snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".re
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RBFSampler(BaseTransformer):
71
64
  r"""Approximate a RBF kernel feature map using random Fourier features
72
65
  For more details on this class, see [sklearn.kernel_approximation.RBFSampler]
@@ -210,12 +203,7 @@ class RBFSampler(BaseTransformer):
210
203
  )
211
204
  return selected_cols
212
205
 
213
- @telemetry.send_api_usage_telemetry(
214
- project=_PROJECT,
215
- subproject=_SUBPROJECT,
216
- custom_tags=dict([("autogen", True)]),
217
- )
218
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RBFSampler":
206
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RBFSampler":
219
207
  """Fit the model with X
220
208
  For more details on this function, see [sklearn.kernel_approximation.RBFSampler.fit]
221
209
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler.fit)
@@ -242,12 +230,14 @@ class RBFSampler(BaseTransformer):
242
230
 
243
231
  self._snowpark_cols = dataset.select(self.input_cols).columns
244
232
 
245
- # If we are already in a stored procedure, no need to kick off another one.
233
+ # If we are already in a stored procedure, no need to kick off another one.
246
234
  if SNOWML_SPROC_ENV in os.environ:
247
235
  statement_params = telemetry.get_function_usage_statement_params(
248
236
  project=_PROJECT,
249
237
  subproject=_SUBPROJECT,
250
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RBFSampler.__class__.__name__),
238
+ function_name=telemetry.get_statement_params_full_func_name(
239
+ inspect.currentframe(), RBFSampler.__class__.__name__
240
+ ),
251
241
  api_calls=[Session.call],
252
242
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
253
243
  )
@@ -268,27 +258,24 @@ class RBFSampler(BaseTransformer):
268
258
  )
269
259
  self._sklearn_object = model_trainer.train()
270
260
  self._is_fitted = True
271
- self._get_model_signatures(dataset)
261
+ self._generate_model_signatures(dataset)
272
262
  return self
273
263
 
274
264
  def _batch_inference_validate_snowpark(
275
265
  self,
276
266
  dataset: DataFrame,
277
267
  inference_method: str,
278
- ) -> List[str]:
279
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
280
- return the available package that exists in the snowflake anaconda channel
268
+ ) -> None:
269
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
281
270
 
282
271
  Args:
283
272
  dataset: snowpark dataframe
284
273
  inference_method: the inference method such as predict, score...
285
-
274
+
286
275
  Raises:
287
276
  SnowflakeMLException: If the estimator is not fitted, raise error
288
277
  SnowflakeMLException: If the session is None, raise error
289
278
 
290
- Returns:
291
- A list of available package that exists in the snowflake anaconda channel
292
279
  """
293
280
  if not self._is_fitted:
294
281
  raise exceptions.SnowflakeMLException(
@@ -306,9 +293,7 @@ class RBFSampler(BaseTransformer):
306
293
  "Session must not specified for snowpark dataset."
307
294
  ),
308
295
  )
309
- # Validate that key package version in user workspace are supported in snowflake conda channel
310
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
311
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
296
+
312
297
 
313
298
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
314
299
  @telemetry.send_api_usage_telemetry(
@@ -342,7 +327,9 @@ class RBFSampler(BaseTransformer):
342
327
  # when it is classifier, infer the datatype from label columns
343
328
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
344
329
  # Batch inference takes a single expected output column type. Use the first columns type for now.
345
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
330
+ label_cols_signatures = [
331
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
332
+ ]
346
333
  if len(label_cols_signatures) == 0:
347
334
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
348
335
  raise exceptions.SnowflakeMLException(
@@ -350,25 +337,23 @@ class RBFSampler(BaseTransformer):
350
337
  original_exception=ValueError(error_str),
351
338
  )
352
339
 
353
- expected_type_inferred = convert_sp_to_sf_type(
354
- label_cols_signatures[0].as_snowpark_type()
355
- )
340
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
356
341
 
357
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
358
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
342
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
343
+ self._deps = self._get_dependencies()
344
+ assert isinstance(
345
+ dataset._session, Session
346
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
359
347
 
360
348
  transform_kwargs = dict(
361
- session = dataset._session,
362
- dependencies = self._deps,
363
- drop_input_cols = self._drop_input_cols,
364
- expected_output_cols_type = expected_type_inferred,
349
+ session=dataset._session,
350
+ dependencies=self._deps,
351
+ drop_input_cols=self._drop_input_cols,
352
+ expected_output_cols_type=expected_type_inferred,
365
353
  )
366
354
 
367
355
  elif isinstance(dataset, pd.DataFrame):
368
- transform_kwargs = dict(
369
- snowpark_input_cols = self._snowpark_cols,
370
- drop_input_cols = self._drop_input_cols
371
- )
356
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
372
357
 
373
358
  transform_handlers = ModelTransformerBuilder.build(
374
359
  dataset=dataset,
@@ -410,7 +395,7 @@ class RBFSampler(BaseTransformer):
410
395
  Transformed dataset.
411
396
  """
412
397
  super()._check_dataset_type(dataset)
413
- inference_method="transform"
398
+ inference_method = "transform"
414
399
 
415
400
  # This dictionary contains optional kwargs for batch inference. These kwargs
416
401
  # are specific to the type of dataset used.
@@ -440,24 +425,19 @@ class RBFSampler(BaseTransformer):
440
425
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
441
426
  expected_dtype = convert_sp_to_sf_type(output_types[0])
442
427
 
443
- self._deps = self._batch_inference_validate_snowpark(
444
- dataset=dataset,
445
- inference_method=inference_method,
446
- )
428
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
429
+ self._deps = self._get_dependencies()
447
430
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
431
 
449
432
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_dtype,
433
+ session=dataset._session,
434
+ dependencies=self._deps,
435
+ drop_input_cols=self._drop_input_cols,
436
+ expected_output_cols_type=expected_dtype,
454
437
  )
455
438
 
456
439
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
440
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
441
 
462
442
  transform_handlers = ModelTransformerBuilder.build(
463
443
  dataset=dataset,
@@ -476,7 +456,11 @@ class RBFSampler(BaseTransformer):
476
456
  return output_df
477
457
 
478
458
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
479
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
459
+ def fit_predict(
460
+ self,
461
+ dataset: Union[DataFrame, pd.DataFrame],
462
+ output_cols_prefix: str = "fit_predict_",
463
+ ) -> Union[DataFrame, pd.DataFrame]:
480
464
  """ Method not supported for this class.
481
465
 
482
466
 
@@ -501,22 +485,106 @@ class RBFSampler(BaseTransformer):
501
485
  )
502
486
  output_result, fitted_estimator = model_trainer.train_fit_predict(
503
487
  drop_input_cols=self._drop_input_cols,
504
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
488
+ expected_output_cols_list=(
489
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
490
+ ),
505
491
  )
506
492
  self._sklearn_object = fitted_estimator
507
493
  self._is_fitted = True
508
494
  return output_result
509
495
 
496
+
497
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
498
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
499
+ """ Fit to data, then transform it
500
+ For more details on this function, see [sklearn.kernel_approximation.RBFSampler.fit_transform]
501
+ (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler.fit_transform)
502
+
503
+
504
+ Raises:
505
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
510
506
 
511
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
512
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
513
- """
507
+ Args:
508
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
509
+ Snowpark or Pandas DataFrame.
510
+ output_cols_prefix: Prefix for the response columns
514
511
  Returns:
515
512
  Transformed dataset.
516
513
  """
517
- self.fit(dataset)
518
- assert self._sklearn_object is not None
519
- return self._sklearn_object.embedding_
514
+ self._infer_input_output_cols(dataset)
515
+ super()._check_dataset_type(dataset)
516
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
517
+ estimator=self._sklearn_object,
518
+ dataset=dataset,
519
+ input_cols=self.input_cols,
520
+ label_cols=self.label_cols,
521
+ sample_weight_col=self.sample_weight_col,
522
+ autogenerated=self._autogenerated,
523
+ subproject=_SUBPROJECT,
524
+ )
525
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
526
+ drop_input_cols=self._drop_input_cols,
527
+ expected_output_cols_list=self.output_cols,
528
+ )
529
+ self._sklearn_object = fitted_estimator
530
+ self._is_fitted = True
531
+ return output_result
532
+
533
+
534
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
535
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
536
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
537
+ """
538
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
539
+ # The following condition is introduced for kneighbors methods, and not used in other methods
540
+ if output_cols:
541
+ output_cols = [
542
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
543
+ for c in output_cols
544
+ ]
545
+ elif getattr(self._sklearn_object, "classes_", None) is None:
546
+ output_cols = [output_cols_prefix]
547
+ elif self._sklearn_object is not None:
548
+ classes = self._sklearn_object.classes_
549
+ if isinstance(classes, numpy.ndarray):
550
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
551
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
552
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
553
+ output_cols = []
554
+ for i, cl in enumerate(classes):
555
+ # For binary classification, there is only one output column for each class
556
+ # ndarray as the two classes are complementary.
557
+ if len(cl) == 2:
558
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
559
+ else:
560
+ output_cols.extend([
561
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
562
+ ])
563
+ else:
564
+ output_cols = []
565
+
566
+ # Make sure column names are valid snowflake identifiers.
567
+ assert output_cols is not None # Make MyPy happy
568
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
569
+
570
+ return rv
571
+
572
+ def _align_expected_output_names(
573
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
574
+ ) -> List[str]:
575
+ # in case the inferred output column names dimension is different
576
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
577
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
578
+ output_df_columns = list(output_df_pd.columns)
579
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
580
+ if self.sample_weight_col:
581
+ output_df_columns_set -= set(self.sample_weight_col)
582
+ # if the dimension of inferred output column names is correct; use it
583
+ if len(expected_output_cols_list) == len(output_df_columns_set):
584
+ return expected_output_cols_list
585
+ # otherwise, use the sklearn estimator's output
586
+ else:
587
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
520
588
 
521
589
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
522
590
  @telemetry.send_api_usage_telemetry(
@@ -548,24 +616,26 @@ class RBFSampler(BaseTransformer):
548
616
  # are specific to the type of dataset used.
549
617
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
550
618
 
619
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
620
+
551
621
  if isinstance(dataset, DataFrame):
552
- self._deps = self._batch_inference_validate_snowpark(
553
- dataset=dataset,
554
- inference_method=inference_method,
555
- )
556
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
623
+ self._deps = self._get_dependencies()
624
+ assert isinstance(
625
+ dataset._session, Session
626
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
557
627
  transform_kwargs = dict(
558
628
  session=dataset._session,
559
629
  dependencies=self._deps,
560
- drop_input_cols = self._drop_input_cols,
630
+ drop_input_cols=self._drop_input_cols,
561
631
  expected_output_cols_type="float",
562
632
  )
633
+ expected_output_cols = self._align_expected_output_names(
634
+ inference_method, dataset, expected_output_cols, output_cols_prefix
635
+ )
563
636
 
564
637
  elif isinstance(dataset, pd.DataFrame):
565
- transform_kwargs = dict(
566
- snowpark_input_cols = self._snowpark_cols,
567
- drop_input_cols = self._drop_input_cols
568
- )
638
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
569
639
 
570
640
  transform_handlers = ModelTransformerBuilder.build(
571
641
  dataset=dataset,
@@ -577,7 +647,7 @@ class RBFSampler(BaseTransformer):
577
647
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
578
648
  inference_method=inference_method,
579
649
  input_cols=self.input_cols,
580
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
650
+ expected_output_cols=expected_output_cols,
581
651
  **transform_kwargs
582
652
  )
583
653
  return output_df
@@ -607,29 +677,30 @@ class RBFSampler(BaseTransformer):
607
677
  Output dataset with log probability of the sample for each class in the model.
608
678
  """
609
679
  super()._check_dataset_type(dataset)
610
- inference_method="predict_log_proba"
680
+ inference_method = "predict_log_proba"
681
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
611
682
 
612
683
  # This dictionary contains optional kwargs for batch inference. These kwargs
613
684
  # are specific to the type of dataset used.
614
685
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
615
686
 
616
687
  if isinstance(dataset, DataFrame):
617
- self._deps = self._batch_inference_validate_snowpark(
618
- dataset=dataset,
619
- inference_method=inference_method,
620
- )
621
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
688
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
689
+ self._deps = self._get_dependencies()
690
+ assert isinstance(
691
+ dataset._session, Session
692
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
622
693
  transform_kwargs = dict(
623
694
  session=dataset._session,
624
695
  dependencies=self._deps,
625
- drop_input_cols = self._drop_input_cols,
696
+ drop_input_cols=self._drop_input_cols,
626
697
  expected_output_cols_type="float",
627
698
  )
699
+ expected_output_cols = self._align_expected_output_names(
700
+ inference_method, dataset, expected_output_cols, output_cols_prefix
701
+ )
628
702
  elif isinstance(dataset, pd.DataFrame):
629
- transform_kwargs = dict(
630
- snowpark_input_cols = self._snowpark_cols,
631
- drop_input_cols = self._drop_input_cols
632
- )
703
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
633
704
 
634
705
  transform_handlers = ModelTransformerBuilder.build(
635
706
  dataset=dataset,
@@ -642,7 +713,7 @@ class RBFSampler(BaseTransformer):
642
713
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
643
714
  inference_method=inference_method,
644
715
  input_cols=self.input_cols,
645
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
716
+ expected_output_cols=expected_output_cols,
646
717
  **transform_kwargs
647
718
  )
648
719
  return output_df
@@ -668,30 +739,32 @@ class RBFSampler(BaseTransformer):
668
739
  Output dataset with results of the decision function for the samples in input dataset.
669
740
  """
670
741
  super()._check_dataset_type(dataset)
671
- inference_method="decision_function"
742
+ inference_method = "decision_function"
672
743
 
673
744
  # This dictionary contains optional kwargs for batch inference. These kwargs
674
745
  # are specific to the type of dataset used.
675
746
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
676
747
 
748
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
749
+
677
750
  if isinstance(dataset, DataFrame):
678
- self._deps = self._batch_inference_validate_snowpark(
679
- dataset=dataset,
680
- inference_method=inference_method,
681
- )
682
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
751
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
752
+ self._deps = self._get_dependencies()
753
+ assert isinstance(
754
+ dataset._session, Session
755
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
756
  transform_kwargs = dict(
684
757
  session=dataset._session,
685
758
  dependencies=self._deps,
686
- drop_input_cols = self._drop_input_cols,
759
+ drop_input_cols=self._drop_input_cols,
687
760
  expected_output_cols_type="float",
688
761
  )
762
+ expected_output_cols = self._align_expected_output_names(
763
+ inference_method, dataset, expected_output_cols, output_cols_prefix
764
+ )
689
765
 
690
766
  elif isinstance(dataset, pd.DataFrame):
691
- transform_kwargs = dict(
692
- snowpark_input_cols = self._snowpark_cols,
693
- drop_input_cols = self._drop_input_cols
694
- )
767
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
695
768
 
696
769
  transform_handlers = ModelTransformerBuilder.build(
697
770
  dataset=dataset,
@@ -704,7 +777,7 @@ class RBFSampler(BaseTransformer):
704
777
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
705
778
  inference_method=inference_method,
706
779
  input_cols=self.input_cols,
707
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
780
+ expected_output_cols=expected_output_cols,
708
781
  **transform_kwargs
709
782
  )
710
783
  return output_df
@@ -733,17 +806,17 @@ class RBFSampler(BaseTransformer):
733
806
  Output dataset with probability of the sample for each class in the model.
734
807
  """
735
808
  super()._check_dataset_type(dataset)
736
- inference_method="score_samples"
809
+ inference_method = "score_samples"
737
810
 
738
811
  # This dictionary contains optional kwargs for batch inference. These kwargs
739
812
  # are specific to the type of dataset used.
740
813
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
741
814
 
815
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
816
+
742
817
  if isinstance(dataset, DataFrame):
743
- self._deps = self._batch_inference_validate_snowpark(
744
- dataset=dataset,
745
- inference_method=inference_method,
746
- )
818
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
819
+ self._deps = self._get_dependencies()
747
820
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
748
821
  transform_kwargs = dict(
749
822
  session=dataset._session,
@@ -751,6 +824,9 @@ class RBFSampler(BaseTransformer):
751
824
  drop_input_cols = self._drop_input_cols,
752
825
  expected_output_cols_type="float",
753
826
  )
827
+ expected_output_cols = self._align_expected_output_names(
828
+ inference_method, dataset, expected_output_cols, output_cols_prefix
829
+ )
754
830
 
755
831
  elif isinstance(dataset, pd.DataFrame):
756
832
  transform_kwargs = dict(
@@ -769,7 +845,7 @@ class RBFSampler(BaseTransformer):
769
845
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
770
846
  inference_method=inference_method,
771
847
  input_cols=self.input_cols,
772
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
848
+ expected_output_cols=expected_output_cols,
773
849
  **transform_kwargs
774
850
  )
775
851
  return output_df
@@ -802,17 +878,15 @@ class RBFSampler(BaseTransformer):
802
878
  transform_kwargs: ScoreKwargsTypedDict = dict()
803
879
 
804
880
  if isinstance(dataset, DataFrame):
805
- self._deps = self._batch_inference_validate_snowpark(
806
- dataset=dataset,
807
- inference_method="score",
808
- )
881
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
882
+ self._deps = self._get_dependencies()
809
883
  selected_cols = self._get_active_columns()
810
884
  if len(selected_cols) > 0:
811
885
  dataset = dataset.select(selected_cols)
812
886
  assert isinstance(dataset._session, Session) # keep mypy happy
813
887
  transform_kwargs = dict(
814
888
  session=dataset._session,
815
- dependencies=["snowflake-snowpark-python"] + self._deps,
889
+ dependencies=self._deps,
816
890
  score_sproc_imports=['sklearn'],
817
891
  )
818
892
  elif isinstance(dataset, pd.DataFrame):
@@ -877,11 +951,8 @@ class RBFSampler(BaseTransformer):
877
951
 
878
952
  if isinstance(dataset, DataFrame):
879
953
 
880
- self._deps = self._batch_inference_validate_snowpark(
881
- dataset=dataset,
882
- inference_method=inference_method,
883
-
884
- )
954
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
955
+ self._deps = self._get_dependencies()
885
956
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
886
957
  transform_kwargs = dict(
887
958
  session = dataset._session,
@@ -914,50 +985,84 @@ class RBFSampler(BaseTransformer):
914
985
  )
915
986
  return output_df
916
987
 
988
+
989
+
990
+ def to_sklearn(self) -> Any:
991
+ """Get sklearn.kernel_approximation.RBFSampler object.
992
+ """
993
+ if self._sklearn_object is None:
994
+ self._sklearn_object = self._create_sklearn_object()
995
+ return self._sklearn_object
996
+
997
+ def to_xgboost(self) -> Any:
998
+ raise exceptions.SnowflakeMLException(
999
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1000
+ original_exception=AttributeError(
1001
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1002
+ "to_xgboost()",
1003
+ "to_sklearn()"
1004
+ )
1005
+ ),
1006
+ )
917
1007
 
918
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1008
+ def to_lightgbm(self) -> Any:
1009
+ raise exceptions.SnowflakeMLException(
1010
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1011
+ original_exception=AttributeError(
1012
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1013
+ "to_lightgbm()",
1014
+ "to_sklearn()"
1015
+ )
1016
+ ),
1017
+ )
1018
+
1019
+ def _get_dependencies(self) -> List[str]:
1020
+ return self._deps
1021
+
1022
+
1023
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
919
1024
  self._model_signature_dict = dict()
920
1025
 
921
1026
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
922
1027
 
923
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1028
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
924
1029
  outputs: List[BaseFeatureSpec] = []
925
1030
  if hasattr(self, "predict"):
926
1031
  # keep mypy happy
927
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1032
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
928
1033
  # For classifier, the type of predict is the same as the type of label
929
- if self._sklearn_object._estimator_type == 'classifier':
930
- # label columns is the desired type for output
1034
+ if self._sklearn_object._estimator_type == "classifier":
1035
+ # label columns is the desired type for output
931
1036
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
932
1037
  # rename the output columns
933
1038
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
934
- self._model_signature_dict["predict"] = ModelSignature(inputs,
935
- ([] if self._drop_input_cols else inputs)
936
- + outputs)
1039
+ self._model_signature_dict["predict"] = ModelSignature(
1040
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1041
+ )
937
1042
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
938
1043
  # For outlier models, returns -1 for outliers and 1 for inliers.
939
- # Clusterer returns int64 cluster labels.
1044
+ # Clusterer returns int64 cluster labels.
940
1045
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
941
1046
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
942
- self._model_signature_dict["predict"] = ModelSignature(inputs,
943
- ([] if self._drop_input_cols else inputs)
944
- + outputs)
945
-
1047
+ self._model_signature_dict["predict"] = ModelSignature(
1048
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1049
+ )
1050
+
946
1051
  # For regressor, the type of predict is float64
947
- elif self._sklearn_object._estimator_type == 'regressor':
1052
+ elif self._sklearn_object._estimator_type == "regressor":
948
1053
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
949
- self._model_signature_dict["predict"] = ModelSignature(inputs,
950
- ([] if self._drop_input_cols else inputs)
951
- + outputs)
952
-
1054
+ self._model_signature_dict["predict"] = ModelSignature(
1055
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1056
+ )
1057
+
953
1058
  for prob_func in PROB_FUNCTIONS:
954
1059
  if hasattr(self, prob_func):
955
1060
  output_cols_prefix: str = f"{prob_func}_"
956
1061
  output_column_names = self._get_output_column_names(output_cols_prefix)
957
1062
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
958
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
959
- ([] if self._drop_input_cols else inputs)
960
- + outputs)
1063
+ self._model_signature_dict[prob_func] = ModelSignature(
1064
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1065
+ )
961
1066
 
962
1067
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
963
1068
  items = list(self._model_signature_dict.items())
@@ -970,10 +1075,10 @@ class RBFSampler(BaseTransformer):
970
1075
  """Returns model signature of current class.
971
1076
 
972
1077
  Raises:
973
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1078
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
974
1079
 
975
1080
  Returns:
976
- Dict[str, ModelSignature]: each method and its input output signature
1081
+ Dict with each method and its input output signature
977
1082
  """
978
1083
  if self._model_signature_dict is None:
979
1084
  raise exceptions.SnowflakeMLException(
@@ -981,35 +1086,3 @@ class RBFSampler(BaseTransformer):
981
1086
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
982
1087
  )
983
1088
  return self._model_signature_dict
984
-
985
- def to_sklearn(self) -> Any:
986
- """Get sklearn.kernel_approximation.RBFSampler object.
987
- """
988
- if self._sklearn_object is None:
989
- self._sklearn_object = self._create_sklearn_object()
990
- return self._sklearn_object
991
-
992
- def to_xgboost(self) -> Any:
993
- raise exceptions.SnowflakeMLException(
994
- error_code=error_codes.METHOD_NOT_ALLOWED,
995
- original_exception=AttributeError(
996
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
997
- "to_xgboost()",
998
- "to_sklearn()"
999
- )
1000
- ),
1001
- )
1002
-
1003
- def to_lightgbm(self) -> Any:
1004
- raise exceptions.SnowflakeMLException(
1005
- error_code=error_codes.METHOD_NOT_ALLOWED,
1006
- original_exception=AttributeError(
1007
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1008
- "to_lightgbm()",
1009
- "to_sklearn()"
1010
- )
1011
- ),
1012
- )
1013
-
1014
- def _get_dependencies(self) -> List[str]:
1015
- return self._deps