snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.multiclass".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class OutputCodeClassifier(BaseTransformer):
71
64
  r"""(Error-Correcting) Output-Code multiclass strategy
72
65
  For more details on this class, see [sklearn.multiclass.OutputCodeClassifier]
@@ -222,12 +215,7 @@ class OutputCodeClassifier(BaseTransformer):
222
215
  )
223
216
  return selected_cols
224
217
 
225
- @telemetry.send_api_usage_telemetry(
226
- project=_PROJECT,
227
- subproject=_SUBPROJECT,
228
- custom_tags=dict([("autogen", True)]),
229
- )
230
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OutputCodeClassifier":
218
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "OutputCodeClassifier":
231
219
  """Fit underlying estimators
232
220
  For more details on this function, see [sklearn.multiclass.OutputCodeClassifier.fit]
233
221
  (https://scikit-learn.org/stable/modules/generated/sklearn.multiclass.OutputCodeClassifier.html#sklearn.multiclass.OutputCodeClassifier.fit)
@@ -254,12 +242,14 @@ class OutputCodeClassifier(BaseTransformer):
254
242
 
255
243
  self._snowpark_cols = dataset.select(self.input_cols).columns
256
244
 
257
- # If we are already in a stored procedure, no need to kick off another one.
245
+ # If we are already in a stored procedure, no need to kick off another one.
258
246
  if SNOWML_SPROC_ENV in os.environ:
259
247
  statement_params = telemetry.get_function_usage_statement_params(
260
248
  project=_PROJECT,
261
249
  subproject=_SUBPROJECT,
262
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), OutputCodeClassifier.__class__.__name__),
250
+ function_name=telemetry.get_statement_params_full_func_name(
251
+ inspect.currentframe(), OutputCodeClassifier.__class__.__name__
252
+ ),
263
253
  api_calls=[Session.call],
264
254
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
255
  )
@@ -280,27 +270,24 @@ class OutputCodeClassifier(BaseTransformer):
280
270
  )
281
271
  self._sklearn_object = model_trainer.train()
282
272
  self._is_fitted = True
283
- self._get_model_signatures(dataset)
273
+ self._generate_model_signatures(dataset)
284
274
  return self
285
275
 
286
276
  def _batch_inference_validate_snowpark(
287
277
  self,
288
278
  dataset: DataFrame,
289
279
  inference_method: str,
290
- ) -> List[str]:
291
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
292
- return the available package that exists in the snowflake anaconda channel
280
+ ) -> None:
281
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
293
282
 
294
283
  Args:
295
284
  dataset: snowpark dataframe
296
285
  inference_method: the inference method such as predict, score...
297
-
286
+
298
287
  Raises:
299
288
  SnowflakeMLException: If the estimator is not fitted, raise error
300
289
  SnowflakeMLException: If the session is None, raise error
301
290
 
302
- Returns:
303
- A list of available package that exists in the snowflake anaconda channel
304
291
  """
305
292
  if not self._is_fitted:
306
293
  raise exceptions.SnowflakeMLException(
@@ -318,9 +305,7 @@ class OutputCodeClassifier(BaseTransformer):
318
305
  "Session must not specified for snowpark dataset."
319
306
  ),
320
307
  )
321
- # Validate that key package version in user workspace are supported in snowflake conda channel
322
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
323
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
308
+
324
309
 
325
310
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
326
311
  @telemetry.send_api_usage_telemetry(
@@ -356,7 +341,9 @@ class OutputCodeClassifier(BaseTransformer):
356
341
  # when it is classifier, infer the datatype from label columns
357
342
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
358
343
  # Batch inference takes a single expected output column type. Use the first columns type for now.
359
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
344
+ label_cols_signatures = [
345
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
346
+ ]
360
347
  if len(label_cols_signatures) == 0:
361
348
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
362
349
  raise exceptions.SnowflakeMLException(
@@ -364,25 +351,23 @@ class OutputCodeClassifier(BaseTransformer):
364
351
  original_exception=ValueError(error_str),
365
352
  )
366
353
 
367
- expected_type_inferred = convert_sp_to_sf_type(
368
- label_cols_signatures[0].as_snowpark_type()
369
- )
354
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
370
355
 
371
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
356
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
357
+ self._deps = self._get_dependencies()
358
+ assert isinstance(
359
+ dataset._session, Session
360
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
373
361
 
374
362
  transform_kwargs = dict(
375
- session = dataset._session,
376
- dependencies = self._deps,
377
- drop_input_cols = self._drop_input_cols,
378
- expected_output_cols_type = expected_type_inferred,
363
+ session=dataset._session,
364
+ dependencies=self._deps,
365
+ drop_input_cols=self._drop_input_cols,
366
+ expected_output_cols_type=expected_type_inferred,
379
367
  )
380
368
 
381
369
  elif isinstance(dataset, pd.DataFrame):
382
- transform_kwargs = dict(
383
- snowpark_input_cols = self._snowpark_cols,
384
- drop_input_cols = self._drop_input_cols
385
- )
370
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
386
371
 
387
372
  transform_handlers = ModelTransformerBuilder.build(
388
373
  dataset=dataset,
@@ -422,7 +407,7 @@ class OutputCodeClassifier(BaseTransformer):
422
407
  Transformed dataset.
423
408
  """
424
409
  super()._check_dataset_type(dataset)
425
- inference_method="transform"
410
+ inference_method = "transform"
426
411
 
427
412
  # This dictionary contains optional kwargs for batch inference. These kwargs
428
413
  # are specific to the type of dataset used.
@@ -452,24 +437,19 @@ class OutputCodeClassifier(BaseTransformer):
452
437
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
453
438
  expected_dtype = convert_sp_to_sf_type(output_types[0])
454
439
 
455
- self._deps = self._batch_inference_validate_snowpark(
456
- dataset=dataset,
457
- inference_method=inference_method,
458
- )
440
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
441
+ self._deps = self._get_dependencies()
459
442
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
460
443
 
461
444
  transform_kwargs = dict(
462
- session = dataset._session,
463
- dependencies = self._deps,
464
- drop_input_cols = self._drop_input_cols,
465
- expected_output_cols_type = expected_dtype,
445
+ session=dataset._session,
446
+ dependencies=self._deps,
447
+ drop_input_cols=self._drop_input_cols,
448
+ expected_output_cols_type=expected_dtype,
466
449
  )
467
450
 
468
451
  elif isinstance(dataset, pd.DataFrame):
469
- transform_kwargs = dict(
470
- snowpark_input_cols = self._snowpark_cols,
471
- drop_input_cols = self._drop_input_cols
472
- )
452
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
473
453
 
474
454
  transform_handlers = ModelTransformerBuilder.build(
475
455
  dataset=dataset,
@@ -488,7 +468,11 @@ class OutputCodeClassifier(BaseTransformer):
488
468
  return output_df
489
469
 
490
470
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
491
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
471
+ def fit_predict(
472
+ self,
473
+ dataset: Union[DataFrame, pd.DataFrame],
474
+ output_cols_prefix: str = "fit_predict_",
475
+ ) -> Union[DataFrame, pd.DataFrame]:
492
476
  """ Method not supported for this class.
493
477
 
494
478
 
@@ -513,22 +497,104 @@ class OutputCodeClassifier(BaseTransformer):
513
497
  )
514
498
  output_result, fitted_estimator = model_trainer.train_fit_predict(
515
499
  drop_input_cols=self._drop_input_cols,
516
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
500
+ expected_output_cols_list=(
501
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
502
+ ),
517
503
  )
518
504
  self._sklearn_object = fitted_estimator
519
505
  self._is_fitted = True
520
506
  return output_result
521
507
 
508
+
509
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
510
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
511
+ """ Method not supported for this class.
512
+
522
513
 
523
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
524
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
525
- """
514
+ Raises:
515
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
516
+
517
+ Args:
518
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
519
+ Snowpark or Pandas DataFrame.
520
+ output_cols_prefix: Prefix for the response columns
526
521
  Returns:
527
522
  Transformed dataset.
528
523
  """
529
- self.fit(dataset)
530
- assert self._sklearn_object is not None
531
- return self._sklearn_object.embedding_
524
+ self._infer_input_output_cols(dataset)
525
+ super()._check_dataset_type(dataset)
526
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
527
+ estimator=self._sklearn_object,
528
+ dataset=dataset,
529
+ input_cols=self.input_cols,
530
+ label_cols=self.label_cols,
531
+ sample_weight_col=self.sample_weight_col,
532
+ autogenerated=self._autogenerated,
533
+ subproject=_SUBPROJECT,
534
+ )
535
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
536
+ drop_input_cols=self._drop_input_cols,
537
+ expected_output_cols_list=self.output_cols,
538
+ )
539
+ self._sklearn_object = fitted_estimator
540
+ self._is_fitted = True
541
+ return output_result
542
+
543
+
544
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
545
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
546
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
547
+ """
548
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
549
+ # The following condition is introduced for kneighbors methods, and not used in other methods
550
+ if output_cols:
551
+ output_cols = [
552
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
553
+ for c in output_cols
554
+ ]
555
+ elif getattr(self._sklearn_object, "classes_", None) is None:
556
+ output_cols = [output_cols_prefix]
557
+ elif self._sklearn_object is not None:
558
+ classes = self._sklearn_object.classes_
559
+ if isinstance(classes, numpy.ndarray):
560
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
561
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
562
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
563
+ output_cols = []
564
+ for i, cl in enumerate(classes):
565
+ # For binary classification, there is only one output column for each class
566
+ # ndarray as the two classes are complementary.
567
+ if len(cl) == 2:
568
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
569
+ else:
570
+ output_cols.extend([
571
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
572
+ ])
573
+ else:
574
+ output_cols = []
575
+
576
+ # Make sure column names are valid snowflake identifiers.
577
+ assert output_cols is not None # Make MyPy happy
578
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
579
+
580
+ return rv
581
+
582
+ def _align_expected_output_names(
583
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
584
+ ) -> List[str]:
585
+ # in case the inferred output column names dimension is different
586
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
587
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
588
+ output_df_columns = list(output_df_pd.columns)
589
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
590
+ if self.sample_weight_col:
591
+ output_df_columns_set -= set(self.sample_weight_col)
592
+ # if the dimension of inferred output column names is correct; use it
593
+ if len(expected_output_cols_list) == len(output_df_columns_set):
594
+ return expected_output_cols_list
595
+ # otherwise, use the sklearn estimator's output
596
+ else:
597
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
532
598
 
533
599
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
534
600
  @telemetry.send_api_usage_telemetry(
@@ -560,24 +626,26 @@ class OutputCodeClassifier(BaseTransformer):
560
626
  # are specific to the type of dataset used.
561
627
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
562
628
 
629
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
630
+
563
631
  if isinstance(dataset, DataFrame):
564
- self._deps = self._batch_inference_validate_snowpark(
565
- dataset=dataset,
566
- inference_method=inference_method,
567
- )
568
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
632
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
633
+ self._deps = self._get_dependencies()
634
+ assert isinstance(
635
+ dataset._session, Session
636
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
569
637
  transform_kwargs = dict(
570
638
  session=dataset._session,
571
639
  dependencies=self._deps,
572
- drop_input_cols = self._drop_input_cols,
640
+ drop_input_cols=self._drop_input_cols,
573
641
  expected_output_cols_type="float",
574
642
  )
643
+ expected_output_cols = self._align_expected_output_names(
644
+ inference_method, dataset, expected_output_cols, output_cols_prefix
645
+ )
575
646
 
576
647
  elif isinstance(dataset, pd.DataFrame):
577
- transform_kwargs = dict(
578
- snowpark_input_cols = self._snowpark_cols,
579
- drop_input_cols = self._drop_input_cols
580
- )
648
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
581
649
 
582
650
  transform_handlers = ModelTransformerBuilder.build(
583
651
  dataset=dataset,
@@ -589,7 +657,7 @@ class OutputCodeClassifier(BaseTransformer):
589
657
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
590
658
  inference_method=inference_method,
591
659
  input_cols=self.input_cols,
592
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
660
+ expected_output_cols=expected_output_cols,
593
661
  **transform_kwargs
594
662
  )
595
663
  return output_df
@@ -619,29 +687,30 @@ class OutputCodeClassifier(BaseTransformer):
619
687
  Output dataset with log probability of the sample for each class in the model.
620
688
  """
621
689
  super()._check_dataset_type(dataset)
622
- inference_method="predict_log_proba"
690
+ inference_method = "predict_log_proba"
691
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
623
692
 
624
693
  # This dictionary contains optional kwargs for batch inference. These kwargs
625
694
  # are specific to the type of dataset used.
626
695
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
627
696
 
628
697
  if isinstance(dataset, DataFrame):
629
- self._deps = self._batch_inference_validate_snowpark(
630
- dataset=dataset,
631
- inference_method=inference_method,
632
- )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
698
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
699
+ self._deps = self._get_dependencies()
700
+ assert isinstance(
701
+ dataset._session, Session
702
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
703
  transform_kwargs = dict(
635
704
  session=dataset._session,
636
705
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
706
+ drop_input_cols=self._drop_input_cols,
638
707
  expected_output_cols_type="float",
639
708
  )
709
+ expected_output_cols = self._align_expected_output_names(
710
+ inference_method, dataset, expected_output_cols, output_cols_prefix
711
+ )
640
712
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
713
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
714
 
646
715
  transform_handlers = ModelTransformerBuilder.build(
647
716
  dataset=dataset,
@@ -654,7 +723,7 @@ class OutputCodeClassifier(BaseTransformer):
654
723
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
724
  inference_method=inference_method,
656
725
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
726
+ expected_output_cols=expected_output_cols,
658
727
  **transform_kwargs
659
728
  )
660
729
  return output_df
@@ -680,30 +749,32 @@ class OutputCodeClassifier(BaseTransformer):
680
749
  Output dataset with results of the decision function for the samples in input dataset.
681
750
  """
682
751
  super()._check_dataset_type(dataset)
683
- inference_method="decision_function"
752
+ inference_method = "decision_function"
684
753
 
685
754
  # This dictionary contains optional kwargs for batch inference. These kwargs
686
755
  # are specific to the type of dataset used.
687
756
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
688
757
 
758
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
+
689
760
  if isinstance(dataset, DataFrame):
690
- self._deps = self._batch_inference_validate_snowpark(
691
- dataset=dataset,
692
- inference_method=inference_method,
693
- )
694
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
761
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
762
+ self._deps = self._get_dependencies()
763
+ assert isinstance(
764
+ dataset._session, Session
765
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
766
  transform_kwargs = dict(
696
767
  session=dataset._session,
697
768
  dependencies=self._deps,
698
- drop_input_cols = self._drop_input_cols,
769
+ drop_input_cols=self._drop_input_cols,
699
770
  expected_output_cols_type="float",
700
771
  )
772
+ expected_output_cols = self._align_expected_output_names(
773
+ inference_method, dataset, expected_output_cols, output_cols_prefix
774
+ )
701
775
 
702
776
  elif isinstance(dataset, pd.DataFrame):
703
- transform_kwargs = dict(
704
- snowpark_input_cols = self._snowpark_cols,
705
- drop_input_cols = self._drop_input_cols
706
- )
777
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
707
778
 
708
779
  transform_handlers = ModelTransformerBuilder.build(
709
780
  dataset=dataset,
@@ -716,7 +787,7 @@ class OutputCodeClassifier(BaseTransformer):
716
787
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
717
788
  inference_method=inference_method,
718
789
  input_cols=self.input_cols,
719
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
790
+ expected_output_cols=expected_output_cols,
720
791
  **transform_kwargs
721
792
  )
722
793
  return output_df
@@ -745,17 +816,17 @@ class OutputCodeClassifier(BaseTransformer):
745
816
  Output dataset with probability of the sample for each class in the model.
746
817
  """
747
818
  super()._check_dataset_type(dataset)
748
- inference_method="score_samples"
819
+ inference_method = "score_samples"
749
820
 
750
821
  # This dictionary contains optional kwargs for batch inference. These kwargs
751
822
  # are specific to the type of dataset used.
752
823
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
753
824
 
825
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
826
+
754
827
  if isinstance(dataset, DataFrame):
755
- self._deps = self._batch_inference_validate_snowpark(
756
- dataset=dataset,
757
- inference_method=inference_method,
758
- )
828
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
829
+ self._deps = self._get_dependencies()
759
830
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
831
  transform_kwargs = dict(
761
832
  session=dataset._session,
@@ -763,6 +834,9 @@ class OutputCodeClassifier(BaseTransformer):
763
834
  drop_input_cols = self._drop_input_cols,
764
835
  expected_output_cols_type="float",
765
836
  )
837
+ expected_output_cols = self._align_expected_output_names(
838
+ inference_method, dataset, expected_output_cols, output_cols_prefix
839
+ )
766
840
 
767
841
  elif isinstance(dataset, pd.DataFrame):
768
842
  transform_kwargs = dict(
@@ -781,7 +855,7 @@ class OutputCodeClassifier(BaseTransformer):
781
855
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
782
856
  inference_method=inference_method,
783
857
  input_cols=self.input_cols,
784
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
858
+ expected_output_cols=expected_output_cols,
785
859
  **transform_kwargs
786
860
  )
787
861
  return output_df
@@ -816,17 +890,15 @@ class OutputCodeClassifier(BaseTransformer):
816
890
  transform_kwargs: ScoreKwargsTypedDict = dict()
817
891
 
818
892
  if isinstance(dataset, DataFrame):
819
- self._deps = self._batch_inference_validate_snowpark(
820
- dataset=dataset,
821
- inference_method="score",
822
- )
893
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
894
+ self._deps = self._get_dependencies()
823
895
  selected_cols = self._get_active_columns()
824
896
  if len(selected_cols) > 0:
825
897
  dataset = dataset.select(selected_cols)
826
898
  assert isinstance(dataset._session, Session) # keep mypy happy
827
899
  transform_kwargs = dict(
828
900
  session=dataset._session,
829
- dependencies=["snowflake-snowpark-python"] + self._deps,
901
+ dependencies=self._deps,
830
902
  score_sproc_imports=['sklearn'],
831
903
  )
832
904
  elif isinstance(dataset, pd.DataFrame):
@@ -891,11 +963,8 @@ class OutputCodeClassifier(BaseTransformer):
891
963
 
892
964
  if isinstance(dataset, DataFrame):
893
965
 
894
- self._deps = self._batch_inference_validate_snowpark(
895
- dataset=dataset,
896
- inference_method=inference_method,
897
-
898
- )
966
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
967
+ self._deps = self._get_dependencies()
899
968
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
900
969
  transform_kwargs = dict(
901
970
  session = dataset._session,
@@ -928,50 +997,84 @@ class OutputCodeClassifier(BaseTransformer):
928
997
  )
929
998
  return output_df
930
999
 
1000
+
1001
+
1002
+ def to_sklearn(self) -> Any:
1003
+ """Get sklearn.multiclass.OutputCodeClassifier object.
1004
+ """
1005
+ if self._sklearn_object is None:
1006
+ self._sklearn_object = self._create_sklearn_object()
1007
+ return self._sklearn_object
1008
+
1009
+ def to_xgboost(self) -> Any:
1010
+ raise exceptions.SnowflakeMLException(
1011
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1012
+ original_exception=AttributeError(
1013
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1014
+ "to_xgboost()",
1015
+ "to_sklearn()"
1016
+ )
1017
+ ),
1018
+ )
1019
+
1020
+ def to_lightgbm(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_lightgbm()",
1026
+ "to_sklearn()"
1027
+ )
1028
+ ),
1029
+ )
1030
+
1031
+ def _get_dependencies(self) -> List[str]:
1032
+ return self._deps
1033
+
931
1034
 
932
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1035
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
933
1036
  self._model_signature_dict = dict()
934
1037
 
935
1038
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
936
1039
 
937
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1040
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
938
1041
  outputs: List[BaseFeatureSpec] = []
939
1042
  if hasattr(self, "predict"):
940
1043
  # keep mypy happy
941
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1044
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
942
1045
  # For classifier, the type of predict is the same as the type of label
943
- if self._sklearn_object._estimator_type == 'classifier':
944
- # label columns is the desired type for output
1046
+ if self._sklearn_object._estimator_type == "classifier":
1047
+ # label columns is the desired type for output
945
1048
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
946
1049
  # rename the output columns
947
1050
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
948
- self._model_signature_dict["predict"] = ModelSignature(inputs,
949
- ([] if self._drop_input_cols else inputs)
950
- + outputs)
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
951
1054
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
952
1055
  # For outlier models, returns -1 for outliers and 1 for inliers.
953
- # Clusterer returns int64 cluster labels.
1056
+ # Clusterer returns int64 cluster labels.
954
1057
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
955
1058
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
956
- self._model_signature_dict["predict"] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
959
-
1059
+ self._model_signature_dict["predict"] = ModelSignature(
1060
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1061
+ )
1062
+
960
1063
  # For regressor, the type of predict is float64
961
- elif self._sklearn_object._estimator_type == 'regressor':
1064
+ elif self._sklearn_object._estimator_type == "regressor":
962
1065
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
963
- self._model_signature_dict["predict"] = ModelSignature(inputs,
964
- ([] if self._drop_input_cols else inputs)
965
- + outputs)
966
-
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
1069
+
967
1070
  for prob_func in PROB_FUNCTIONS:
968
1071
  if hasattr(self, prob_func):
969
1072
  output_cols_prefix: str = f"{prob_func}_"
970
1073
  output_column_names = self._get_output_column_names(output_cols_prefix)
971
1074
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
972
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
1075
+ self._model_signature_dict[prob_func] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
975
1078
 
976
1079
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
977
1080
  items = list(self._model_signature_dict.items())
@@ -984,10 +1087,10 @@ class OutputCodeClassifier(BaseTransformer):
984
1087
  """Returns model signature of current class.
985
1088
 
986
1089
  Raises:
987
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1090
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
988
1091
 
989
1092
  Returns:
990
- Dict[str, ModelSignature]: each method and its input output signature
1093
+ Dict with each method and its input output signature
991
1094
  """
992
1095
  if self._model_signature_dict is None:
993
1096
  raise exceptions.SnowflakeMLException(
@@ -995,35 +1098,3 @@ class OutputCodeClassifier(BaseTransformer):
995
1098
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
996
1099
  )
997
1100
  return self._model_signature_dict
998
-
999
- def to_sklearn(self) -> Any:
1000
- """Get sklearn.multiclass.OutputCodeClassifier object.
1001
- """
1002
- if self._sklearn_object is None:
1003
- self._sklearn_object = self._create_sklearn_object()
1004
- return self._sklearn_object
1005
-
1006
- def to_xgboost(self) -> Any:
1007
- raise exceptions.SnowflakeMLException(
1008
- error_code=error_codes.METHOD_NOT_ALLOWED,
1009
- original_exception=AttributeError(
1010
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
- "to_xgboost()",
1012
- "to_sklearn()"
1013
- )
1014
- ),
1015
- )
1016
-
1017
- def to_lightgbm(self) -> Any:
1018
- raise exceptions.SnowflakeMLException(
1019
- error_code=error_codes.METHOD_NOT_ALLOWED,
1020
- original_exception=AttributeError(
1021
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
- "to_lightgbm()",
1023
- "to_sklearn()"
1024
- )
1025
- ),
1026
- )
1027
-
1028
- def _get_dependencies(self) -> List[str]:
1029
- return self._deps