snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.calibration".replace("sk
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class CalibratedClassifierCV(BaseTransformer):
71
64
  r"""Probability calibration with isotonic regression or logistic regression
72
65
  For more details on this class, see [sklearn.calibration.CalibratedClassifierCV]
@@ -267,12 +260,7 @@ class CalibratedClassifierCV(BaseTransformer):
267
260
  )
268
261
  return selected_cols
269
262
 
270
- @telemetry.send_api_usage_telemetry(
271
- project=_PROJECT,
272
- subproject=_SUBPROJECT,
273
- custom_tags=dict([("autogen", True)]),
274
- )
275
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CalibratedClassifierCV":
263
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CalibratedClassifierCV":
276
264
  """Fit the calibrated model
277
265
  For more details on this function, see [sklearn.calibration.CalibratedClassifierCV.fit]
278
266
  (https://scikit-learn.org/stable/modules/generated/sklearn.calibration.CalibratedClassifierCV.html#sklearn.calibration.CalibratedClassifierCV.fit)
@@ -299,12 +287,14 @@ class CalibratedClassifierCV(BaseTransformer):
299
287
 
300
288
  self._snowpark_cols = dataset.select(self.input_cols).columns
301
289
 
302
- # If we are already in a stored procedure, no need to kick off another one.
290
+ # If we are already in a stored procedure, no need to kick off another one.
303
291
  if SNOWML_SPROC_ENV in os.environ:
304
292
  statement_params = telemetry.get_function_usage_statement_params(
305
293
  project=_PROJECT,
306
294
  subproject=_SUBPROJECT,
307
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), CalibratedClassifierCV.__class__.__name__),
295
+ function_name=telemetry.get_statement_params_full_func_name(
296
+ inspect.currentframe(), CalibratedClassifierCV.__class__.__name__
297
+ ),
308
298
  api_calls=[Session.call],
309
299
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
310
300
  )
@@ -325,27 +315,24 @@ class CalibratedClassifierCV(BaseTransformer):
325
315
  )
326
316
  self._sklearn_object = model_trainer.train()
327
317
  self._is_fitted = True
328
- self._get_model_signatures(dataset)
318
+ self._generate_model_signatures(dataset)
329
319
  return self
330
320
 
331
321
  def _batch_inference_validate_snowpark(
332
322
  self,
333
323
  dataset: DataFrame,
334
324
  inference_method: str,
335
- ) -> List[str]:
336
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
337
- return the available package that exists in the snowflake anaconda channel
325
+ ) -> None:
326
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
338
327
 
339
328
  Args:
340
329
  dataset: snowpark dataframe
341
330
  inference_method: the inference method such as predict, score...
342
-
331
+
343
332
  Raises:
344
333
  SnowflakeMLException: If the estimator is not fitted, raise error
345
334
  SnowflakeMLException: If the session is None, raise error
346
335
 
347
- Returns:
348
- A list of available package that exists in the snowflake anaconda channel
349
336
  """
350
337
  if not self._is_fitted:
351
338
  raise exceptions.SnowflakeMLException(
@@ -363,9 +350,7 @@ class CalibratedClassifierCV(BaseTransformer):
363
350
  "Session must not specified for snowpark dataset."
364
351
  ),
365
352
  )
366
- # Validate that key package version in user workspace are supported in snowflake conda channel
367
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
368
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
353
+
369
354
 
370
355
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
371
356
  @telemetry.send_api_usage_telemetry(
@@ -401,7 +386,9 @@ class CalibratedClassifierCV(BaseTransformer):
401
386
  # when it is classifier, infer the datatype from label columns
402
387
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
403
388
  # Batch inference takes a single expected output column type. Use the first columns type for now.
404
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
389
+ label_cols_signatures = [
390
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
391
+ ]
405
392
  if len(label_cols_signatures) == 0:
406
393
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
407
394
  raise exceptions.SnowflakeMLException(
@@ -409,25 +396,23 @@ class CalibratedClassifierCV(BaseTransformer):
409
396
  original_exception=ValueError(error_str),
410
397
  )
411
398
 
412
- expected_type_inferred = convert_sp_to_sf_type(
413
- label_cols_signatures[0].as_snowpark_type()
414
- )
399
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
415
400
 
416
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
417
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
401
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
402
+ self._deps = self._get_dependencies()
403
+ assert isinstance(
404
+ dataset._session, Session
405
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
418
406
 
419
407
  transform_kwargs = dict(
420
- session = dataset._session,
421
- dependencies = self._deps,
422
- drop_input_cols = self._drop_input_cols,
423
- expected_output_cols_type = expected_type_inferred,
408
+ session=dataset._session,
409
+ dependencies=self._deps,
410
+ drop_input_cols=self._drop_input_cols,
411
+ expected_output_cols_type=expected_type_inferred,
424
412
  )
425
413
 
426
414
  elif isinstance(dataset, pd.DataFrame):
427
- transform_kwargs = dict(
428
- snowpark_input_cols = self._snowpark_cols,
429
- drop_input_cols = self._drop_input_cols
430
- )
415
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
431
416
 
432
417
  transform_handlers = ModelTransformerBuilder.build(
433
418
  dataset=dataset,
@@ -467,7 +452,7 @@ class CalibratedClassifierCV(BaseTransformer):
467
452
  Transformed dataset.
468
453
  """
469
454
  super()._check_dataset_type(dataset)
470
- inference_method="transform"
455
+ inference_method = "transform"
471
456
 
472
457
  # This dictionary contains optional kwargs for batch inference. These kwargs
473
458
  # are specific to the type of dataset used.
@@ -497,24 +482,19 @@ class CalibratedClassifierCV(BaseTransformer):
497
482
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
498
483
  expected_dtype = convert_sp_to_sf_type(output_types[0])
499
484
 
500
- self._deps = self._batch_inference_validate_snowpark(
501
- dataset=dataset,
502
- inference_method=inference_method,
503
- )
485
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
486
+ self._deps = self._get_dependencies()
504
487
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
505
488
 
506
489
  transform_kwargs = dict(
507
- session = dataset._session,
508
- dependencies = self._deps,
509
- drop_input_cols = self._drop_input_cols,
510
- expected_output_cols_type = expected_dtype,
490
+ session=dataset._session,
491
+ dependencies=self._deps,
492
+ drop_input_cols=self._drop_input_cols,
493
+ expected_output_cols_type=expected_dtype,
511
494
  )
512
495
 
513
496
  elif isinstance(dataset, pd.DataFrame):
514
- transform_kwargs = dict(
515
- snowpark_input_cols = self._snowpark_cols,
516
- drop_input_cols = self._drop_input_cols
517
- )
497
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
518
498
 
519
499
  transform_handlers = ModelTransformerBuilder.build(
520
500
  dataset=dataset,
@@ -533,7 +513,11 @@ class CalibratedClassifierCV(BaseTransformer):
533
513
  return output_df
534
514
 
535
515
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
536
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
516
+ def fit_predict(
517
+ self,
518
+ dataset: Union[DataFrame, pd.DataFrame],
519
+ output_cols_prefix: str = "fit_predict_",
520
+ ) -> Union[DataFrame, pd.DataFrame]:
537
521
  """ Method not supported for this class.
538
522
 
539
523
 
@@ -558,22 +542,104 @@ class CalibratedClassifierCV(BaseTransformer):
558
542
  )
559
543
  output_result, fitted_estimator = model_trainer.train_fit_predict(
560
544
  drop_input_cols=self._drop_input_cols,
561
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
545
+ expected_output_cols_list=(
546
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
547
+ ),
562
548
  )
563
549
  self._sklearn_object = fitted_estimator
564
550
  self._is_fitted = True
565
551
  return output_result
566
552
 
553
+
554
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
555
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
556
+ """ Method not supported for this class.
557
+
567
558
 
568
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
569
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
570
- """
559
+ Raises:
560
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
561
+
562
+ Args:
563
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
564
+ Snowpark or Pandas DataFrame.
565
+ output_cols_prefix: Prefix for the response columns
571
566
  Returns:
572
567
  Transformed dataset.
573
568
  """
574
- self.fit(dataset)
575
- assert self._sklearn_object is not None
576
- return self._sklearn_object.embedding_
569
+ self._infer_input_output_cols(dataset)
570
+ super()._check_dataset_type(dataset)
571
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
572
+ estimator=self._sklearn_object,
573
+ dataset=dataset,
574
+ input_cols=self.input_cols,
575
+ label_cols=self.label_cols,
576
+ sample_weight_col=self.sample_weight_col,
577
+ autogenerated=self._autogenerated,
578
+ subproject=_SUBPROJECT,
579
+ )
580
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
581
+ drop_input_cols=self._drop_input_cols,
582
+ expected_output_cols_list=self.output_cols,
583
+ )
584
+ self._sklearn_object = fitted_estimator
585
+ self._is_fitted = True
586
+ return output_result
587
+
588
+
589
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
590
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
591
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
592
+ """
593
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
594
+ # The following condition is introduced for kneighbors methods, and not used in other methods
595
+ if output_cols:
596
+ output_cols = [
597
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
598
+ for c in output_cols
599
+ ]
600
+ elif getattr(self._sklearn_object, "classes_", None) is None:
601
+ output_cols = [output_cols_prefix]
602
+ elif self._sklearn_object is not None:
603
+ classes = self._sklearn_object.classes_
604
+ if isinstance(classes, numpy.ndarray):
605
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
606
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
607
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
608
+ output_cols = []
609
+ for i, cl in enumerate(classes):
610
+ # For binary classification, there is only one output column for each class
611
+ # ndarray as the two classes are complementary.
612
+ if len(cl) == 2:
613
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
614
+ else:
615
+ output_cols.extend([
616
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
617
+ ])
618
+ else:
619
+ output_cols = []
620
+
621
+ # Make sure column names are valid snowflake identifiers.
622
+ assert output_cols is not None # Make MyPy happy
623
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
624
+
625
+ return rv
626
+
627
+ def _align_expected_output_names(
628
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
629
+ ) -> List[str]:
630
+ # in case the inferred output column names dimension is different
631
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
632
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
633
+ output_df_columns = list(output_df_pd.columns)
634
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
635
+ if self.sample_weight_col:
636
+ output_df_columns_set -= set(self.sample_weight_col)
637
+ # if the dimension of inferred output column names is correct; use it
638
+ if len(expected_output_cols_list) == len(output_df_columns_set):
639
+ return expected_output_cols_list
640
+ # otherwise, use the sklearn estimator's output
641
+ else:
642
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
577
643
 
578
644
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
579
645
  @telemetry.send_api_usage_telemetry(
@@ -607,24 +673,26 @@ class CalibratedClassifierCV(BaseTransformer):
607
673
  # are specific to the type of dataset used.
608
674
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
609
675
 
676
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
677
+
610
678
  if isinstance(dataset, DataFrame):
611
- self._deps = self._batch_inference_validate_snowpark(
612
- dataset=dataset,
613
- inference_method=inference_method,
614
- )
615
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
679
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
680
+ self._deps = self._get_dependencies()
681
+ assert isinstance(
682
+ dataset._session, Session
683
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
616
684
  transform_kwargs = dict(
617
685
  session=dataset._session,
618
686
  dependencies=self._deps,
619
- drop_input_cols = self._drop_input_cols,
687
+ drop_input_cols=self._drop_input_cols,
620
688
  expected_output_cols_type="float",
621
689
  )
690
+ expected_output_cols = self._align_expected_output_names(
691
+ inference_method, dataset, expected_output_cols, output_cols_prefix
692
+ )
622
693
 
623
694
  elif isinstance(dataset, pd.DataFrame):
624
- transform_kwargs = dict(
625
- snowpark_input_cols = self._snowpark_cols,
626
- drop_input_cols = self._drop_input_cols
627
- )
695
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
628
696
 
629
697
  transform_handlers = ModelTransformerBuilder.build(
630
698
  dataset=dataset,
@@ -636,7 +704,7 @@ class CalibratedClassifierCV(BaseTransformer):
636
704
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
637
705
  inference_method=inference_method,
638
706
  input_cols=self.input_cols,
639
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
707
+ expected_output_cols=expected_output_cols,
640
708
  **transform_kwargs
641
709
  )
642
710
  return output_df
@@ -668,29 +736,30 @@ class CalibratedClassifierCV(BaseTransformer):
668
736
  Output dataset with log probability of the sample for each class in the model.
669
737
  """
670
738
  super()._check_dataset_type(dataset)
671
- inference_method="predict_log_proba"
739
+ inference_method = "predict_log_proba"
740
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
672
741
 
673
742
  # This dictionary contains optional kwargs for batch inference. These kwargs
674
743
  # are specific to the type of dataset used.
675
744
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
676
745
 
677
746
  if isinstance(dataset, DataFrame):
678
- self._deps = self._batch_inference_validate_snowpark(
679
- dataset=dataset,
680
- inference_method=inference_method,
681
- )
682
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
747
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
748
+ self._deps = self._get_dependencies()
749
+ assert isinstance(
750
+ dataset._session, Session
751
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
683
752
  transform_kwargs = dict(
684
753
  session=dataset._session,
685
754
  dependencies=self._deps,
686
- drop_input_cols = self._drop_input_cols,
755
+ drop_input_cols=self._drop_input_cols,
687
756
  expected_output_cols_type="float",
688
757
  )
758
+ expected_output_cols = self._align_expected_output_names(
759
+ inference_method, dataset, expected_output_cols, output_cols_prefix
760
+ )
689
761
  elif isinstance(dataset, pd.DataFrame):
690
- transform_kwargs = dict(
691
- snowpark_input_cols = self._snowpark_cols,
692
- drop_input_cols = self._drop_input_cols
693
- )
762
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
694
763
 
695
764
  transform_handlers = ModelTransformerBuilder.build(
696
765
  dataset=dataset,
@@ -703,7 +772,7 @@ class CalibratedClassifierCV(BaseTransformer):
703
772
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
704
773
  inference_method=inference_method,
705
774
  input_cols=self.input_cols,
706
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
775
+ expected_output_cols=expected_output_cols,
707
776
  **transform_kwargs
708
777
  )
709
778
  return output_df
@@ -729,30 +798,32 @@ class CalibratedClassifierCV(BaseTransformer):
729
798
  Output dataset with results of the decision function for the samples in input dataset.
730
799
  """
731
800
  super()._check_dataset_type(dataset)
732
- inference_method="decision_function"
801
+ inference_method = "decision_function"
733
802
 
734
803
  # This dictionary contains optional kwargs for batch inference. These kwargs
735
804
  # are specific to the type of dataset used.
736
805
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
737
806
 
807
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
808
+
738
809
  if isinstance(dataset, DataFrame):
739
- self._deps = self._batch_inference_validate_snowpark(
740
- dataset=dataset,
741
- inference_method=inference_method,
742
- )
743
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
810
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
811
+ self._deps = self._get_dependencies()
812
+ assert isinstance(
813
+ dataset._session, Session
814
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
744
815
  transform_kwargs = dict(
745
816
  session=dataset._session,
746
817
  dependencies=self._deps,
747
- drop_input_cols = self._drop_input_cols,
818
+ drop_input_cols=self._drop_input_cols,
748
819
  expected_output_cols_type="float",
749
820
  )
821
+ expected_output_cols = self._align_expected_output_names(
822
+ inference_method, dataset, expected_output_cols, output_cols_prefix
823
+ )
750
824
 
751
825
  elif isinstance(dataset, pd.DataFrame):
752
- transform_kwargs = dict(
753
- snowpark_input_cols = self._snowpark_cols,
754
- drop_input_cols = self._drop_input_cols
755
- )
826
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
756
827
 
757
828
  transform_handlers = ModelTransformerBuilder.build(
758
829
  dataset=dataset,
@@ -765,7 +836,7 @@ class CalibratedClassifierCV(BaseTransformer):
765
836
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
766
837
  inference_method=inference_method,
767
838
  input_cols=self.input_cols,
768
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
839
+ expected_output_cols=expected_output_cols,
769
840
  **transform_kwargs
770
841
  )
771
842
  return output_df
@@ -794,17 +865,17 @@ class CalibratedClassifierCV(BaseTransformer):
794
865
  Output dataset with probability of the sample for each class in the model.
795
866
  """
796
867
  super()._check_dataset_type(dataset)
797
- inference_method="score_samples"
868
+ inference_method = "score_samples"
798
869
 
799
870
  # This dictionary contains optional kwargs for batch inference. These kwargs
800
871
  # are specific to the type of dataset used.
801
872
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
802
873
 
874
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
875
+
803
876
  if isinstance(dataset, DataFrame):
804
- self._deps = self._batch_inference_validate_snowpark(
805
- dataset=dataset,
806
- inference_method=inference_method,
807
- )
877
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
878
+ self._deps = self._get_dependencies()
808
879
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
809
880
  transform_kwargs = dict(
810
881
  session=dataset._session,
@@ -812,6 +883,9 @@ class CalibratedClassifierCV(BaseTransformer):
812
883
  drop_input_cols = self._drop_input_cols,
813
884
  expected_output_cols_type="float",
814
885
  )
886
+ expected_output_cols = self._align_expected_output_names(
887
+ inference_method, dataset, expected_output_cols, output_cols_prefix
888
+ )
815
889
 
816
890
  elif isinstance(dataset, pd.DataFrame):
817
891
  transform_kwargs = dict(
@@ -830,7 +904,7 @@ class CalibratedClassifierCV(BaseTransformer):
830
904
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
831
905
  inference_method=inference_method,
832
906
  input_cols=self.input_cols,
833
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
907
+ expected_output_cols=expected_output_cols,
834
908
  **transform_kwargs
835
909
  )
836
910
  return output_df
@@ -865,17 +939,15 @@ class CalibratedClassifierCV(BaseTransformer):
865
939
  transform_kwargs: ScoreKwargsTypedDict = dict()
866
940
 
867
941
  if isinstance(dataset, DataFrame):
868
- self._deps = self._batch_inference_validate_snowpark(
869
- dataset=dataset,
870
- inference_method="score",
871
- )
942
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
943
+ self._deps = self._get_dependencies()
872
944
  selected_cols = self._get_active_columns()
873
945
  if len(selected_cols) > 0:
874
946
  dataset = dataset.select(selected_cols)
875
947
  assert isinstance(dataset._session, Session) # keep mypy happy
876
948
  transform_kwargs = dict(
877
949
  session=dataset._session,
878
- dependencies=["snowflake-snowpark-python"] + self._deps,
950
+ dependencies=self._deps,
879
951
  score_sproc_imports=['sklearn'],
880
952
  )
881
953
  elif isinstance(dataset, pd.DataFrame):
@@ -940,11 +1012,8 @@ class CalibratedClassifierCV(BaseTransformer):
940
1012
 
941
1013
  if isinstance(dataset, DataFrame):
942
1014
 
943
- self._deps = self._batch_inference_validate_snowpark(
944
- dataset=dataset,
945
- inference_method=inference_method,
946
-
947
- )
1015
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1016
+ self._deps = self._get_dependencies()
948
1017
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
949
1018
  transform_kwargs = dict(
950
1019
  session = dataset._session,
@@ -977,50 +1046,84 @@ class CalibratedClassifierCV(BaseTransformer):
977
1046
  )
978
1047
  return output_df
979
1048
 
1049
+
1050
+
1051
+ def to_sklearn(self) -> Any:
1052
+ """Get sklearn.calibration.CalibratedClassifierCV object.
1053
+ """
1054
+ if self._sklearn_object is None:
1055
+ self._sklearn_object = self._create_sklearn_object()
1056
+ return self._sklearn_object
1057
+
1058
+ def to_xgboost(self) -> Any:
1059
+ raise exceptions.SnowflakeMLException(
1060
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1061
+ original_exception=AttributeError(
1062
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1063
+ "to_xgboost()",
1064
+ "to_sklearn()"
1065
+ )
1066
+ ),
1067
+ )
1068
+
1069
+ def to_lightgbm(self) -> Any:
1070
+ raise exceptions.SnowflakeMLException(
1071
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1072
+ original_exception=AttributeError(
1073
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1074
+ "to_lightgbm()",
1075
+ "to_sklearn()"
1076
+ )
1077
+ ),
1078
+ )
1079
+
1080
+ def _get_dependencies(self) -> List[str]:
1081
+ return self._deps
1082
+
980
1083
 
981
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1084
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
982
1085
  self._model_signature_dict = dict()
983
1086
 
984
1087
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
985
1088
 
986
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1089
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
987
1090
  outputs: List[BaseFeatureSpec] = []
988
1091
  if hasattr(self, "predict"):
989
1092
  # keep mypy happy
990
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1093
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
991
1094
  # For classifier, the type of predict is the same as the type of label
992
- if self._sklearn_object._estimator_type == 'classifier':
993
- # label columns is the desired type for output
1095
+ if self._sklearn_object._estimator_type == "classifier":
1096
+ # label columns is the desired type for output
994
1097
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
995
1098
  # rename the output columns
996
1099
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
997
- self._model_signature_dict["predict"] = ModelSignature(inputs,
998
- ([] if self._drop_input_cols else inputs)
999
- + outputs)
1100
+ self._model_signature_dict["predict"] = ModelSignature(
1101
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1102
+ )
1000
1103
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1001
1104
  # For outlier models, returns -1 for outliers and 1 for inliers.
1002
- # Clusterer returns int64 cluster labels.
1105
+ # Clusterer returns int64 cluster labels.
1003
1106
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1004
1107
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1005
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1006
- ([] if self._drop_input_cols else inputs)
1007
- + outputs)
1008
-
1108
+ self._model_signature_dict["predict"] = ModelSignature(
1109
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1110
+ )
1111
+
1009
1112
  # For regressor, the type of predict is float64
1010
- elif self._sklearn_object._estimator_type == 'regressor':
1113
+ elif self._sklearn_object._estimator_type == "regressor":
1011
1114
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1012
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1015
-
1115
+ self._model_signature_dict["predict"] = ModelSignature(
1116
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1117
+ )
1118
+
1016
1119
  for prob_func in PROB_FUNCTIONS:
1017
1120
  if hasattr(self, prob_func):
1018
1121
  output_cols_prefix: str = f"{prob_func}_"
1019
1122
  output_column_names = self._get_output_column_names(output_cols_prefix)
1020
1123
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1021
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1022
- ([] if self._drop_input_cols else inputs)
1023
- + outputs)
1124
+ self._model_signature_dict[prob_func] = ModelSignature(
1125
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1126
+ )
1024
1127
 
1025
1128
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1026
1129
  items = list(self._model_signature_dict.items())
@@ -1033,10 +1136,10 @@ class CalibratedClassifierCV(BaseTransformer):
1033
1136
  """Returns model signature of current class.
1034
1137
 
1035
1138
  Raises:
1036
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1139
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1037
1140
 
1038
1141
  Returns:
1039
- Dict[str, ModelSignature]: each method and its input output signature
1142
+ Dict with each method and its input output signature
1040
1143
  """
1041
1144
  if self._model_signature_dict is None:
1042
1145
  raise exceptions.SnowflakeMLException(
@@ -1044,35 +1147,3 @@ class CalibratedClassifierCV(BaseTransformer):
1044
1147
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1045
1148
  )
1046
1149
  return self._model_signature_dict
1047
-
1048
- def to_sklearn(self) -> Any:
1049
- """Get sklearn.calibration.CalibratedClassifierCV object.
1050
- """
1051
- if self._sklearn_object is None:
1052
- self._sklearn_object = self._create_sklearn_object()
1053
- return self._sklearn_object
1054
-
1055
- def to_xgboost(self) -> Any:
1056
- raise exceptions.SnowflakeMLException(
1057
- error_code=error_codes.METHOD_NOT_ALLOWED,
1058
- original_exception=AttributeError(
1059
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
- "to_xgboost()",
1061
- "to_sklearn()"
1062
- )
1063
- ),
1064
- )
1065
-
1066
- def to_lightgbm(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_lightgbm()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def _get_dependencies(self) -> List[str]:
1078
- return self._deps