snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SpectralCoclustering(BaseTransformer):
71
64
  r"""Spectral Co-Clustering algorithm (Dhillon, 2001)
72
65
  For more details on this class, see [sklearn.cluster.SpectralCoclustering]
@@ -240,12 +233,7 @@ class SpectralCoclustering(BaseTransformer):
240
233
  )
241
234
  return selected_cols
242
235
 
243
- @telemetry.send_api_usage_telemetry(
244
- project=_PROJECT,
245
- subproject=_SUBPROJECT,
246
- custom_tags=dict([("autogen", True)]),
247
- )
248
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralCoclustering":
236
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralCoclustering":
249
237
  """Create a biclustering for X
250
238
  For more details on this function, see [sklearn.cluster.SpectralCoclustering.fit]
251
239
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralCoclustering.html#sklearn.cluster.SpectralCoclustering.fit)
@@ -272,12 +260,14 @@ class SpectralCoclustering(BaseTransformer):
272
260
 
273
261
  self._snowpark_cols = dataset.select(self.input_cols).columns
274
262
 
275
- # If we are already in a stored procedure, no need to kick off another one.
263
+ # If we are already in a stored procedure, no need to kick off another one.
276
264
  if SNOWML_SPROC_ENV in os.environ:
277
265
  statement_params = telemetry.get_function_usage_statement_params(
278
266
  project=_PROJECT,
279
267
  subproject=_SUBPROJECT,
280
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralCoclustering.__class__.__name__),
268
+ function_name=telemetry.get_statement_params_full_func_name(
269
+ inspect.currentframe(), SpectralCoclustering.__class__.__name__
270
+ ),
281
271
  api_calls=[Session.call],
282
272
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
283
273
  )
@@ -298,27 +288,24 @@ class SpectralCoclustering(BaseTransformer):
298
288
  )
299
289
  self._sklearn_object = model_trainer.train()
300
290
  self._is_fitted = True
301
- self._get_model_signatures(dataset)
291
+ self._generate_model_signatures(dataset)
302
292
  return self
303
293
 
304
294
  def _batch_inference_validate_snowpark(
305
295
  self,
306
296
  dataset: DataFrame,
307
297
  inference_method: str,
308
- ) -> List[str]:
309
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
310
- return the available package that exists in the snowflake anaconda channel
298
+ ) -> None:
299
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
311
300
 
312
301
  Args:
313
302
  dataset: snowpark dataframe
314
303
  inference_method: the inference method such as predict, score...
315
-
304
+
316
305
  Raises:
317
306
  SnowflakeMLException: If the estimator is not fitted, raise error
318
307
  SnowflakeMLException: If the session is None, raise error
319
308
 
320
- Returns:
321
- A list of available package that exists in the snowflake anaconda channel
322
309
  """
323
310
  if not self._is_fitted:
324
311
  raise exceptions.SnowflakeMLException(
@@ -336,9 +323,7 @@ class SpectralCoclustering(BaseTransformer):
336
323
  "Session must not specified for snowpark dataset."
337
324
  ),
338
325
  )
339
- # Validate that key package version in user workspace are supported in snowflake conda channel
340
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
341
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
326
+
342
327
 
343
328
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
344
329
  @telemetry.send_api_usage_telemetry(
@@ -372,7 +357,9 @@ class SpectralCoclustering(BaseTransformer):
372
357
  # when it is classifier, infer the datatype from label columns
373
358
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
374
359
  # Batch inference takes a single expected output column type. Use the first columns type for now.
375
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
360
+ label_cols_signatures = [
361
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
362
+ ]
376
363
  if len(label_cols_signatures) == 0:
377
364
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
378
365
  raise exceptions.SnowflakeMLException(
@@ -380,25 +367,23 @@ class SpectralCoclustering(BaseTransformer):
380
367
  original_exception=ValueError(error_str),
381
368
  )
382
369
 
383
- expected_type_inferred = convert_sp_to_sf_type(
384
- label_cols_signatures[0].as_snowpark_type()
385
- )
370
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
386
371
 
387
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
388
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
372
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
373
+ self._deps = self._get_dependencies()
374
+ assert isinstance(
375
+ dataset._session, Session
376
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
389
377
 
390
378
  transform_kwargs = dict(
391
- session = dataset._session,
392
- dependencies = self._deps,
393
- drop_input_cols = self._drop_input_cols,
394
- expected_output_cols_type = expected_type_inferred,
379
+ session=dataset._session,
380
+ dependencies=self._deps,
381
+ drop_input_cols=self._drop_input_cols,
382
+ expected_output_cols_type=expected_type_inferred,
395
383
  )
396
384
 
397
385
  elif isinstance(dataset, pd.DataFrame):
398
- transform_kwargs = dict(
399
- snowpark_input_cols = self._snowpark_cols,
400
- drop_input_cols = self._drop_input_cols
401
- )
386
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
402
387
 
403
388
  transform_handlers = ModelTransformerBuilder.build(
404
389
  dataset=dataset,
@@ -438,7 +423,7 @@ class SpectralCoclustering(BaseTransformer):
438
423
  Transformed dataset.
439
424
  """
440
425
  super()._check_dataset_type(dataset)
441
- inference_method="transform"
426
+ inference_method = "transform"
442
427
 
443
428
  # This dictionary contains optional kwargs for batch inference. These kwargs
444
429
  # are specific to the type of dataset used.
@@ -468,24 +453,19 @@ class SpectralCoclustering(BaseTransformer):
468
453
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
469
454
  expected_dtype = convert_sp_to_sf_type(output_types[0])
470
455
 
471
- self._deps = self._batch_inference_validate_snowpark(
472
- dataset=dataset,
473
- inference_method=inference_method,
474
- )
456
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
457
+ self._deps = self._get_dependencies()
475
458
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
476
459
 
477
460
  transform_kwargs = dict(
478
- session = dataset._session,
479
- dependencies = self._deps,
480
- drop_input_cols = self._drop_input_cols,
481
- expected_output_cols_type = expected_dtype,
461
+ session=dataset._session,
462
+ dependencies=self._deps,
463
+ drop_input_cols=self._drop_input_cols,
464
+ expected_output_cols_type=expected_dtype,
482
465
  )
483
466
 
484
467
  elif isinstance(dataset, pd.DataFrame):
485
- transform_kwargs = dict(
486
- snowpark_input_cols = self._snowpark_cols,
487
- drop_input_cols = self._drop_input_cols
488
- )
468
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
489
469
 
490
470
  transform_handlers = ModelTransformerBuilder.build(
491
471
  dataset=dataset,
@@ -504,7 +484,11 @@ class SpectralCoclustering(BaseTransformer):
504
484
  return output_df
505
485
 
506
486
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
507
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
487
+ def fit_predict(
488
+ self,
489
+ dataset: Union[DataFrame, pd.DataFrame],
490
+ output_cols_prefix: str = "fit_predict_",
491
+ ) -> Union[DataFrame, pd.DataFrame]:
508
492
  """ Method not supported for this class.
509
493
 
510
494
 
@@ -529,22 +513,104 @@ class SpectralCoclustering(BaseTransformer):
529
513
  )
530
514
  output_result, fitted_estimator = model_trainer.train_fit_predict(
531
515
  drop_input_cols=self._drop_input_cols,
532
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
516
+ expected_output_cols_list=(
517
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
518
+ ),
533
519
  )
534
520
  self._sklearn_object = fitted_estimator
535
521
  self._is_fitted = True
536
522
  return output_result
537
523
 
524
+
525
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
526
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
527
+ """ Method not supported for this class.
528
+
538
529
 
539
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
540
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
541
- """
530
+ Raises:
531
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
532
+
533
+ Args:
534
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
535
+ Snowpark or Pandas DataFrame.
536
+ output_cols_prefix: Prefix for the response columns
542
537
  Returns:
543
538
  Transformed dataset.
544
539
  """
545
- self.fit(dataset)
546
- assert self._sklearn_object is not None
547
- return self._sklearn_object.embedding_
540
+ self._infer_input_output_cols(dataset)
541
+ super()._check_dataset_type(dataset)
542
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
543
+ estimator=self._sklearn_object,
544
+ dataset=dataset,
545
+ input_cols=self.input_cols,
546
+ label_cols=self.label_cols,
547
+ sample_weight_col=self.sample_weight_col,
548
+ autogenerated=self._autogenerated,
549
+ subproject=_SUBPROJECT,
550
+ )
551
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
552
+ drop_input_cols=self._drop_input_cols,
553
+ expected_output_cols_list=self.output_cols,
554
+ )
555
+ self._sklearn_object = fitted_estimator
556
+ self._is_fitted = True
557
+ return output_result
558
+
559
+
560
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
561
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
562
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
563
+ """
564
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
565
+ # The following condition is introduced for kneighbors methods, and not used in other methods
566
+ if output_cols:
567
+ output_cols = [
568
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
569
+ for c in output_cols
570
+ ]
571
+ elif getattr(self._sklearn_object, "classes_", None) is None:
572
+ output_cols = [output_cols_prefix]
573
+ elif self._sklearn_object is not None:
574
+ classes = self._sklearn_object.classes_
575
+ if isinstance(classes, numpy.ndarray):
576
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
577
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
578
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
579
+ output_cols = []
580
+ for i, cl in enumerate(classes):
581
+ # For binary classification, there is only one output column for each class
582
+ # ndarray as the two classes are complementary.
583
+ if len(cl) == 2:
584
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
585
+ else:
586
+ output_cols.extend([
587
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
588
+ ])
589
+ else:
590
+ output_cols = []
591
+
592
+ # Make sure column names are valid snowflake identifiers.
593
+ assert output_cols is not None # Make MyPy happy
594
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
595
+
596
+ return rv
597
+
598
+ def _align_expected_output_names(
599
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
600
+ ) -> List[str]:
601
+ # in case the inferred output column names dimension is different
602
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
603
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
604
+ output_df_columns = list(output_df_pd.columns)
605
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
606
+ if self.sample_weight_col:
607
+ output_df_columns_set -= set(self.sample_weight_col)
608
+ # if the dimension of inferred output column names is correct; use it
609
+ if len(expected_output_cols_list) == len(output_df_columns_set):
610
+ return expected_output_cols_list
611
+ # otherwise, use the sklearn estimator's output
612
+ else:
613
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
548
614
 
549
615
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
550
616
  @telemetry.send_api_usage_telemetry(
@@ -576,24 +642,26 @@ class SpectralCoclustering(BaseTransformer):
576
642
  # are specific to the type of dataset used.
577
643
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
578
644
 
645
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
646
+
579
647
  if isinstance(dataset, DataFrame):
580
- self._deps = self._batch_inference_validate_snowpark(
581
- dataset=dataset,
582
- inference_method=inference_method,
583
- )
584
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
648
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
649
+ self._deps = self._get_dependencies()
650
+ assert isinstance(
651
+ dataset._session, Session
652
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
585
653
  transform_kwargs = dict(
586
654
  session=dataset._session,
587
655
  dependencies=self._deps,
588
- drop_input_cols = self._drop_input_cols,
656
+ drop_input_cols=self._drop_input_cols,
589
657
  expected_output_cols_type="float",
590
658
  )
659
+ expected_output_cols = self._align_expected_output_names(
660
+ inference_method, dataset, expected_output_cols, output_cols_prefix
661
+ )
591
662
 
592
663
  elif isinstance(dataset, pd.DataFrame):
593
- transform_kwargs = dict(
594
- snowpark_input_cols = self._snowpark_cols,
595
- drop_input_cols = self._drop_input_cols
596
- )
664
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
597
665
 
598
666
  transform_handlers = ModelTransformerBuilder.build(
599
667
  dataset=dataset,
@@ -605,7 +673,7 @@ class SpectralCoclustering(BaseTransformer):
605
673
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
606
674
  inference_method=inference_method,
607
675
  input_cols=self.input_cols,
608
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
676
+ expected_output_cols=expected_output_cols,
609
677
  **transform_kwargs
610
678
  )
611
679
  return output_df
@@ -635,29 +703,30 @@ class SpectralCoclustering(BaseTransformer):
635
703
  Output dataset with log probability of the sample for each class in the model.
636
704
  """
637
705
  super()._check_dataset_type(dataset)
638
- inference_method="predict_log_proba"
706
+ inference_method = "predict_log_proba"
707
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
639
708
 
640
709
  # This dictionary contains optional kwargs for batch inference. These kwargs
641
710
  # are specific to the type of dataset used.
642
711
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
643
712
 
644
713
  if isinstance(dataset, DataFrame):
645
- self._deps = self._batch_inference_validate_snowpark(
646
- dataset=dataset,
647
- inference_method=inference_method,
648
- )
649
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
715
+ self._deps = self._get_dependencies()
716
+ assert isinstance(
717
+ dataset._session, Session
718
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
650
719
  transform_kwargs = dict(
651
720
  session=dataset._session,
652
721
  dependencies=self._deps,
653
- drop_input_cols = self._drop_input_cols,
722
+ drop_input_cols=self._drop_input_cols,
654
723
  expected_output_cols_type="float",
655
724
  )
725
+ expected_output_cols = self._align_expected_output_names(
726
+ inference_method, dataset, expected_output_cols, output_cols_prefix
727
+ )
656
728
  elif isinstance(dataset, pd.DataFrame):
657
- transform_kwargs = dict(
658
- snowpark_input_cols = self._snowpark_cols,
659
- drop_input_cols = self._drop_input_cols
660
- )
729
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
661
730
 
662
731
  transform_handlers = ModelTransformerBuilder.build(
663
732
  dataset=dataset,
@@ -670,7 +739,7 @@ class SpectralCoclustering(BaseTransformer):
670
739
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
671
740
  inference_method=inference_method,
672
741
  input_cols=self.input_cols,
673
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
742
+ expected_output_cols=expected_output_cols,
674
743
  **transform_kwargs
675
744
  )
676
745
  return output_df
@@ -696,30 +765,32 @@ class SpectralCoclustering(BaseTransformer):
696
765
  Output dataset with results of the decision function for the samples in input dataset.
697
766
  """
698
767
  super()._check_dataset_type(dataset)
699
- inference_method="decision_function"
768
+ inference_method = "decision_function"
700
769
 
701
770
  # This dictionary contains optional kwargs for batch inference. These kwargs
702
771
  # are specific to the type of dataset used.
703
772
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
704
773
 
774
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
775
+
705
776
  if isinstance(dataset, DataFrame):
706
- self._deps = self._batch_inference_validate_snowpark(
707
- dataset=dataset,
708
- inference_method=inference_method,
709
- )
710
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
777
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
778
+ self._deps = self._get_dependencies()
779
+ assert isinstance(
780
+ dataset._session, Session
781
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
711
782
  transform_kwargs = dict(
712
783
  session=dataset._session,
713
784
  dependencies=self._deps,
714
- drop_input_cols = self._drop_input_cols,
785
+ drop_input_cols=self._drop_input_cols,
715
786
  expected_output_cols_type="float",
716
787
  )
788
+ expected_output_cols = self._align_expected_output_names(
789
+ inference_method, dataset, expected_output_cols, output_cols_prefix
790
+ )
717
791
 
718
792
  elif isinstance(dataset, pd.DataFrame):
719
- transform_kwargs = dict(
720
- snowpark_input_cols = self._snowpark_cols,
721
- drop_input_cols = self._drop_input_cols
722
- )
793
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
723
794
 
724
795
  transform_handlers = ModelTransformerBuilder.build(
725
796
  dataset=dataset,
@@ -732,7 +803,7 @@ class SpectralCoclustering(BaseTransformer):
732
803
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
733
804
  inference_method=inference_method,
734
805
  input_cols=self.input_cols,
735
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
806
+ expected_output_cols=expected_output_cols,
736
807
  **transform_kwargs
737
808
  )
738
809
  return output_df
@@ -761,17 +832,17 @@ class SpectralCoclustering(BaseTransformer):
761
832
  Output dataset with probability of the sample for each class in the model.
762
833
  """
763
834
  super()._check_dataset_type(dataset)
764
- inference_method="score_samples"
835
+ inference_method = "score_samples"
765
836
 
766
837
  # This dictionary contains optional kwargs for batch inference. These kwargs
767
838
  # are specific to the type of dataset used.
768
839
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
769
840
 
841
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
842
+
770
843
  if isinstance(dataset, DataFrame):
771
- self._deps = self._batch_inference_validate_snowpark(
772
- dataset=dataset,
773
- inference_method=inference_method,
774
- )
844
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
845
+ self._deps = self._get_dependencies()
775
846
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
847
  transform_kwargs = dict(
777
848
  session=dataset._session,
@@ -779,6 +850,9 @@ class SpectralCoclustering(BaseTransformer):
779
850
  drop_input_cols = self._drop_input_cols,
780
851
  expected_output_cols_type="float",
781
852
  )
853
+ expected_output_cols = self._align_expected_output_names(
854
+ inference_method, dataset, expected_output_cols, output_cols_prefix
855
+ )
782
856
 
783
857
  elif isinstance(dataset, pd.DataFrame):
784
858
  transform_kwargs = dict(
@@ -797,7 +871,7 @@ class SpectralCoclustering(BaseTransformer):
797
871
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
798
872
  inference_method=inference_method,
799
873
  input_cols=self.input_cols,
800
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
874
+ expected_output_cols=expected_output_cols,
801
875
  **transform_kwargs
802
876
  )
803
877
  return output_df
@@ -830,17 +904,15 @@ class SpectralCoclustering(BaseTransformer):
830
904
  transform_kwargs: ScoreKwargsTypedDict = dict()
831
905
 
832
906
  if isinstance(dataset, DataFrame):
833
- self._deps = self._batch_inference_validate_snowpark(
834
- dataset=dataset,
835
- inference_method="score",
836
- )
907
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
908
+ self._deps = self._get_dependencies()
837
909
  selected_cols = self._get_active_columns()
838
910
  if len(selected_cols) > 0:
839
911
  dataset = dataset.select(selected_cols)
840
912
  assert isinstance(dataset._session, Session) # keep mypy happy
841
913
  transform_kwargs = dict(
842
914
  session=dataset._session,
843
- dependencies=["snowflake-snowpark-python"] + self._deps,
915
+ dependencies=self._deps,
844
916
  score_sproc_imports=['sklearn'],
845
917
  )
846
918
  elif isinstance(dataset, pd.DataFrame):
@@ -905,11 +977,8 @@ class SpectralCoclustering(BaseTransformer):
905
977
 
906
978
  if isinstance(dataset, DataFrame):
907
979
 
908
- self._deps = self._batch_inference_validate_snowpark(
909
- dataset=dataset,
910
- inference_method=inference_method,
911
-
912
- )
980
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
981
+ self._deps = self._get_dependencies()
913
982
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
914
983
  transform_kwargs = dict(
915
984
  session = dataset._session,
@@ -942,50 +1011,84 @@ class SpectralCoclustering(BaseTransformer):
942
1011
  )
943
1012
  return output_df
944
1013
 
1014
+
1015
+
1016
+ def to_sklearn(self) -> Any:
1017
+ """Get sklearn.cluster.SpectralCoclustering object.
1018
+ """
1019
+ if self._sklearn_object is None:
1020
+ self._sklearn_object = self._create_sklearn_object()
1021
+ return self._sklearn_object
1022
+
1023
+ def to_xgboost(self) -> Any:
1024
+ raise exceptions.SnowflakeMLException(
1025
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1026
+ original_exception=AttributeError(
1027
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1028
+ "to_xgboost()",
1029
+ "to_sklearn()"
1030
+ )
1031
+ ),
1032
+ )
1033
+
1034
+ def to_lightgbm(self) -> Any:
1035
+ raise exceptions.SnowflakeMLException(
1036
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1037
+ original_exception=AttributeError(
1038
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1039
+ "to_lightgbm()",
1040
+ "to_sklearn()"
1041
+ )
1042
+ ),
1043
+ )
1044
+
1045
+ def _get_dependencies(self) -> List[str]:
1046
+ return self._deps
1047
+
945
1048
 
946
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1049
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
947
1050
  self._model_signature_dict = dict()
948
1051
 
949
1052
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
950
1053
 
951
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1054
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
952
1055
  outputs: List[BaseFeatureSpec] = []
953
1056
  if hasattr(self, "predict"):
954
1057
  # keep mypy happy
955
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1058
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
956
1059
  # For classifier, the type of predict is the same as the type of label
957
- if self._sklearn_object._estimator_type == 'classifier':
958
- # label columns is the desired type for output
1060
+ if self._sklearn_object._estimator_type == "classifier":
1061
+ # label columns is the desired type for output
959
1062
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
960
1063
  # rename the output columns
961
1064
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
962
- self._model_signature_dict["predict"] = ModelSignature(inputs,
963
- ([] if self._drop_input_cols else inputs)
964
- + outputs)
1065
+ self._model_signature_dict["predict"] = ModelSignature(
1066
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1067
+ )
965
1068
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
966
1069
  # For outlier models, returns -1 for outliers and 1 for inliers.
967
- # Clusterer returns int64 cluster labels.
1070
+ # Clusterer returns int64 cluster labels.
968
1071
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
969
1072
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
970
- self._model_signature_dict["predict"] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
973
-
1073
+ self._model_signature_dict["predict"] = ModelSignature(
1074
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1075
+ )
1076
+
974
1077
  # For regressor, the type of predict is float64
975
- elif self._sklearn_object._estimator_type == 'regressor':
1078
+ elif self._sklearn_object._estimator_type == "regressor":
976
1079
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
977
- self._model_signature_dict["predict"] = ModelSignature(inputs,
978
- ([] if self._drop_input_cols else inputs)
979
- + outputs)
980
-
1080
+ self._model_signature_dict["predict"] = ModelSignature(
1081
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1082
+ )
1083
+
981
1084
  for prob_func in PROB_FUNCTIONS:
982
1085
  if hasattr(self, prob_func):
983
1086
  output_cols_prefix: str = f"{prob_func}_"
984
1087
  output_column_names = self._get_output_column_names(output_cols_prefix)
985
1088
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
986
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
1089
+ self._model_signature_dict[prob_func] = ModelSignature(
1090
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1091
+ )
989
1092
 
990
1093
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
991
1094
  items = list(self._model_signature_dict.items())
@@ -998,10 +1101,10 @@ class SpectralCoclustering(BaseTransformer):
998
1101
  """Returns model signature of current class.
999
1102
 
1000
1103
  Raises:
1001
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1104
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1002
1105
 
1003
1106
  Returns:
1004
- Dict[str, ModelSignature]: each method and its input output signature
1107
+ Dict with each method and its input output signature
1005
1108
  """
1006
1109
  if self._model_signature_dict is None:
1007
1110
  raise exceptions.SnowflakeMLException(
@@ -1009,35 +1112,3 @@ class SpectralCoclustering(BaseTransformer):
1009
1112
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1010
1113
  )
1011
1114
  return self._model_signature_dict
1012
-
1013
- def to_sklearn(self) -> Any:
1014
- """Get sklearn.cluster.SpectralCoclustering object.
1015
- """
1016
- if self._sklearn_object is None:
1017
- self._sklearn_object = self._create_sklearn_object()
1018
- return self._sklearn_object
1019
-
1020
- def to_xgboost(self) -> Any:
1021
- raise exceptions.SnowflakeMLException(
1022
- error_code=error_codes.METHOD_NOT_ALLOWED,
1023
- original_exception=AttributeError(
1024
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
- "to_xgboost()",
1026
- "to_sklearn()"
1027
- )
1028
- ),
1029
- )
1030
-
1031
- def to_lightgbm(self) -> Any:
1032
- raise exceptions.SnowflakeMLException(
1033
- error_code=error_codes.METHOD_NOT_ALLOWED,
1034
- original_exception=AttributeError(
1035
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1036
- "to_lightgbm()",
1037
- "to_sklearn()"
1038
- )
1039
- ),
1040
- )
1041
-
1042
- def _get_dependencies(self) -> List[str]:
1043
- return self._deps