snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -32,6 +32,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
32
32
  BatchInferenceKwargsTypedDict,
33
33
  ScoreKwargsTypedDict
34
34
  )
35
+ from snowflake.ml.model._signatures import utils as model_signature_utils
36
+ from snowflake.ml.model.model_signature import (
37
+ BaseFeatureSpec,
38
+ DataType,
39
+ FeatureSpec,
40
+ ModelSignature,
41
+ _infer_signature,
42
+ _rename_signature_with_snowflake_identifiers,
43
+ )
35
44
 
36
45
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
37
46
 
@@ -42,16 +51,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
42
51
  validate_sklearn_args,
43
52
  )
44
53
 
45
- from snowflake.ml.model.model_signature import (
46
- DataType,
47
- FeatureSpec,
48
- ModelSignature,
49
- _infer_signature,
50
- _rename_signature_with_snowflake_identifiers,
51
- BaseFeatureSpec,
52
- )
53
- from snowflake.ml.model._signatures import utils as model_signature_utils
54
-
55
54
  _PROJECT = "ModelDevelopment"
56
55
  # Derive subproject from module name by removing "sklearn"
57
56
  # and converting module name from underscore to CamelCase
@@ -60,12 +59,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "xgboost".replace("sklearn.", "")
60
59
 
61
60
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
62
61
 
63
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
64
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
65
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
66
- return check
67
-
68
-
69
62
  class XGBRFClassifier(BaseTransformer):
70
63
  r"""scikit-learn API for XGBoost random forest classification
71
64
  For more details on this class, see [xgboost.XGBRFClassifier]
@@ -426,12 +419,7 @@ class XGBRFClassifier(BaseTransformer):
426
419
  )
427
420
  return selected_cols
428
421
 
429
- @telemetry.send_api_usage_telemetry(
430
- project=_PROJECT,
431
- subproject=_SUBPROJECT,
432
- custom_tags=dict([("autogen", True)]),
433
- )
434
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFClassifier":
422
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "XGBRFClassifier":
435
423
  """Fit gradient boosting classifier
436
424
  For more details on this function, see [xgboost.XGBRFClassifier.fit]
437
425
  (https://xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBRFClassifier.fit)
@@ -458,12 +446,14 @@ class XGBRFClassifier(BaseTransformer):
458
446
 
459
447
  self._snowpark_cols = dataset.select(self.input_cols).columns
460
448
 
461
- # If we are already in a stored procedure, no need to kick off another one.
449
+ # If we are already in a stored procedure, no need to kick off another one.
462
450
  if SNOWML_SPROC_ENV in os.environ:
463
451
  statement_params = telemetry.get_function_usage_statement_params(
464
452
  project=_PROJECT,
465
453
  subproject=_SUBPROJECT,
466
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), XGBRFClassifier.__class__.__name__),
454
+ function_name=telemetry.get_statement_params_full_func_name(
455
+ inspect.currentframe(), XGBRFClassifier.__class__.__name__
456
+ ),
467
457
  api_calls=[Session.call],
468
458
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
469
459
  )
@@ -484,27 +474,24 @@ class XGBRFClassifier(BaseTransformer):
484
474
  )
485
475
  self._sklearn_object = model_trainer.train()
486
476
  self._is_fitted = True
487
- self._get_model_signatures(dataset)
477
+ self._generate_model_signatures(dataset)
488
478
  return self
489
479
 
490
480
  def _batch_inference_validate_snowpark(
491
481
  self,
492
482
  dataset: DataFrame,
493
483
  inference_method: str,
494
- ) -> List[str]:
495
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
496
- return the available package that exists in the snowflake anaconda channel
484
+ ) -> None:
485
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
497
486
 
498
487
  Args:
499
488
  dataset: snowpark dataframe
500
489
  inference_method: the inference method such as predict, score...
501
-
490
+
502
491
  Raises:
503
492
  SnowflakeMLException: If the estimator is not fitted, raise error
504
493
  SnowflakeMLException: If the session is None, raise error
505
494
 
506
- Returns:
507
- A list of available package that exists in the snowflake anaconda channel
508
495
  """
509
496
  if not self._is_fitted:
510
497
  raise exceptions.SnowflakeMLException(
@@ -522,9 +509,7 @@ class XGBRFClassifier(BaseTransformer):
522
509
  "Session must not specified for snowpark dataset."
523
510
  ),
524
511
  )
525
- # Validate that key package version in user workspace are supported in snowflake conda channel
526
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
527
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
512
+
528
513
 
529
514
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
530
515
  @telemetry.send_api_usage_telemetry(
@@ -560,7 +545,9 @@ class XGBRFClassifier(BaseTransformer):
560
545
  # when it is classifier, infer the datatype from label columns
561
546
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
562
547
  # Batch inference takes a single expected output column type. Use the first columns type for now.
563
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
548
+ label_cols_signatures = [
549
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
550
+ ]
564
551
  if len(label_cols_signatures) == 0:
565
552
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
566
553
  raise exceptions.SnowflakeMLException(
@@ -568,25 +555,23 @@ class XGBRFClassifier(BaseTransformer):
568
555
  original_exception=ValueError(error_str),
569
556
  )
570
557
 
571
- expected_type_inferred = convert_sp_to_sf_type(
572
- label_cols_signatures[0].as_snowpark_type()
573
- )
558
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
574
559
 
575
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
576
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
560
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
561
+ self._deps = self._get_dependencies()
562
+ assert isinstance(
563
+ dataset._session, Session
564
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
577
565
 
578
566
  transform_kwargs = dict(
579
- session = dataset._session,
580
- dependencies = self._deps,
581
- drop_input_cols = self._drop_input_cols,
582
- expected_output_cols_type = expected_type_inferred,
567
+ session=dataset._session,
568
+ dependencies=self._deps,
569
+ drop_input_cols=self._drop_input_cols,
570
+ expected_output_cols_type=expected_type_inferred,
583
571
  )
584
572
 
585
573
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
574
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
575
 
591
576
  transform_handlers = ModelTransformerBuilder.build(
592
577
  dataset=dataset,
@@ -626,7 +611,7 @@ class XGBRFClassifier(BaseTransformer):
626
611
  Transformed dataset.
627
612
  """
628
613
  super()._check_dataset_type(dataset)
629
- inference_method="transform"
614
+ inference_method = "transform"
630
615
 
631
616
  # This dictionary contains optional kwargs for batch inference. These kwargs
632
617
  # are specific to the type of dataset used.
@@ -656,24 +641,19 @@ class XGBRFClassifier(BaseTransformer):
656
641
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
657
642
  expected_dtype = convert_sp_to_sf_type(output_types[0])
658
643
 
659
- self._deps = self._batch_inference_validate_snowpark(
660
- dataset=dataset,
661
- inference_method=inference_method,
662
- )
644
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
645
+ self._deps = self._get_dependencies()
663
646
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
664
647
 
665
648
  transform_kwargs = dict(
666
- session = dataset._session,
667
- dependencies = self._deps,
668
- drop_input_cols = self._drop_input_cols,
669
- expected_output_cols_type = expected_dtype,
649
+ session=dataset._session,
650
+ dependencies=self._deps,
651
+ drop_input_cols=self._drop_input_cols,
652
+ expected_output_cols_type=expected_dtype,
670
653
  )
671
654
 
672
655
  elif isinstance(dataset, pd.DataFrame):
673
- transform_kwargs = dict(
674
- snowpark_input_cols = self._snowpark_cols,
675
- drop_input_cols = self._drop_input_cols
676
- )
656
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
677
657
 
678
658
  transform_handlers = ModelTransformerBuilder.build(
679
659
  dataset=dataset,
@@ -692,7 +672,11 @@ class XGBRFClassifier(BaseTransformer):
692
672
  return output_df
693
673
 
694
674
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
695
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
675
+ def fit_predict(
676
+ self,
677
+ dataset: Union[DataFrame, pd.DataFrame],
678
+ output_cols_prefix: str = "fit_predict_",
679
+ ) -> Union[DataFrame, pd.DataFrame]:
696
680
  """ Method not supported for this class.
697
681
 
698
682
 
@@ -717,22 +701,104 @@ class XGBRFClassifier(BaseTransformer):
717
701
  )
718
702
  output_result, fitted_estimator = model_trainer.train_fit_predict(
719
703
  drop_input_cols=self._drop_input_cols,
720
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
704
+ expected_output_cols_list=(
705
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
706
+ ),
721
707
  )
722
708
  self._sklearn_object = fitted_estimator
723
709
  self._is_fitted = True
724
710
  return output_result
725
711
 
712
+
713
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
714
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
715
+ """ Method not supported for this class.
716
+
726
717
 
727
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
728
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
729
- """
718
+ Raises:
719
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
720
+
721
+ Args:
722
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
723
+ Snowpark or Pandas DataFrame.
724
+ output_cols_prefix: Prefix for the response columns
730
725
  Returns:
731
726
  Transformed dataset.
732
727
  """
733
- self.fit(dataset)
734
- assert self._sklearn_object is not None
735
- return self._sklearn_object.embedding_
728
+ self._infer_input_output_cols(dataset)
729
+ super()._check_dataset_type(dataset)
730
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
731
+ estimator=self._sklearn_object,
732
+ dataset=dataset,
733
+ input_cols=self.input_cols,
734
+ label_cols=self.label_cols,
735
+ sample_weight_col=self.sample_weight_col,
736
+ autogenerated=self._autogenerated,
737
+ subproject=_SUBPROJECT,
738
+ )
739
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
740
+ drop_input_cols=self._drop_input_cols,
741
+ expected_output_cols_list=self.output_cols,
742
+ )
743
+ self._sklearn_object = fitted_estimator
744
+ self._is_fitted = True
745
+ return output_result
746
+
747
+
748
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
749
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
750
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
751
+ """
752
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
753
+ # The following condition is introduced for kneighbors methods, and not used in other methods
754
+ if output_cols:
755
+ output_cols = [
756
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
757
+ for c in output_cols
758
+ ]
759
+ elif getattr(self._sklearn_object, "classes_", None) is None:
760
+ output_cols = [output_cols_prefix]
761
+ elif self._sklearn_object is not None:
762
+ classes = self._sklearn_object.classes_
763
+ if isinstance(classes, numpy.ndarray):
764
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
765
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
766
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
767
+ output_cols = []
768
+ for i, cl in enumerate(classes):
769
+ # For binary classification, there is only one output column for each class
770
+ # ndarray as the two classes are complementary.
771
+ if len(cl) == 2:
772
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
773
+ else:
774
+ output_cols.extend([
775
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
776
+ ])
777
+ else:
778
+ output_cols = []
779
+
780
+ # Make sure column names are valid snowflake identifiers.
781
+ assert output_cols is not None # Make MyPy happy
782
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
783
+
784
+ return rv
785
+
786
+ def _align_expected_output_names(
787
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
788
+ ) -> List[str]:
789
+ # in case the inferred output column names dimension is different
790
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
791
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
792
+ output_df_columns = list(output_df_pd.columns)
793
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
794
+ if self.sample_weight_col:
795
+ output_df_columns_set -= set(self.sample_weight_col)
796
+ # if the dimension of inferred output column names is correct; use it
797
+ if len(expected_output_cols_list) == len(output_df_columns_set):
798
+ return expected_output_cols_list
799
+ # otherwise, use the sklearn estimator's output
800
+ else:
801
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
736
802
 
737
803
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
738
804
  @telemetry.send_api_usage_telemetry(
@@ -766,24 +832,26 @@ class XGBRFClassifier(BaseTransformer):
766
832
  # are specific to the type of dataset used.
767
833
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
834
 
835
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
836
+
769
837
  if isinstance(dataset, DataFrame):
770
- self._deps = self._batch_inference_validate_snowpark(
771
- dataset=dataset,
772
- inference_method=inference_method,
773
- )
774
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
838
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
839
+ self._deps = self._get_dependencies()
840
+ assert isinstance(
841
+ dataset._session, Session
842
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
843
  transform_kwargs = dict(
776
844
  session=dataset._session,
777
845
  dependencies=self._deps,
778
- drop_input_cols = self._drop_input_cols,
846
+ drop_input_cols=self._drop_input_cols,
779
847
  expected_output_cols_type="float",
780
848
  )
849
+ expected_output_cols = self._align_expected_output_names(
850
+ inference_method, dataset, expected_output_cols, output_cols_prefix
851
+ )
781
852
 
782
853
  elif isinstance(dataset, pd.DataFrame):
783
- transform_kwargs = dict(
784
- snowpark_input_cols = self._snowpark_cols,
785
- drop_input_cols = self._drop_input_cols
786
- )
854
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
787
855
 
788
856
  transform_handlers = ModelTransformerBuilder.build(
789
857
  dataset=dataset,
@@ -795,7 +863,7 @@ class XGBRFClassifier(BaseTransformer):
795
863
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
796
864
  inference_method=inference_method,
797
865
  input_cols=self.input_cols,
798
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
866
+ expected_output_cols=expected_output_cols,
799
867
  **transform_kwargs
800
868
  )
801
869
  return output_df
@@ -827,29 +895,30 @@ class XGBRFClassifier(BaseTransformer):
827
895
  Output dataset with log probability of the sample for each class in the model.
828
896
  """
829
897
  super()._check_dataset_type(dataset)
830
- inference_method="predict_log_proba"
898
+ inference_method = "predict_log_proba"
899
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
831
900
 
832
901
  # This dictionary contains optional kwargs for batch inference. These kwargs
833
902
  # are specific to the type of dataset used.
834
903
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
835
904
 
836
905
  if isinstance(dataset, DataFrame):
837
- self._deps = self._batch_inference_validate_snowpark(
838
- dataset=dataset,
839
- inference_method=inference_method,
840
- )
841
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
906
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
907
+ self._deps = self._get_dependencies()
908
+ assert isinstance(
909
+ dataset._session, Session
910
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
842
911
  transform_kwargs = dict(
843
912
  session=dataset._session,
844
913
  dependencies=self._deps,
845
- drop_input_cols = self._drop_input_cols,
914
+ drop_input_cols=self._drop_input_cols,
846
915
  expected_output_cols_type="float",
847
916
  )
917
+ expected_output_cols = self._align_expected_output_names(
918
+ inference_method, dataset, expected_output_cols, output_cols_prefix
919
+ )
848
920
  elif isinstance(dataset, pd.DataFrame):
849
- transform_kwargs = dict(
850
- snowpark_input_cols = self._snowpark_cols,
851
- drop_input_cols = self._drop_input_cols
852
- )
921
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
853
922
 
854
923
  transform_handlers = ModelTransformerBuilder.build(
855
924
  dataset=dataset,
@@ -862,7 +931,7 @@ class XGBRFClassifier(BaseTransformer):
862
931
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
863
932
  inference_method=inference_method,
864
933
  input_cols=self.input_cols,
865
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
934
+ expected_output_cols=expected_output_cols,
866
935
  **transform_kwargs
867
936
  )
868
937
  return output_df
@@ -888,30 +957,32 @@ class XGBRFClassifier(BaseTransformer):
888
957
  Output dataset with results of the decision function for the samples in input dataset.
889
958
  """
890
959
  super()._check_dataset_type(dataset)
891
- inference_method="decision_function"
960
+ inference_method = "decision_function"
892
961
 
893
962
  # This dictionary contains optional kwargs for batch inference. These kwargs
894
963
  # are specific to the type of dataset used.
895
964
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
896
965
 
966
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
967
+
897
968
  if isinstance(dataset, DataFrame):
898
- self._deps = self._batch_inference_validate_snowpark(
899
- dataset=dataset,
900
- inference_method=inference_method,
901
- )
902
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
969
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
970
+ self._deps = self._get_dependencies()
971
+ assert isinstance(
972
+ dataset._session, Session
973
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
903
974
  transform_kwargs = dict(
904
975
  session=dataset._session,
905
976
  dependencies=self._deps,
906
- drop_input_cols = self._drop_input_cols,
977
+ drop_input_cols=self._drop_input_cols,
907
978
  expected_output_cols_type="float",
908
979
  )
980
+ expected_output_cols = self._align_expected_output_names(
981
+ inference_method, dataset, expected_output_cols, output_cols_prefix
982
+ )
909
983
 
910
984
  elif isinstance(dataset, pd.DataFrame):
911
- transform_kwargs = dict(
912
- snowpark_input_cols = self._snowpark_cols,
913
- drop_input_cols = self._drop_input_cols
914
- )
985
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
915
986
 
916
987
  transform_handlers = ModelTransformerBuilder.build(
917
988
  dataset=dataset,
@@ -924,7 +995,7 @@ class XGBRFClassifier(BaseTransformer):
924
995
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
925
996
  inference_method=inference_method,
926
997
  input_cols=self.input_cols,
927
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
998
+ expected_output_cols=expected_output_cols,
928
999
  **transform_kwargs
929
1000
  )
930
1001
  return output_df
@@ -953,17 +1024,17 @@ class XGBRFClassifier(BaseTransformer):
953
1024
  Output dataset with probability of the sample for each class in the model.
954
1025
  """
955
1026
  super()._check_dataset_type(dataset)
956
- inference_method="score_samples"
1027
+ inference_method = "score_samples"
957
1028
 
958
1029
  # This dictionary contains optional kwargs for batch inference. These kwargs
959
1030
  # are specific to the type of dataset used.
960
1031
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
961
1032
 
1033
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
1034
+
962
1035
  if isinstance(dataset, DataFrame):
963
- self._deps = self._batch_inference_validate_snowpark(
964
- dataset=dataset,
965
- inference_method=inference_method,
966
- )
1036
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1037
+ self._deps = self._get_dependencies()
967
1038
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
968
1039
  transform_kwargs = dict(
969
1040
  session=dataset._session,
@@ -971,6 +1042,9 @@ class XGBRFClassifier(BaseTransformer):
971
1042
  drop_input_cols = self._drop_input_cols,
972
1043
  expected_output_cols_type="float",
973
1044
  )
1045
+ expected_output_cols = self._align_expected_output_names(
1046
+ inference_method, dataset, expected_output_cols, output_cols_prefix
1047
+ )
974
1048
 
975
1049
  elif isinstance(dataset, pd.DataFrame):
976
1050
  transform_kwargs = dict(
@@ -989,7 +1063,7 @@ class XGBRFClassifier(BaseTransformer):
989
1063
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
990
1064
  inference_method=inference_method,
991
1065
  input_cols=self.input_cols,
992
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
1066
+ expected_output_cols=expected_output_cols,
993
1067
  **transform_kwargs
994
1068
  )
995
1069
  return output_df
@@ -1024,17 +1098,15 @@ class XGBRFClassifier(BaseTransformer):
1024
1098
  transform_kwargs: ScoreKwargsTypedDict = dict()
1025
1099
 
1026
1100
  if isinstance(dataset, DataFrame):
1027
- self._deps = self._batch_inference_validate_snowpark(
1028
- dataset=dataset,
1029
- inference_method="score",
1030
- )
1101
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1102
+ self._deps = self._get_dependencies()
1031
1103
  selected_cols = self._get_active_columns()
1032
1104
  if len(selected_cols) > 0:
1033
1105
  dataset = dataset.select(selected_cols)
1034
1106
  assert isinstance(dataset._session, Session) # keep mypy happy
1035
1107
  transform_kwargs = dict(
1036
1108
  session=dataset._session,
1037
- dependencies=["snowflake-snowpark-python"] + self._deps,
1109
+ dependencies=self._deps,
1038
1110
  score_sproc_imports=['xgboost'],
1039
1111
  )
1040
1112
  elif isinstance(dataset, pd.DataFrame):
@@ -1099,11 +1171,8 @@ class XGBRFClassifier(BaseTransformer):
1099
1171
 
1100
1172
  if isinstance(dataset, DataFrame):
1101
1173
 
1102
- self._deps = self._batch_inference_validate_snowpark(
1103
- dataset=dataset,
1104
- inference_method=inference_method,
1105
-
1106
- )
1174
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1175
+ self._deps = self._get_dependencies()
1107
1176
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1108
1177
  transform_kwargs = dict(
1109
1178
  session = dataset._session,
@@ -1136,50 +1205,84 @@ class XGBRFClassifier(BaseTransformer):
1136
1205
  )
1137
1206
  return output_df
1138
1207
 
1208
+
1209
+
1210
+ def to_xgboost(self) -> Any:
1211
+ """Get xgboost.XGBRFClassifier object.
1212
+ """
1213
+ if self._sklearn_object is None:
1214
+ self._sklearn_object = self._create_sklearn_object()
1215
+ return self._sklearn_object
1216
+
1217
+ def to_sklearn(self) -> Any:
1218
+ raise exceptions.SnowflakeMLException(
1219
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1220
+ original_exception=AttributeError(
1221
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1222
+ "to_sklearn()",
1223
+ "to_xgboost()"
1224
+ )
1225
+ ),
1226
+ )
1227
+
1228
+ def to_lightgbm(self) -> Any:
1229
+ raise exceptions.SnowflakeMLException(
1230
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1231
+ original_exception=AttributeError(
1232
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1233
+ "to_lightgbm()",
1234
+ "to_xgboost()"
1235
+ )
1236
+ ),
1237
+ )
1238
+
1239
+ def _get_dependencies(self) -> List[str]:
1240
+ return self._deps
1241
+
1139
1242
 
1140
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1243
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1141
1244
  self._model_signature_dict = dict()
1142
1245
 
1143
1246
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1144
1247
 
1145
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1248
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1146
1249
  outputs: List[BaseFeatureSpec] = []
1147
1250
  if hasattr(self, "predict"):
1148
1251
  # keep mypy happy
1149
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1252
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1150
1253
  # For classifier, the type of predict is the same as the type of label
1151
- if self._sklearn_object._estimator_type == 'classifier':
1152
- # label columns is the desired type for output
1254
+ if self._sklearn_object._estimator_type == "classifier":
1255
+ # label columns is the desired type for output
1153
1256
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1154
1257
  # rename the output columns
1155
1258
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1156
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1157
- ([] if self._drop_input_cols else inputs)
1158
- + outputs)
1259
+ self._model_signature_dict["predict"] = ModelSignature(
1260
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1261
+ )
1159
1262
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1160
1263
  # For outlier models, returns -1 for outliers and 1 for inliers.
1161
- # Clusterer returns int64 cluster labels.
1264
+ # Clusterer returns int64 cluster labels.
1162
1265
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1163
1266
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1164
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1165
- ([] if self._drop_input_cols else inputs)
1166
- + outputs)
1167
-
1267
+ self._model_signature_dict["predict"] = ModelSignature(
1268
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1269
+ )
1270
+
1168
1271
  # For regressor, the type of predict is float64
1169
- elif self._sklearn_object._estimator_type == 'regressor':
1272
+ elif self._sklearn_object._estimator_type == "regressor":
1170
1273
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1171
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1172
- ([] if self._drop_input_cols else inputs)
1173
- + outputs)
1174
-
1274
+ self._model_signature_dict["predict"] = ModelSignature(
1275
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1276
+ )
1277
+
1175
1278
  for prob_func in PROB_FUNCTIONS:
1176
1279
  if hasattr(self, prob_func):
1177
1280
  output_cols_prefix: str = f"{prob_func}_"
1178
1281
  output_column_names = self._get_output_column_names(output_cols_prefix)
1179
1282
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1180
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1181
- ([] if self._drop_input_cols else inputs)
1182
- + outputs)
1283
+ self._model_signature_dict[prob_func] = ModelSignature(
1284
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1285
+ )
1183
1286
 
1184
1287
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1185
1288
  items = list(self._model_signature_dict.items())
@@ -1192,10 +1295,10 @@ class XGBRFClassifier(BaseTransformer):
1192
1295
  """Returns model signature of current class.
1193
1296
 
1194
1297
  Raises:
1195
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1298
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1196
1299
 
1197
1300
  Returns:
1198
- Dict[str, ModelSignature]: each method and its input output signature
1301
+ Dict with each method and its input output signature
1199
1302
  """
1200
1303
  if self._model_signature_dict is None:
1201
1304
  raise exceptions.SnowflakeMLException(
@@ -1203,35 +1306,3 @@ class XGBRFClassifier(BaseTransformer):
1203
1306
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1204
1307
  )
1205
1308
  return self._model_signature_dict
1206
-
1207
- def to_xgboost(self) -> Any:
1208
- """Get xgboost.XGBRFClassifier object.
1209
- """
1210
- if self._sklearn_object is None:
1211
- self._sklearn_object = self._create_sklearn_object()
1212
- return self._sklearn_object
1213
-
1214
- def to_sklearn(self) -> Any:
1215
- raise exceptions.SnowflakeMLException(
1216
- error_code=error_codes.METHOD_NOT_ALLOWED,
1217
- original_exception=AttributeError(
1218
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1219
- "to_sklearn()",
1220
- "to_xgboost()"
1221
- )
1222
- ),
1223
- )
1224
-
1225
- def to_lightgbm(self) -> Any:
1226
- raise exceptions.SnowflakeMLException(
1227
- error_code=error_codes.METHOD_NOT_ALLOWED,
1228
- original_exception=AttributeError(
1229
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1230
- "to_lightgbm()",
1231
- "to_xgboost()"
1232
- )
1233
- ),
1234
- )
1235
-
1236
- def _get_dependencies(self) -> List[str]:
1237
- return self._deps