Method not supported for this class.
644
+
654
645
 
655
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
656
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
657
- """
646
+ Raises:
647
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
648
+
649
+ Args:
650
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
651
+ Snowpark or Pandas DataFrame.
652
+ output_cols_prefix: Prefix for the response columns
658
653
  Returns:
659
654
  Transformed dataset.
660
655
  """
661
- self.fit(dataset)
662
- assert self._sklearn_object is not None
663
- return self._sklearn_object.embedding_
656
+ self._infer_input_output_cols(dataset)
657
+ super()._check_dataset_type(dataset)
658
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
659
+ estimator=self._sklearn_object,
660
+ dataset=dataset,
661
+ input_cols=self.input_cols,
662
+ label_cols=self.label_cols,
663
+ sample_weight_col=self.sample_weight_col,
664
+ autogenerated=self._autogenerated,
665
+ subproject=_SUBPROJECT,
666
+ )
667
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
668
+ drop_input_cols=self._drop_input_cols,
669
+ expected_output_cols_list=self.output_cols,
670
+ )
671
+ self._sklearn_object = fitted_estimator
672
+ self._is_fitted = True
673
+ return output_result
674
+
675
+
676
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
677
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
678
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
679
+ """
680
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
681
+ # The following condition is introduced for kneighbors methods, and not used in other methods
682
+ if output_cols:
683
+ output_cols = [
684
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
685
+ for c in output_cols
686
+ ]
687
+ elif getattr(self._sklearn_object, "classes_", None) is None:
688
+ output_cols = [output_cols_prefix]
689
+ elif self._sklearn_object is not None:
690
+ classes = self._sklearn_object.classes_
691
+ if isinstance(classes, numpy.ndarray):
692
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
693
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
694
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
695
+ output_cols = []
696
+ for i, cl in enumerate(classes):
697
+ # For binary classification, there is only one output column for each class
698
+ # ndarray as the two classes are complementary.
699
+ if len(cl) == 2:
700
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
701
+ else:
702
+ output_cols.extend([
703
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
704
+ ])
705
+ else:
706
+ output_cols = []
707
+
708
+ # Make sure column names are valid snowflake identifiers.
709
+ assert output_cols is not None # Make MyPy happy
710
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
711
+
712
+ return rv
713
+
714
+ def _align_expected_output_names(
715
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
716
+ ) -> List[str]:
717
+ # in case the inferred output column names dimension is different
718
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
719
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
720
+ output_df_columns = list(output_df_pd.columns)
721
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
722
+ if self.sample_weight_col:
723
+ output_df_columns_set -= set(self.sample_weight_col)
724
+ # if the dimension of inferred output column names is correct; use it
725
+ if len(expected_output_cols_list) == len(output_df_columns_set):
726
+ return expected_output_cols_list
727
+ # otherwise, use the sklearn estimator's output
728
+ else:
729
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
664
730
 
665
731
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
666
732
  @telemetry.send_api_usage_telemetry(
@@ -694,24 +760,26 @@ class LogisticRegressionCV(BaseTransformer):
694
760
  # are specific to the type of dataset used.
695
761
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
696
762
 
763
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
764
+
697
765
  if isinstance(dataset, DataFrame):
698
- self._deps = self._batch_inference_validate_snowpark(
699
- dataset=dataset,
700
- inference_method=inference_method,
701
- )
702
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
766
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
767
+ self._deps = self._get_dependencies()
768
+ assert isinstance(
769
+ dataset._session, Session
770
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
703
771
  transform_kwargs = dict(
704
772
  session=dataset._session,
705
773
  dependencies=self._deps,
706
- drop_input_cols = self._drop_input_cols,
774
+ drop_input_cols=self._drop_input_cols,
707
775
  expected_output_cols_type="float",
708
776
  )
777
+ expected_output_cols = self._align_expected_output_names(
778
+ inference_method, dataset, expected_output_cols, output_cols_prefix
779
+ )
709
780
 
710
781
  elif isinstance(dataset, pd.DataFrame):
711
- transform_kwargs = dict(
712
- snowpark_input_cols = self._snowpark_cols,
713
- drop_input_cols = self._drop_input_cols
714
- )
782
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
715
783
 
716
784
  transform_handlers = ModelTransformerBuilder.build(
717
785
  dataset=dataset,
@@ -723,7 +791,7 @@ class LogisticRegressionCV(BaseTransformer):
723
791
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
724
792
  inference_method=inference_method,
725
793
  input_cols=self.input_cols,
726
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
794
+ expected_output_cols=expected_output_cols,
727
795
  **transform_kwargs
728
796
  )
729
797
  return output_df
@@ -755,29 +823,30 @@ class LogisticRegressionCV(BaseTransformer):
755
823
  Output dataset with log probability of the sample for each class in the model.
756
824
  """
757
825
  super()._check_dataset_type(dataset)
758
- inference_method="predict_log_proba"
826
+ inference_method = "predict_log_proba"
827
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
828
 
760
829
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
830
  # are specific to the type of dataset used.
762
831
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
832
 
764
833
  if isinstance(dataset, DataFrame):
765
- self._deps = self._batch_inference_validate_snowpark(
766
- dataset=dataset,
767
- inference_method=inference_method,
768
- )
769
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
834
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
835
+ self._deps = self._get_dependencies()
836
+ assert isinstance(
837
+ dataset._session, Session
838
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
839
  transform_kwargs = dict(
771
840
  session=dataset._session,
772
841
  dependencies=self._deps,
773
- drop_input_cols = self._drop_input_cols,
842
+ drop_input_cols=self._drop_input_cols,
774
843
  expected_output_cols_type="float",
775
844
  )
845
+ expected_output_cols = self._align_expected_output_names(
846
+ inference_method, dataset, expected_output_cols, output_cols_prefix
847
+ )
776
848
  elif isinstance(dataset, pd.DataFrame):
777
- transform_kwargs = dict(
778
- snowpark_input_cols = self._snowpark_cols,
779
- drop_input_cols = self._drop_input_cols
780
- )
849
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
781
850
 
782
851
  transform_handlers = ModelTransformerBuilder.build(
783
852
  dataset=dataset,
@@ -790,7 +859,7 @@ class LogisticRegressionCV(BaseTransformer):
790
859
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
791
860
  inference_method=inference_method,
792
861
  input_cols=self.input_cols,
793
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
862
+ expected_output_cols=expected_output_cols,
794
863
  **transform_kwargs
795
864
  )
796
865
  return output_df
@@ -818,30 +887,32 @@ class LogisticRegressionCV(BaseTransformer):
818
887
  Output dataset with results of the decision function for the samples in input dataset.
819
888
  """
820
889
  super()._check_dataset_type(dataset)
821
- inference_method="decision_function"
890
+ inference_method = "decision_function"
822
891
 
823
892
  # This dictionary contains optional kwargs for batch inference. These kwargs
824
893
  # are specific to the type of dataset used.
825
894
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
826
895
 
896
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
897
+
827
898
  if isinstance(dataset, DataFrame):
828
- self._deps = self._batch_inference_validate_snowpark(
829
- dataset=dataset,
830
- inference_method=inference_method,
831
- )
832
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
899
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
900
+ self._deps = self._get_dependencies()
901
+ assert isinstance(
902
+ dataset._session, Session
903
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
833
904
  transform_kwargs = dict(
834
905
  session=dataset._session,
835
906
  dependencies=self._deps,
836
- drop_input_cols = self._drop_input_cols,
907
+ drop_input_cols=self._drop_input_cols,
837
908
  expected_output_cols_type="float",
838
909
  )
910
+ expected_output_cols = self._align_expected_output_names(
911
+ inference_method, dataset, expected_output_cols, output_cols_prefix
912
+ )
839
913
 
840
914
  elif isinstance(dataset, pd.DataFrame):
841
- transform_kwargs = dict(
842
- snowpark_input_cols = self._snowpark_cols,
843
- drop_input_cols = self._drop_input_cols
844
- )
915
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
845
916
 
846
917
  transform_handlers = ModelTransformerBuilder.build(
847
918
  dataset=dataset,
@@ -854,7 +925,7 @@ class LogisticRegressionCV(BaseTransformer):
854
925
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
855
926
  inference_method=inference_method,
856
927
  input_cols=self.input_cols,
857
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
928
+ expected_output_cols=expected_output_cols,
858
929
  **transform_kwargs
859
930
  )
860
931
  return output_df
@@ -883,17 +954,17 @@ class LogisticRegressionCV(BaseTransformer):
883
954
  Output dataset with probability of the sample for each class in the model.
884
955
  """
885
956
  super()._check_dataset_type(dataset)
886
- inference_method="score_samples"
957
+ inference_method = "score_samples"
887
958
 
888
959
  # This dictionary contains optional kwargs for batch inference. These kwargs
889
960
  # are specific to the type of dataset used.
890
961
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
891
962
 
963
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
964
+
892
965
  if isinstance(dataset, DataFrame):
893
- self._deps = self._batch_inference_validate_snowpark(
894
- dataset=dataset,
895
- inference_method=inference_method,
896
- )
966
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
967
+ self._deps = self._get_dependencies()
897
968
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
898
969
  transform_kwargs = dict(
899
970
  session=dataset._session,
@@ -901,6 +972,9 @@ class LogisticRegressionCV(BaseTransformer):
901
972
  drop_input_cols = self._drop_input_cols,
902
973
  expected_output_cols_type="float",
903
974
  )
975
+ expected_output_cols = self._align_expected_output_names(
976
+ inference_method, dataset, expected_output_cols, output_cols_prefix
977
+ )
904
978
 
905
979
  elif isinstance(dataset, pd.DataFrame):
906
980
  transform_kwargs = dict(
@@ -919,7 +993,7 @@ class LogisticRegressionCV(BaseTransformer):
919
993
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
920
994
  inference_method=inference_method,
921
995
  input_cols=self.input_cols,
922
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
996
+ expected_output_cols=expected_output_cols,
923
997
  **transform_kwargs
924
998
  )
925
999
  return output_df
@@ -954,17 +1028,15 @@ class LogisticRegressionCV(BaseTransformer):
954
1028
  transform_kwargs: ScoreKwargsTypedDict = dict()
955
1029
 
956
1030
  if isinstance(dataset, DataFrame):
957
- self._deps = self._batch_inference_validate_snowpark(
958
- dataset=dataset,
959
- inference_method="score",
960
- )
1031
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1032
+ self._deps = self._get_dependencies()
961
1033
  selected_cols = self._get_active_columns()
962
1034
  if len(selected_cols) > 0:
963
1035
  dataset = dataset.select(selected_cols)
964
1036
  assert isinstance(dataset._session, Session) # keep mypy happy
965
1037
  transform_kwargs = dict(
966
1038
  session=dataset._session,
967
- dependencies=["snowflake-snowpark-python"] + self._deps,
1039
+ dependencies=self._deps,
968
1040
  score_sproc_imports=['sklearn'],
969
1041
  )
970
1042
  elif isinstance(dataset, pd.DataFrame):
@@ -1029,11 +1101,8 @@ class LogisticRegressionCV(BaseTransformer):
1029
1101
 
1030
1102
  if isinstance(dataset, DataFrame):
1031
1103
 
1032
- self._deps = self._batch_inference_validate_snowpark(
1033
- dataset=dataset,
1034
- inference_method=inference_method,
1035
-
1036
- )
1104
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1105
+ self._deps = self._get_dependencies()
1037
1106
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1038
1107
  transform_kwargs = dict(
1039
1108
  session = dataset._session,
@@ -1066,50 +1135,84 @@ class LogisticRegressionCV(BaseTransformer):
1066
1135
  )
1067
1136
  return output_df
1068
1137
 
1138
+
1139
+
1140
+ def to_sklearn(self) -> Any:
1141
+ """Get sklearn.linear_model.LogisticRegressionCV object.
1142
+ """
1143
+ if self._sklearn_object is None:
1144
+ self._sklearn_object = self._create_sklearn_object()
1145
+ return self._sklearn_object
1146
+
1147
+ def to_xgboost(self) -> Any:
1148
+ raise exceptions.SnowflakeMLException(
1149
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1150
+ original_exception=AttributeError(
1151
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1152
+ "to_xgboost()",
1153
+ "to_sklearn()"
1154
+ )
1155
+ ),
1156
+ )
1157
+
1158
+ def to_lightgbm(self) -> Any:
1159
+ raise exceptions.SnowflakeMLException(
1160
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1161
+ original_exception=AttributeError(
1162
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1163
+ "to_lightgbm()",
1164
+ "to_sklearn()"
1165
+ )
1166
+ ),
1167
+ )
1168
+
1169
+ def _get_dependencies(self) -> List[str]:
1170
+ return self._deps
1171
+
1069
1172
 
1070
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1173
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1071
1174
  self._model_signature_dict = dict()
1072
1175
 
1073
1176
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1074
1177
 
1075
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1178
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1076
1179
  outputs: List[BaseFeatureSpec] = []
1077
1180
  if hasattr(self, "predict"):
1078
1181
  # keep mypy happy
1079
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1182
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1080
1183
  # For classifier, the type of predict is the same as the type of label
1081
- if self._sklearn_object._estimator_type == 'classifier':
1082
- # label columns is the desired type for output
1184
+ if self._sklearn_object._estimator_type == "classifier":
1185
+ # label columns is the desired type for output
1083
1186
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1084
1187
  # rename the output columns
1085
1188
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1086
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1087
- ([] if self._drop_input_cols else inputs)
1088
- + outputs)
1189
+ self._model_signature_dict["predict"] = ModelSignature(
1190
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1191
+ )
1089
1192
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1090
1193
  # For outlier models, returns -1 for outliers and 1 for inliers.
1091
- # Clusterer returns int64 cluster labels.
1194
+ # Clusterer returns int64 cluster labels.
1092
1195
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1093
1196
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1094
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1095
- ([] if self._drop_input_cols else inputs)
1096
- + outputs)
1097
-
1197
+ self._model_signature_dict["predict"] = ModelSignature(
1198
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1199
+ )
1200
+
1098
1201
  # For regressor, the type of predict is float64
1099
- elif self._sklearn_object._estimator_type == 'regressor':
1202
+ elif self._sklearn_object._estimator_type == "regressor":
1100
1203
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1101
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1102
- ([] if self._drop_input_cols else inputs)
1103
- + outputs)
1104
-
1204
+ self._model_signature_dict["predict"] = ModelSignature(
1205
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1206
+ )
1207
+
1105
1208
  for prob_func in PROB_FUNCTIONS:
1106
1209
  if hasattr(self, prob_func):
1107
1210
  output_cols_prefix: str = f"{prob_func}_"
1108
1211
  output_column_names = self._get_output_column_names(output_cols_prefix)
1109
1212
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1110
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1111
- ([] if self._drop_input_cols else inputs)
1112
- + outputs)
1213
+ self._model_signature_dict[prob_func] = ModelSignature(
1214
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1215
+ )
1113
1216
 
1114
1217
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1115
1218
  items = list(self._model_signature_dict.items())
@@ -1122,10 +1225,10 @@ class LogisticRegressionCV(BaseTransformer):
1122
1225
  """Returns model signature of current class.
1123
1226
 
1124
1227
  Raises:
1125
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1228
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1126
1229
 
1127
1230
  Returns:
1128
- Dict[str, ModelSignature]: each method and its input output signature
1231
+ Dict with each method and its input output signature
1129
1232
  """
1130
1233
  if self._model_signature_dict is None:
1131
1234
  raise exceptions.SnowflakeMLException(
@@ -1133,35 +1236,3 @@ class LogisticRegressionCV(BaseTransformer):
1133
1236
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1134
1237
  )
1135
1238
  return self._model_signature_dict
1136
-
1137
- def to_sklearn(self) -> Any:
1138
- """Get sklearn.linear_model.LogisticRegressionCV object.
1139
- """
1140
- if self._sklearn_object is None:
1141
- self._sklearn_object = self._create_sklearn_object()
1142
- return self._sklearn_object
1143
-
1144
- def to_xgboost(self) -> Any:
1145
- raise exceptions.SnowflakeMLException(
1146
- error_code=error_codes.METHOD_NOT_ALLOWED,
1147
- original_exception=AttributeError(
1148
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1149
- "to_xgboost()",
1150
- "to_sklearn()"
1151
- )
1152
- ),
1153
- )
1154
-
1155
- def to_lightgbm(self) -> Any:
1156
- raise exceptions.SnowflakeMLException(
1157
- error_code=error_codes.METHOD_NOT_ALLOWED,
1158
- original_exception=AttributeError(
1159
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1160
- "to_lightgbm()",
1161
- "to_sklearn()"
1162
- )
1163
- ),
1164
- )
1165
-
1166
- def _get_dependencies(self) -> List[str]:
1167
- return self._deps