snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replac
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class GaussianProcessClassifier(BaseTransformer):
|
71
64
|
r"""Gaussian process classification (GPC) based on Laplace approximation
|
72
65
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessClassifier]
|
@@ -291,12 +284,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
291
284
|
)
|
292
285
|
return selected_cols
|
293
286
|
|
294
|
-
|
295
|
-
project=_PROJECT,
|
296
|
-
subproject=_SUBPROJECT,
|
297
|
-
custom_tags=dict([("autogen", True)]),
|
298
|
-
)
|
299
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianProcessClassifier":
|
287
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianProcessClassifier":
|
300
288
|
"""Fit Gaussian process classification model
|
301
289
|
For more details on this function, see [sklearn.gaussian_process.GaussianProcessClassifier.fit]
|
302
290
|
(https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessClassifier.html#sklearn.gaussian_process.GaussianProcessClassifier.fit)
|
@@ -323,12 +311,14 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
323
311
|
|
324
312
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
325
313
|
|
326
|
-
|
314
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
327
315
|
if SNOWML_SPROC_ENV in os.environ:
|
328
316
|
statement_params = telemetry.get_function_usage_statement_params(
|
329
317
|
project=_PROJECT,
|
330
318
|
subproject=_SUBPROJECT,
|
331
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
319
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
320
|
+
inspect.currentframe(), GaussianProcessClassifier.__class__.__name__
|
321
|
+
),
|
332
322
|
api_calls=[Session.call],
|
333
323
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
334
324
|
)
|
@@ -349,27 +339,24 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
349
339
|
)
|
350
340
|
self._sklearn_object = model_trainer.train()
|
351
341
|
self._is_fitted = True
|
352
|
-
self.
|
342
|
+
self._generate_model_signatures(dataset)
|
353
343
|
return self
|
354
344
|
|
355
345
|
def _batch_inference_validate_snowpark(
|
356
346
|
self,
|
357
347
|
dataset: DataFrame,
|
358
348
|
inference_method: str,
|
359
|
-
) ->
|
360
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
361
|
-
return the available package that exists in the snowflake anaconda channel
|
349
|
+
) -> None:
|
350
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
362
351
|
|
363
352
|
Args:
|
364
353
|
dataset: snowpark dataframe
|
365
354
|
inference_method: the inference method such as predict, score...
|
366
|
-
|
355
|
+
|
367
356
|
Raises:
|
368
357
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
369
358
|
SnowflakeMLException: If the session is None, raise error
|
370
359
|
|
371
|
-
Returns:
|
372
|
-
A list of available package that exists in the snowflake anaconda channel
|
373
360
|
"""
|
374
361
|
if not self._is_fitted:
|
375
362
|
raise exceptions.SnowflakeMLException(
|
@@ -387,9 +374,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
387
374
|
"Session must not specified for snowpark dataset."
|
388
375
|
),
|
389
376
|
)
|
390
|
-
|
391
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
392
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
377
|
+
|
393
378
|
|
394
379
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
395
380
|
@telemetry.send_api_usage_telemetry(
|
@@ -425,7 +410,9 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
425
410
|
# when it is classifier, infer the datatype from label columns
|
426
411
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
427
412
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
428
|
-
label_cols_signatures = [
|
413
|
+
label_cols_signatures = [
|
414
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
415
|
+
]
|
429
416
|
if len(label_cols_signatures) == 0:
|
430
417
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
431
418
|
raise exceptions.SnowflakeMLException(
|
@@ -433,25 +420,23 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
433
420
|
original_exception=ValueError(error_str),
|
434
421
|
)
|
435
422
|
|
436
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
437
|
-
label_cols_signatures[0].as_snowpark_type()
|
438
|
-
)
|
423
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
439
424
|
|
440
|
-
self.
|
441
|
-
|
425
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
426
|
+
self._deps = self._get_dependencies()
|
427
|
+
assert isinstance(
|
428
|
+
dataset._session, Session
|
429
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
442
430
|
|
443
431
|
transform_kwargs = dict(
|
444
|
-
session
|
445
|
-
dependencies
|
446
|
-
drop_input_cols
|
447
|
-
expected_output_cols_type
|
432
|
+
session=dataset._session,
|
433
|
+
dependencies=self._deps,
|
434
|
+
drop_input_cols=self._drop_input_cols,
|
435
|
+
expected_output_cols_type=expected_type_inferred,
|
448
436
|
)
|
449
437
|
|
450
438
|
elif isinstance(dataset, pd.DataFrame):
|
451
|
-
transform_kwargs = dict(
|
452
|
-
snowpark_input_cols = self._snowpark_cols,
|
453
|
-
drop_input_cols = self._drop_input_cols
|
454
|
-
)
|
439
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
455
440
|
|
456
441
|
transform_handlers = ModelTransformerBuilder.build(
|
457
442
|
dataset=dataset,
|
@@ -491,7 +476,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
491
476
|
Transformed dataset.
|
492
477
|
"""
|
493
478
|
super()._check_dataset_type(dataset)
|
494
|
-
inference_method="transform"
|
479
|
+
inference_method = "transform"
|
495
480
|
|
496
481
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
497
482
|
# are specific to the type of dataset used.
|
@@ -521,24 +506,19 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
521
506
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
522
507
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
523
508
|
|
524
|
-
self.
|
525
|
-
|
526
|
-
inference_method=inference_method,
|
527
|
-
)
|
509
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
510
|
+
self._deps = self._get_dependencies()
|
528
511
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
529
512
|
|
530
513
|
transform_kwargs = dict(
|
531
|
-
session
|
532
|
-
dependencies
|
533
|
-
drop_input_cols
|
534
|
-
expected_output_cols_type
|
514
|
+
session=dataset._session,
|
515
|
+
dependencies=self._deps,
|
516
|
+
drop_input_cols=self._drop_input_cols,
|
517
|
+
expected_output_cols_type=expected_dtype,
|
535
518
|
)
|
536
519
|
|
537
520
|
elif isinstance(dataset, pd.DataFrame):
|
538
|
-
transform_kwargs = dict(
|
539
|
-
snowpark_input_cols = self._snowpark_cols,
|
540
|
-
drop_input_cols = self._drop_input_cols
|
541
|
-
)
|
521
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
542
522
|
|
543
523
|
transform_handlers = ModelTransformerBuilder.build(
|
544
524
|
dataset=dataset,
|
@@ -557,7 +537,11 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
557
537
|
return output_df
|
558
538
|
|
559
539
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
560
|
-
def fit_predict(
|
540
|
+
def fit_predict(
|
541
|
+
self,
|
542
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
543
|
+
output_cols_prefix: str = "fit_predict_",
|
544
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
561
545
|
""" Method not supported for this class.
|
562
546
|
|
563
547
|
|
@@ -582,22 +566,104 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
582
566
|
)
|
583
567
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
584
568
|
drop_input_cols=self._drop_input_cols,
|
585
|
-
expected_output_cols_list=
|
569
|
+
expected_output_cols_list=(
|
570
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
571
|
+
),
|
586
572
|
)
|
587
573
|
self._sklearn_object = fitted_estimator
|
588
574
|
self._is_fitted = True
|
589
575
|
return output_result
|
590
576
|
|
577
|
+
|
578
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
579
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
580
|
+
""" Method not supported for this class.
|
581
|
+
|
591
582
|
|
592
|
-
|
593
|
-
|
594
|
-
|
583
|
+
Raises:
|
584
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
585
|
+
|
586
|
+
Args:
|
587
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
588
|
+
Snowpark or Pandas DataFrame.
|
589
|
+
output_cols_prefix: Prefix for the response columns
|
595
590
|
Returns:
|
596
591
|
Transformed dataset.
|
597
592
|
"""
|
598
|
-
self.
|
599
|
-
|
600
|
-
|
593
|
+
self._infer_input_output_cols(dataset)
|
594
|
+
super()._check_dataset_type(dataset)
|
595
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
596
|
+
estimator=self._sklearn_object,
|
597
|
+
dataset=dataset,
|
598
|
+
input_cols=self.input_cols,
|
599
|
+
label_cols=self.label_cols,
|
600
|
+
sample_weight_col=self.sample_weight_col,
|
601
|
+
autogenerated=self._autogenerated,
|
602
|
+
subproject=_SUBPROJECT,
|
603
|
+
)
|
604
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
605
|
+
drop_input_cols=self._drop_input_cols,
|
606
|
+
expected_output_cols_list=self.output_cols,
|
607
|
+
)
|
608
|
+
self._sklearn_object = fitted_estimator
|
609
|
+
self._is_fitted = True
|
610
|
+
return output_result
|
611
|
+
|
612
|
+
|
613
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
614
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
615
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
616
|
+
"""
|
617
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
618
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
619
|
+
if output_cols:
|
620
|
+
output_cols = [
|
621
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
622
|
+
for c in output_cols
|
623
|
+
]
|
624
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
625
|
+
output_cols = [output_cols_prefix]
|
626
|
+
elif self._sklearn_object is not None:
|
627
|
+
classes = self._sklearn_object.classes_
|
628
|
+
if isinstance(classes, numpy.ndarray):
|
629
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
630
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
631
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
632
|
+
output_cols = []
|
633
|
+
for i, cl in enumerate(classes):
|
634
|
+
# For binary classification, there is only one output column for each class
|
635
|
+
# ndarray as the two classes are complementary.
|
636
|
+
if len(cl) == 2:
|
637
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
638
|
+
else:
|
639
|
+
output_cols.extend([
|
640
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
641
|
+
])
|
642
|
+
else:
|
643
|
+
output_cols = []
|
644
|
+
|
645
|
+
# Make sure column names are valid snowflake identifiers.
|
646
|
+
assert output_cols is not None # Make MyPy happy
|
647
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
648
|
+
|
649
|
+
return rv
|
650
|
+
|
651
|
+
def _align_expected_output_names(
|
652
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
653
|
+
) -> List[str]:
|
654
|
+
# in case the inferred output column names dimension is different
|
655
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
656
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
657
|
+
output_df_columns = list(output_df_pd.columns)
|
658
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
659
|
+
if self.sample_weight_col:
|
660
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
661
|
+
# if the dimension of inferred output column names is correct; use it
|
662
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
663
|
+
return expected_output_cols_list
|
664
|
+
# otherwise, use the sklearn estimator's output
|
665
|
+
else:
|
666
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
601
667
|
|
602
668
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
603
669
|
@telemetry.send_api_usage_telemetry(
|
@@ -631,24 +697,26 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
631
697
|
# are specific to the type of dataset used.
|
632
698
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
633
699
|
|
700
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
701
|
+
|
634
702
|
if isinstance(dataset, DataFrame):
|
635
|
-
self.
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
703
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
704
|
+
self._deps = self._get_dependencies()
|
705
|
+
assert isinstance(
|
706
|
+
dataset._session, Session
|
707
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
640
708
|
transform_kwargs = dict(
|
641
709
|
session=dataset._session,
|
642
710
|
dependencies=self._deps,
|
643
|
-
drop_input_cols
|
711
|
+
drop_input_cols=self._drop_input_cols,
|
644
712
|
expected_output_cols_type="float",
|
645
713
|
)
|
714
|
+
expected_output_cols = self._align_expected_output_names(
|
715
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
716
|
+
)
|
646
717
|
|
647
718
|
elif isinstance(dataset, pd.DataFrame):
|
648
|
-
transform_kwargs = dict(
|
649
|
-
snowpark_input_cols = self._snowpark_cols,
|
650
|
-
drop_input_cols = self._drop_input_cols
|
651
|
-
)
|
719
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
652
720
|
|
653
721
|
transform_handlers = ModelTransformerBuilder.build(
|
654
722
|
dataset=dataset,
|
@@ -660,7 +728,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
660
728
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
661
729
|
inference_method=inference_method,
|
662
730
|
input_cols=self.input_cols,
|
663
|
-
expected_output_cols=
|
731
|
+
expected_output_cols=expected_output_cols,
|
664
732
|
**transform_kwargs
|
665
733
|
)
|
666
734
|
return output_df
|
@@ -692,29 +760,30 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
692
760
|
Output dataset with log probability of the sample for each class in the model.
|
693
761
|
"""
|
694
762
|
super()._check_dataset_type(dataset)
|
695
|
-
inference_method="predict_log_proba"
|
763
|
+
inference_method = "predict_log_proba"
|
764
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
696
765
|
|
697
766
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
698
767
|
# are specific to the type of dataset used.
|
699
768
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
700
769
|
|
701
770
|
if isinstance(dataset, DataFrame):
|
702
|
-
self.
|
703
|
-
|
704
|
-
|
705
|
-
|
706
|
-
|
771
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
772
|
+
self._deps = self._get_dependencies()
|
773
|
+
assert isinstance(
|
774
|
+
dataset._session, Session
|
775
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
707
776
|
transform_kwargs = dict(
|
708
777
|
session=dataset._session,
|
709
778
|
dependencies=self._deps,
|
710
|
-
drop_input_cols
|
779
|
+
drop_input_cols=self._drop_input_cols,
|
711
780
|
expected_output_cols_type="float",
|
712
781
|
)
|
782
|
+
expected_output_cols = self._align_expected_output_names(
|
783
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
784
|
+
)
|
713
785
|
elif isinstance(dataset, pd.DataFrame):
|
714
|
-
transform_kwargs = dict(
|
715
|
-
snowpark_input_cols = self._snowpark_cols,
|
716
|
-
drop_input_cols = self._drop_input_cols
|
717
|
-
)
|
786
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
718
787
|
|
719
788
|
transform_handlers = ModelTransformerBuilder.build(
|
720
789
|
dataset=dataset,
|
@@ -727,7 +796,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
727
796
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
728
797
|
inference_method=inference_method,
|
729
798
|
input_cols=self.input_cols,
|
730
|
-
expected_output_cols=
|
799
|
+
expected_output_cols=expected_output_cols,
|
731
800
|
**transform_kwargs
|
732
801
|
)
|
733
802
|
return output_df
|
@@ -753,30 +822,32 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
753
822
|
Output dataset with results of the decision function for the samples in input dataset.
|
754
823
|
"""
|
755
824
|
super()._check_dataset_type(dataset)
|
756
|
-
inference_method="decision_function"
|
825
|
+
inference_method = "decision_function"
|
757
826
|
|
758
827
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
759
828
|
# are specific to the type of dataset used.
|
760
829
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
761
830
|
|
831
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
832
|
+
|
762
833
|
if isinstance(dataset, DataFrame):
|
763
|
-
self.
|
764
|
-
|
765
|
-
|
766
|
-
|
767
|
-
|
834
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
835
|
+
self._deps = self._get_dependencies()
|
836
|
+
assert isinstance(
|
837
|
+
dataset._session, Session
|
838
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
768
839
|
transform_kwargs = dict(
|
769
840
|
session=dataset._session,
|
770
841
|
dependencies=self._deps,
|
771
|
-
drop_input_cols
|
842
|
+
drop_input_cols=self._drop_input_cols,
|
772
843
|
expected_output_cols_type="float",
|
773
844
|
)
|
845
|
+
expected_output_cols = self._align_expected_output_names(
|
846
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
847
|
+
)
|
774
848
|
|
775
849
|
elif isinstance(dataset, pd.DataFrame):
|
776
|
-
transform_kwargs = dict(
|
777
|
-
snowpark_input_cols = self._snowpark_cols,
|
778
|
-
drop_input_cols = self._drop_input_cols
|
779
|
-
)
|
850
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
780
851
|
|
781
852
|
transform_handlers = ModelTransformerBuilder.build(
|
782
853
|
dataset=dataset,
|
@@ -789,7 +860,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
789
860
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
790
861
|
inference_method=inference_method,
|
791
862
|
input_cols=self.input_cols,
|
792
|
-
expected_output_cols=
|
863
|
+
expected_output_cols=expected_output_cols,
|
793
864
|
**transform_kwargs
|
794
865
|
)
|
795
866
|
return output_df
|
@@ -818,17 +889,17 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
818
889
|
Output dataset with probability of the sample for each class in the model.
|
819
890
|
"""
|
820
891
|
super()._check_dataset_type(dataset)
|
821
|
-
inference_method="score_samples"
|
892
|
+
inference_method = "score_samples"
|
822
893
|
|
823
894
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
824
895
|
# are specific to the type of dataset used.
|
825
896
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
826
897
|
|
898
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
899
|
+
|
827
900
|
if isinstance(dataset, DataFrame):
|
828
|
-
self.
|
829
|
-
|
830
|
-
inference_method=inference_method,
|
831
|
-
)
|
901
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
902
|
+
self._deps = self._get_dependencies()
|
832
903
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
833
904
|
transform_kwargs = dict(
|
834
905
|
session=dataset._session,
|
@@ -836,6 +907,9 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
836
907
|
drop_input_cols = self._drop_input_cols,
|
837
908
|
expected_output_cols_type="float",
|
838
909
|
)
|
910
|
+
expected_output_cols = self._align_expected_output_names(
|
911
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
912
|
+
)
|
839
913
|
|
840
914
|
elif isinstance(dataset, pd.DataFrame):
|
841
915
|
transform_kwargs = dict(
|
@@ -854,7 +928,7 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
854
928
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
855
929
|
inference_method=inference_method,
|
856
930
|
input_cols=self.input_cols,
|
857
|
-
expected_output_cols=
|
931
|
+
expected_output_cols=expected_output_cols,
|
858
932
|
**transform_kwargs
|
859
933
|
)
|
860
934
|
return output_df
|
@@ -889,17 +963,15 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
889
963
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
890
964
|
|
891
965
|
if isinstance(dataset, DataFrame):
|
892
|
-
self.
|
893
|
-
|
894
|
-
inference_method="score",
|
895
|
-
)
|
966
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
967
|
+
self._deps = self._get_dependencies()
|
896
968
|
selected_cols = self._get_active_columns()
|
897
969
|
if len(selected_cols) > 0:
|
898
970
|
dataset = dataset.select(selected_cols)
|
899
971
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
900
972
|
transform_kwargs = dict(
|
901
973
|
session=dataset._session,
|
902
|
-
dependencies=
|
974
|
+
dependencies=self._deps,
|
903
975
|
score_sproc_imports=['sklearn'],
|
904
976
|
)
|
905
977
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -964,11 +1036,8 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
964
1036
|
|
965
1037
|
if isinstance(dataset, DataFrame):
|
966
1038
|
|
967
|
-
self.
|
968
|
-
|
969
|
-
inference_method=inference_method,
|
970
|
-
|
971
|
-
)
|
1039
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1040
|
+
self._deps = self._get_dependencies()
|
972
1041
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
973
1042
|
transform_kwargs = dict(
|
974
1043
|
session = dataset._session,
|
@@ -1001,50 +1070,84 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
1001
1070
|
)
|
1002
1071
|
return output_df
|
1003
1072
|
|
1073
|
+
|
1074
|
+
|
1075
|
+
def to_sklearn(self) -> Any:
|
1076
|
+
"""Get sklearn.gaussian_process.GaussianProcessClassifier object.
|
1077
|
+
"""
|
1078
|
+
if self._sklearn_object is None:
|
1079
|
+
self._sklearn_object = self._create_sklearn_object()
|
1080
|
+
return self._sklearn_object
|
1081
|
+
|
1082
|
+
def to_xgboost(self) -> Any:
|
1083
|
+
raise exceptions.SnowflakeMLException(
|
1084
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1085
|
+
original_exception=AttributeError(
|
1086
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1087
|
+
"to_xgboost()",
|
1088
|
+
"to_sklearn()"
|
1089
|
+
)
|
1090
|
+
),
|
1091
|
+
)
|
1092
|
+
|
1093
|
+
def to_lightgbm(self) -> Any:
|
1094
|
+
raise exceptions.SnowflakeMLException(
|
1095
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1096
|
+
original_exception=AttributeError(
|
1097
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1098
|
+
"to_lightgbm()",
|
1099
|
+
"to_sklearn()"
|
1100
|
+
)
|
1101
|
+
),
|
1102
|
+
)
|
1103
|
+
|
1104
|
+
def _get_dependencies(self) -> List[str]:
|
1105
|
+
return self._deps
|
1106
|
+
|
1004
1107
|
|
1005
|
-
def
|
1108
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1006
1109
|
self._model_signature_dict = dict()
|
1007
1110
|
|
1008
1111
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1009
1112
|
|
1010
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1113
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1011
1114
|
outputs: List[BaseFeatureSpec] = []
|
1012
1115
|
if hasattr(self, "predict"):
|
1013
1116
|
# keep mypy happy
|
1014
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1117
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1015
1118
|
# For classifier, the type of predict is the same as the type of label
|
1016
|
-
if self._sklearn_object._estimator_type ==
|
1017
|
-
|
1119
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1120
|
+
# label columns is the desired type for output
|
1018
1121
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1019
1122
|
# rename the output columns
|
1020
1123
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1021
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1022
|
-
|
1023
|
-
|
1124
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1125
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1126
|
+
)
|
1024
1127
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1025
1128
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1026
|
-
# Clusterer returns int64 cluster labels.
|
1129
|
+
# Clusterer returns int64 cluster labels.
|
1027
1130
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1028
1131
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1029
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1030
|
-
|
1031
|
-
|
1032
|
-
|
1132
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1133
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1134
|
+
)
|
1135
|
+
|
1033
1136
|
# For regressor, the type of predict is float64
|
1034
|
-
elif self._sklearn_object._estimator_type ==
|
1137
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1035
1138
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1036
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1037
|
-
|
1038
|
-
|
1039
|
-
|
1139
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1140
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1141
|
+
)
|
1142
|
+
|
1040
1143
|
for prob_func in PROB_FUNCTIONS:
|
1041
1144
|
if hasattr(self, prob_func):
|
1042
1145
|
output_cols_prefix: str = f"{prob_func}_"
|
1043
1146
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1044
1147
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1045
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1046
|
-
|
1047
|
-
|
1148
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1149
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1150
|
+
)
|
1048
1151
|
|
1049
1152
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1050
1153
|
items = list(self._model_signature_dict.items())
|
@@ -1057,10 +1160,10 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
1057
1160
|
"""Returns model signature of current class.
|
1058
1161
|
|
1059
1162
|
Raises:
|
1060
|
-
|
1163
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1061
1164
|
|
1062
1165
|
Returns:
|
1063
|
-
Dict
|
1166
|
+
Dict with each method and its input output signature
|
1064
1167
|
"""
|
1065
1168
|
if self._model_signature_dict is None:
|
1066
1169
|
raise exceptions.SnowflakeMLException(
|
@@ -1068,35 +1171,3 @@ class GaussianProcessClassifier(BaseTransformer):
|
|
1068
1171
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1069
1172
|
)
|
1070
1173
|
return self._model_signature_dict
|
1071
|
-
|
1072
|
-
def to_sklearn(self) -> Any:
|
1073
|
-
"""Get sklearn.gaussian_process.GaussianProcessClassifier object.
|
1074
|
-
"""
|
1075
|
-
if self._sklearn_object is None:
|
1076
|
-
self._sklearn_object = self._create_sklearn_object()
|
1077
|
-
return self._sklearn_object
|
1078
|
-
|
1079
|
-
def to_xgboost(self) -> Any:
|
1080
|
-
raise exceptions.SnowflakeMLException(
|
1081
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1082
|
-
original_exception=AttributeError(
|
1083
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1084
|
-
"to_xgboost()",
|
1085
|
-
"to_sklearn()"
|
1086
|
-
)
|
1087
|
-
),
|
1088
|
-
)
|
1089
|
-
|
1090
|
-
def to_lightgbm(self) -> Any:
|
1091
|
-
raise exceptions.SnowflakeMLException(
|
1092
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1093
|
-
original_exception=AttributeError(
|
1094
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1095
|
-
"to_lightgbm()",
|
1096
|
-
"to_sklearn()"
|
1097
|
-
)
|
1098
|
-
),
|
1099
|
-
)
|
1100
|
-
|
1101
|
-
def _get_dependencies(self) -> List[str]:
|
1102
|
-
return self._deps
|