snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class KNeighborsRegressor(BaseTransformer):
|
71
64
|
r"""Regression based on k-nearest neighbors
|
72
65
|
For more details on this class, see [sklearn.neighbors.KNeighborsRegressor]
|
@@ -275,12 +268,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
275
268
|
)
|
276
269
|
return selected_cols
|
277
270
|
|
278
|
-
|
279
|
-
project=_PROJECT,
|
280
|
-
subproject=_SUBPROJECT,
|
281
|
-
custom_tags=dict([("autogen", True)]),
|
282
|
-
)
|
283
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNeighborsRegressor":
|
271
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNeighborsRegressor":
|
284
272
|
"""Fit the k-nearest neighbors regressor from the training dataset
|
285
273
|
For more details on this function, see [sklearn.neighbors.KNeighborsRegressor.fit]
|
286
274
|
(https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor.fit)
|
@@ -307,12 +295,14 @@ class KNeighborsRegressor(BaseTransformer):
|
|
307
295
|
|
308
296
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
309
297
|
|
310
|
-
|
298
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
311
299
|
if SNOWML_SPROC_ENV in os.environ:
|
312
300
|
statement_params = telemetry.get_function_usage_statement_params(
|
313
301
|
project=_PROJECT,
|
314
302
|
subproject=_SUBPROJECT,
|
315
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
303
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
304
|
+
inspect.currentframe(), KNeighborsRegressor.__class__.__name__
|
305
|
+
),
|
316
306
|
api_calls=[Session.call],
|
317
307
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
318
308
|
)
|
@@ -333,27 +323,24 @@ class KNeighborsRegressor(BaseTransformer):
|
|
333
323
|
)
|
334
324
|
self._sklearn_object = model_trainer.train()
|
335
325
|
self._is_fitted = True
|
336
|
-
self.
|
326
|
+
self._generate_model_signatures(dataset)
|
337
327
|
return self
|
338
328
|
|
339
329
|
def _batch_inference_validate_snowpark(
|
340
330
|
self,
|
341
331
|
dataset: DataFrame,
|
342
332
|
inference_method: str,
|
343
|
-
) ->
|
344
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
345
|
-
return the available package that exists in the snowflake anaconda channel
|
333
|
+
) -> None:
|
334
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
346
335
|
|
347
336
|
Args:
|
348
337
|
dataset: snowpark dataframe
|
349
338
|
inference_method: the inference method such as predict, score...
|
350
|
-
|
339
|
+
|
351
340
|
Raises:
|
352
341
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
353
342
|
SnowflakeMLException: If the session is None, raise error
|
354
343
|
|
355
|
-
Returns:
|
356
|
-
A list of available package that exists in the snowflake anaconda channel
|
357
344
|
"""
|
358
345
|
if not self._is_fitted:
|
359
346
|
raise exceptions.SnowflakeMLException(
|
@@ -371,9 +358,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
371
358
|
"Session must not specified for snowpark dataset."
|
372
359
|
),
|
373
360
|
)
|
374
|
-
|
375
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
376
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
361
|
+
|
377
362
|
|
378
363
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
379
364
|
@telemetry.send_api_usage_telemetry(
|
@@ -409,7 +394,9 @@ class KNeighborsRegressor(BaseTransformer):
|
|
409
394
|
# when it is classifier, infer the datatype from label columns
|
410
395
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
411
396
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
412
|
-
label_cols_signatures = [
|
397
|
+
label_cols_signatures = [
|
398
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
399
|
+
]
|
413
400
|
if len(label_cols_signatures) == 0:
|
414
401
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
415
402
|
raise exceptions.SnowflakeMLException(
|
@@ -417,25 +404,23 @@ class KNeighborsRegressor(BaseTransformer):
|
|
417
404
|
original_exception=ValueError(error_str),
|
418
405
|
)
|
419
406
|
|
420
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
421
|
-
label_cols_signatures[0].as_snowpark_type()
|
422
|
-
)
|
407
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
423
408
|
|
424
|
-
self.
|
425
|
-
|
409
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
410
|
+
self._deps = self._get_dependencies()
|
411
|
+
assert isinstance(
|
412
|
+
dataset._session, Session
|
413
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
426
414
|
|
427
415
|
transform_kwargs = dict(
|
428
|
-
session
|
429
|
-
dependencies
|
430
|
-
drop_input_cols
|
431
|
-
expected_output_cols_type
|
416
|
+
session=dataset._session,
|
417
|
+
dependencies=self._deps,
|
418
|
+
drop_input_cols=self._drop_input_cols,
|
419
|
+
expected_output_cols_type=expected_type_inferred,
|
432
420
|
)
|
433
421
|
|
434
422
|
elif isinstance(dataset, pd.DataFrame):
|
435
|
-
transform_kwargs = dict(
|
436
|
-
snowpark_input_cols = self._snowpark_cols,
|
437
|
-
drop_input_cols = self._drop_input_cols
|
438
|
-
)
|
423
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
439
424
|
|
440
425
|
transform_handlers = ModelTransformerBuilder.build(
|
441
426
|
dataset=dataset,
|
@@ -475,7 +460,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
475
460
|
Transformed dataset.
|
476
461
|
"""
|
477
462
|
super()._check_dataset_type(dataset)
|
478
|
-
inference_method="transform"
|
463
|
+
inference_method = "transform"
|
479
464
|
|
480
465
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
481
466
|
# are specific to the type of dataset used.
|
@@ -505,24 +490,19 @@ class KNeighborsRegressor(BaseTransformer):
|
|
505
490
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
506
491
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
507
492
|
|
508
|
-
self.
|
509
|
-
|
510
|
-
inference_method=inference_method,
|
511
|
-
)
|
493
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
494
|
+
self._deps = self._get_dependencies()
|
512
495
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
513
496
|
|
514
497
|
transform_kwargs = dict(
|
515
|
-
session
|
516
|
-
dependencies
|
517
|
-
drop_input_cols
|
518
|
-
expected_output_cols_type
|
498
|
+
session=dataset._session,
|
499
|
+
dependencies=self._deps,
|
500
|
+
drop_input_cols=self._drop_input_cols,
|
501
|
+
expected_output_cols_type=expected_dtype,
|
519
502
|
)
|
520
503
|
|
521
504
|
elif isinstance(dataset, pd.DataFrame):
|
522
|
-
transform_kwargs = dict(
|
523
|
-
snowpark_input_cols = self._snowpark_cols,
|
524
|
-
drop_input_cols = self._drop_input_cols
|
525
|
-
)
|
505
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
526
506
|
|
527
507
|
transform_handlers = ModelTransformerBuilder.build(
|
528
508
|
dataset=dataset,
|
@@ -541,7 +521,11 @@ class KNeighborsRegressor(BaseTransformer):
|
|
541
521
|
return output_df
|
542
522
|
|
543
523
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
544
|
-
def fit_predict(
|
524
|
+
def fit_predict(
|
525
|
+
self,
|
526
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
527
|
+
output_cols_prefix: str = "fit_predict_",
|
528
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
545
529
|
""" Method not supported for this class.
|
546
530
|
|
547
531
|
|
@@ -566,22 +550,104 @@ class KNeighborsRegressor(BaseTransformer):
|
|
566
550
|
)
|
567
551
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
568
552
|
drop_input_cols=self._drop_input_cols,
|
569
|
-
expected_output_cols_list=
|
553
|
+
expected_output_cols_list=(
|
554
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
555
|
+
),
|
570
556
|
)
|
571
557
|
self._sklearn_object = fitted_estimator
|
572
558
|
self._is_fitted = True
|
573
559
|
return output_result
|
574
560
|
|
561
|
+
|
562
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
563
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
564
|
+
""" Method not supported for this class.
|
565
|
+
|
575
566
|
|
576
|
-
|
577
|
-
|
578
|
-
|
567
|
+
Raises:
|
568
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
569
|
+
|
570
|
+
Args:
|
571
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
572
|
+
Snowpark or Pandas DataFrame.
|
573
|
+
output_cols_prefix: Prefix for the response columns
|
579
574
|
Returns:
|
580
575
|
Transformed dataset.
|
581
576
|
"""
|
582
|
-
self.
|
583
|
-
|
584
|
-
|
577
|
+
self._infer_input_output_cols(dataset)
|
578
|
+
super()._check_dataset_type(dataset)
|
579
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
580
|
+
estimator=self._sklearn_object,
|
581
|
+
dataset=dataset,
|
582
|
+
input_cols=self.input_cols,
|
583
|
+
label_cols=self.label_cols,
|
584
|
+
sample_weight_col=self.sample_weight_col,
|
585
|
+
autogenerated=self._autogenerated,
|
586
|
+
subproject=_SUBPROJECT,
|
587
|
+
)
|
588
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
589
|
+
drop_input_cols=self._drop_input_cols,
|
590
|
+
expected_output_cols_list=self.output_cols,
|
591
|
+
)
|
592
|
+
self._sklearn_object = fitted_estimator
|
593
|
+
self._is_fitted = True
|
594
|
+
return output_result
|
595
|
+
|
596
|
+
|
597
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
598
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
599
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
600
|
+
"""
|
601
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
602
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
603
|
+
if output_cols:
|
604
|
+
output_cols = [
|
605
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
606
|
+
for c in output_cols
|
607
|
+
]
|
608
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
609
|
+
output_cols = [output_cols_prefix]
|
610
|
+
elif self._sklearn_object is not None:
|
611
|
+
classes = self._sklearn_object.classes_
|
612
|
+
if isinstance(classes, numpy.ndarray):
|
613
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
614
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
615
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
616
|
+
output_cols = []
|
617
|
+
for i, cl in enumerate(classes):
|
618
|
+
# For binary classification, there is only one output column for each class
|
619
|
+
# ndarray as the two classes are complementary.
|
620
|
+
if len(cl) == 2:
|
621
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
622
|
+
else:
|
623
|
+
output_cols.extend([
|
624
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
625
|
+
])
|
626
|
+
else:
|
627
|
+
output_cols = []
|
628
|
+
|
629
|
+
# Make sure column names are valid snowflake identifiers.
|
630
|
+
assert output_cols is not None # Make MyPy happy
|
631
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
632
|
+
|
633
|
+
return rv
|
634
|
+
|
635
|
+
def _align_expected_output_names(
|
636
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
637
|
+
) -> List[str]:
|
638
|
+
# in case the inferred output column names dimension is different
|
639
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
640
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
641
|
+
output_df_columns = list(output_df_pd.columns)
|
642
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
643
|
+
if self.sample_weight_col:
|
644
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
645
|
+
# if the dimension of inferred output column names is correct; use it
|
646
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
647
|
+
return expected_output_cols_list
|
648
|
+
# otherwise, use the sklearn estimator's output
|
649
|
+
else:
|
650
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
585
651
|
|
586
652
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
587
653
|
@telemetry.send_api_usage_telemetry(
|
@@ -613,24 +679,26 @@ class KNeighborsRegressor(BaseTransformer):
|
|
613
679
|
# are specific to the type of dataset used.
|
614
680
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
615
681
|
|
682
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
683
|
+
|
616
684
|
if isinstance(dataset, DataFrame):
|
617
|
-
self.
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
685
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
686
|
+
self._deps = self._get_dependencies()
|
687
|
+
assert isinstance(
|
688
|
+
dataset._session, Session
|
689
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
622
690
|
transform_kwargs = dict(
|
623
691
|
session=dataset._session,
|
624
692
|
dependencies=self._deps,
|
625
|
-
drop_input_cols
|
693
|
+
drop_input_cols=self._drop_input_cols,
|
626
694
|
expected_output_cols_type="float",
|
627
695
|
)
|
696
|
+
expected_output_cols = self._align_expected_output_names(
|
697
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
698
|
+
)
|
628
699
|
|
629
700
|
elif isinstance(dataset, pd.DataFrame):
|
630
|
-
transform_kwargs = dict(
|
631
|
-
snowpark_input_cols = self._snowpark_cols,
|
632
|
-
drop_input_cols = self._drop_input_cols
|
633
|
-
)
|
701
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
634
702
|
|
635
703
|
transform_handlers = ModelTransformerBuilder.build(
|
636
704
|
dataset=dataset,
|
@@ -642,7 +710,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
642
710
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
643
711
|
inference_method=inference_method,
|
644
712
|
input_cols=self.input_cols,
|
645
|
-
expected_output_cols=
|
713
|
+
expected_output_cols=expected_output_cols,
|
646
714
|
**transform_kwargs
|
647
715
|
)
|
648
716
|
return output_df
|
@@ -672,29 +740,30 @@ class KNeighborsRegressor(BaseTransformer):
|
|
672
740
|
Output dataset with log probability of the sample for each class in the model.
|
673
741
|
"""
|
674
742
|
super()._check_dataset_type(dataset)
|
675
|
-
inference_method="predict_log_proba"
|
743
|
+
inference_method = "predict_log_proba"
|
744
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
676
745
|
|
677
746
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
678
747
|
# are specific to the type of dataset used.
|
679
748
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
680
749
|
|
681
750
|
if isinstance(dataset, DataFrame):
|
682
|
-
self.
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
751
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
752
|
+
self._deps = self._get_dependencies()
|
753
|
+
assert isinstance(
|
754
|
+
dataset._session, Session
|
755
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
687
756
|
transform_kwargs = dict(
|
688
757
|
session=dataset._session,
|
689
758
|
dependencies=self._deps,
|
690
|
-
drop_input_cols
|
759
|
+
drop_input_cols=self._drop_input_cols,
|
691
760
|
expected_output_cols_type="float",
|
692
761
|
)
|
762
|
+
expected_output_cols = self._align_expected_output_names(
|
763
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
764
|
+
)
|
693
765
|
elif isinstance(dataset, pd.DataFrame):
|
694
|
-
transform_kwargs = dict(
|
695
|
-
snowpark_input_cols = self._snowpark_cols,
|
696
|
-
drop_input_cols = self._drop_input_cols
|
697
|
-
)
|
766
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
698
767
|
|
699
768
|
transform_handlers = ModelTransformerBuilder.build(
|
700
769
|
dataset=dataset,
|
@@ -707,7 +776,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
707
776
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
708
777
|
inference_method=inference_method,
|
709
778
|
input_cols=self.input_cols,
|
710
|
-
expected_output_cols=
|
779
|
+
expected_output_cols=expected_output_cols,
|
711
780
|
**transform_kwargs
|
712
781
|
)
|
713
782
|
return output_df
|
@@ -733,30 +802,32 @@ class KNeighborsRegressor(BaseTransformer):
|
|
733
802
|
Output dataset with results of the decision function for the samples in input dataset.
|
734
803
|
"""
|
735
804
|
super()._check_dataset_type(dataset)
|
736
|
-
inference_method="decision_function"
|
805
|
+
inference_method = "decision_function"
|
737
806
|
|
738
807
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
739
808
|
# are specific to the type of dataset used.
|
740
809
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
741
810
|
|
811
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
812
|
+
|
742
813
|
if isinstance(dataset, DataFrame):
|
743
|
-
self.
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
814
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
815
|
+
self._deps = self._get_dependencies()
|
816
|
+
assert isinstance(
|
817
|
+
dataset._session, Session
|
818
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
748
819
|
transform_kwargs = dict(
|
749
820
|
session=dataset._session,
|
750
821
|
dependencies=self._deps,
|
751
|
-
drop_input_cols
|
822
|
+
drop_input_cols=self._drop_input_cols,
|
752
823
|
expected_output_cols_type="float",
|
753
824
|
)
|
825
|
+
expected_output_cols = self._align_expected_output_names(
|
826
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
827
|
+
)
|
754
828
|
|
755
829
|
elif isinstance(dataset, pd.DataFrame):
|
756
|
-
transform_kwargs = dict(
|
757
|
-
snowpark_input_cols = self._snowpark_cols,
|
758
|
-
drop_input_cols = self._drop_input_cols
|
759
|
-
)
|
830
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
760
831
|
|
761
832
|
transform_handlers = ModelTransformerBuilder.build(
|
762
833
|
dataset=dataset,
|
@@ -769,7 +840,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
769
840
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
770
841
|
inference_method=inference_method,
|
771
842
|
input_cols=self.input_cols,
|
772
|
-
expected_output_cols=
|
843
|
+
expected_output_cols=expected_output_cols,
|
773
844
|
**transform_kwargs
|
774
845
|
)
|
775
846
|
return output_df
|
@@ -798,17 +869,17 @@ class KNeighborsRegressor(BaseTransformer):
|
|
798
869
|
Output dataset with probability of the sample for each class in the model.
|
799
870
|
"""
|
800
871
|
super()._check_dataset_type(dataset)
|
801
|
-
inference_method="score_samples"
|
872
|
+
inference_method = "score_samples"
|
802
873
|
|
803
874
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
804
875
|
# are specific to the type of dataset used.
|
805
876
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
806
877
|
|
878
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
879
|
+
|
807
880
|
if isinstance(dataset, DataFrame):
|
808
|
-
self.
|
809
|
-
|
810
|
-
inference_method=inference_method,
|
811
|
-
)
|
881
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
882
|
+
self._deps = self._get_dependencies()
|
812
883
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
813
884
|
transform_kwargs = dict(
|
814
885
|
session=dataset._session,
|
@@ -816,6 +887,9 @@ class KNeighborsRegressor(BaseTransformer):
|
|
816
887
|
drop_input_cols = self._drop_input_cols,
|
817
888
|
expected_output_cols_type="float",
|
818
889
|
)
|
890
|
+
expected_output_cols = self._align_expected_output_names(
|
891
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
892
|
+
)
|
819
893
|
|
820
894
|
elif isinstance(dataset, pd.DataFrame):
|
821
895
|
transform_kwargs = dict(
|
@@ -834,7 +908,7 @@ class KNeighborsRegressor(BaseTransformer):
|
|
834
908
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
835
909
|
inference_method=inference_method,
|
836
910
|
input_cols=self.input_cols,
|
837
|
-
expected_output_cols=
|
911
|
+
expected_output_cols=expected_output_cols,
|
838
912
|
**transform_kwargs
|
839
913
|
)
|
840
914
|
return output_df
|
@@ -869,17 +943,15 @@ class KNeighborsRegressor(BaseTransformer):
|
|
869
943
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
870
944
|
|
871
945
|
if isinstance(dataset, DataFrame):
|
872
|
-
self.
|
873
|
-
|
874
|
-
inference_method="score",
|
875
|
-
)
|
946
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
947
|
+
self._deps = self._get_dependencies()
|
876
948
|
selected_cols = self._get_active_columns()
|
877
949
|
if len(selected_cols) > 0:
|
878
950
|
dataset = dataset.select(selected_cols)
|
879
951
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
880
952
|
transform_kwargs = dict(
|
881
953
|
session=dataset._session,
|
882
|
-
dependencies=
|
954
|
+
dependencies=self._deps,
|
883
955
|
score_sproc_imports=['sklearn'],
|
884
956
|
)
|
885
957
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -946,11 +1018,8 @@ class KNeighborsRegressor(BaseTransformer):
|
|
946
1018
|
|
947
1019
|
if isinstance(dataset, DataFrame):
|
948
1020
|
|
949
|
-
self.
|
950
|
-
|
951
|
-
inference_method=inference_method,
|
952
|
-
|
953
|
-
)
|
1021
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1022
|
+
self._deps = self._get_dependencies()
|
954
1023
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
955
1024
|
transform_kwargs = dict(
|
956
1025
|
session = dataset._session,
|
@@ -983,50 +1052,84 @@ class KNeighborsRegressor(BaseTransformer):
|
|
983
1052
|
)
|
984
1053
|
return output_df
|
985
1054
|
|
1055
|
+
|
1056
|
+
|
1057
|
+
def to_sklearn(self) -> Any:
|
1058
|
+
"""Get sklearn.neighbors.KNeighborsRegressor object.
|
1059
|
+
"""
|
1060
|
+
if self._sklearn_object is None:
|
1061
|
+
self._sklearn_object = self._create_sklearn_object()
|
1062
|
+
return self._sklearn_object
|
1063
|
+
|
1064
|
+
def to_xgboost(self) -> Any:
|
1065
|
+
raise exceptions.SnowflakeMLException(
|
1066
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1067
|
+
original_exception=AttributeError(
|
1068
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1069
|
+
"to_xgboost()",
|
1070
|
+
"to_sklearn()"
|
1071
|
+
)
|
1072
|
+
),
|
1073
|
+
)
|
1074
|
+
|
1075
|
+
def to_lightgbm(self) -> Any:
|
1076
|
+
raise exceptions.SnowflakeMLException(
|
1077
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1078
|
+
original_exception=AttributeError(
|
1079
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1080
|
+
"to_lightgbm()",
|
1081
|
+
"to_sklearn()"
|
1082
|
+
)
|
1083
|
+
),
|
1084
|
+
)
|
1085
|
+
|
1086
|
+
def _get_dependencies(self) -> List[str]:
|
1087
|
+
return self._deps
|
1088
|
+
|
986
1089
|
|
987
|
-
def
|
1090
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
988
1091
|
self._model_signature_dict = dict()
|
989
1092
|
|
990
1093
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
991
1094
|
|
992
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1095
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
993
1096
|
outputs: List[BaseFeatureSpec] = []
|
994
1097
|
if hasattr(self, "predict"):
|
995
1098
|
# keep mypy happy
|
996
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1099
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
997
1100
|
# For classifier, the type of predict is the same as the type of label
|
998
|
-
if self._sklearn_object._estimator_type ==
|
999
|
-
|
1101
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1102
|
+
# label columns is the desired type for output
|
1000
1103
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1001
1104
|
# rename the output columns
|
1002
1105
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1003
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1004
|
-
|
1005
|
-
|
1106
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1107
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1108
|
+
)
|
1006
1109
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1007
1110
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1008
|
-
# Clusterer returns int64 cluster labels.
|
1111
|
+
# Clusterer returns int64 cluster labels.
|
1009
1112
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1010
1113
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1011
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1012
|
-
|
1013
|
-
|
1014
|
-
|
1114
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1115
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1116
|
+
)
|
1117
|
+
|
1015
1118
|
# For regressor, the type of predict is float64
|
1016
|
-
elif self._sklearn_object._estimator_type ==
|
1119
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1017
1120
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1018
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1019
|
-
|
1020
|
-
|
1021
|
-
|
1121
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1122
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1123
|
+
)
|
1124
|
+
|
1022
1125
|
for prob_func in PROB_FUNCTIONS:
|
1023
1126
|
if hasattr(self, prob_func):
|
1024
1127
|
output_cols_prefix: str = f"{prob_func}_"
|
1025
1128
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1026
1129
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1027
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1028
|
-
|
1029
|
-
|
1130
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1131
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1132
|
+
)
|
1030
1133
|
|
1031
1134
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1032
1135
|
items = list(self._model_signature_dict.items())
|
@@ -1039,10 +1142,10 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1039
1142
|
"""Returns model signature of current class.
|
1040
1143
|
|
1041
1144
|
Raises:
|
1042
|
-
|
1145
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1043
1146
|
|
1044
1147
|
Returns:
|
1045
|
-
Dict
|
1148
|
+
Dict with each method and its input output signature
|
1046
1149
|
"""
|
1047
1150
|
if self._model_signature_dict is None:
|
1048
1151
|
raise exceptions.SnowflakeMLException(
|
@@ -1050,35 +1153,3 @@ class KNeighborsRegressor(BaseTransformer):
|
|
1050
1153
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1051
1154
|
)
|
1052
1155
|
return self._model_signature_dict
|
1053
|
-
|
1054
|
-
def to_sklearn(self) -> Any:
|
1055
|
-
"""Get sklearn.neighbors.KNeighborsRegressor object.
|
1056
|
-
"""
|
1057
|
-
if self._sklearn_object is None:
|
1058
|
-
self._sklearn_object = self._create_sklearn_object()
|
1059
|
-
return self._sklearn_object
|
1060
|
-
|
1061
|
-
def to_xgboost(self) -> Any:
|
1062
|
-
raise exceptions.SnowflakeMLException(
|
1063
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1064
|
-
original_exception=AttributeError(
|
1065
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1066
|
-
"to_xgboost()",
|
1067
|
-
"to_sklearn()"
|
1068
|
-
)
|
1069
|
-
),
|
1070
|
-
)
|
1071
|
-
|
1072
|
-
def to_lightgbm(self) -> Any:
|
1073
|
-
raise exceptions.SnowflakeMLException(
|
1074
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1075
|
-
original_exception=AttributeError(
|
1076
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1077
|
-
"to_lightgbm()",
|
1078
|
-
"to_sklearn()"
|
1079
|
-
)
|
1080
|
-
),
|
1081
|
-
)
|
1082
|
-
|
1083
|
-
def _get_dependencies(self) -> List[str]:
|
1084
|
-
return self._deps
|