snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class BaggingRegressor(BaseTransformer):
|
71
64
|
r"""A Bagging regressor
|
72
65
|
For more details on this class, see [sklearn.ensemble.BaggingRegressor]
|
@@ -276,12 +269,7 @@ class BaggingRegressor(BaseTransformer):
|
|
276
269
|
)
|
277
270
|
return selected_cols
|
278
271
|
|
279
|
-
|
280
|
-
project=_PROJECT,
|
281
|
-
subproject=_SUBPROJECT,
|
282
|
-
custom_tags=dict([("autogen", True)]),
|
283
|
-
)
|
284
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
|
272
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
|
285
273
|
"""Build a Bagging ensemble of estimators from the training set (X, y)
|
286
274
|
For more details on this function, see [sklearn.ensemble.BaggingRegressor.fit]
|
287
275
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor.fit)
|
@@ -308,12 +296,14 @@ class BaggingRegressor(BaseTransformer):
|
|
308
296
|
|
309
297
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
310
298
|
|
311
|
-
|
299
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
312
300
|
if SNOWML_SPROC_ENV in os.environ:
|
313
301
|
statement_params = telemetry.get_function_usage_statement_params(
|
314
302
|
project=_PROJECT,
|
315
303
|
subproject=_SUBPROJECT,
|
316
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
304
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
305
|
+
inspect.currentframe(), BaggingRegressor.__class__.__name__
|
306
|
+
),
|
317
307
|
api_calls=[Session.call],
|
318
308
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
319
309
|
)
|
@@ -334,27 +324,24 @@ class BaggingRegressor(BaseTransformer):
|
|
334
324
|
)
|
335
325
|
self._sklearn_object = model_trainer.train()
|
336
326
|
self._is_fitted = True
|
337
|
-
self.
|
327
|
+
self._generate_model_signatures(dataset)
|
338
328
|
return self
|
339
329
|
|
340
330
|
def _batch_inference_validate_snowpark(
|
341
331
|
self,
|
342
332
|
dataset: DataFrame,
|
343
333
|
inference_method: str,
|
344
|
-
) ->
|
345
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
346
|
-
return the available package that exists in the snowflake anaconda channel
|
334
|
+
) -> None:
|
335
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
347
336
|
|
348
337
|
Args:
|
349
338
|
dataset: snowpark dataframe
|
350
339
|
inference_method: the inference method such as predict, score...
|
351
|
-
|
340
|
+
|
352
341
|
Raises:
|
353
342
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
354
343
|
SnowflakeMLException: If the session is None, raise error
|
355
344
|
|
356
|
-
Returns:
|
357
|
-
A list of available package that exists in the snowflake anaconda channel
|
358
345
|
"""
|
359
346
|
if not self._is_fitted:
|
360
347
|
raise exceptions.SnowflakeMLException(
|
@@ -372,9 +359,7 @@ class BaggingRegressor(BaseTransformer):
|
|
372
359
|
"Session must not specified for snowpark dataset."
|
373
360
|
),
|
374
361
|
)
|
375
|
-
|
376
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
377
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
362
|
+
|
378
363
|
|
379
364
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
380
365
|
@telemetry.send_api_usage_telemetry(
|
@@ -410,7 +395,9 @@ class BaggingRegressor(BaseTransformer):
|
|
410
395
|
# when it is classifier, infer the datatype from label columns
|
411
396
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
412
397
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
413
|
-
label_cols_signatures = [
|
398
|
+
label_cols_signatures = [
|
399
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
400
|
+
]
|
414
401
|
if len(label_cols_signatures) == 0:
|
415
402
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
416
403
|
raise exceptions.SnowflakeMLException(
|
@@ -418,25 +405,23 @@ class BaggingRegressor(BaseTransformer):
|
|
418
405
|
original_exception=ValueError(error_str),
|
419
406
|
)
|
420
407
|
|
421
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
422
|
-
label_cols_signatures[0].as_snowpark_type()
|
423
|
-
)
|
408
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
424
409
|
|
425
|
-
self.
|
426
|
-
|
410
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
411
|
+
self._deps = self._get_dependencies()
|
412
|
+
assert isinstance(
|
413
|
+
dataset._session, Session
|
414
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
427
415
|
|
428
416
|
transform_kwargs = dict(
|
429
|
-
session
|
430
|
-
dependencies
|
431
|
-
drop_input_cols
|
432
|
-
expected_output_cols_type
|
417
|
+
session=dataset._session,
|
418
|
+
dependencies=self._deps,
|
419
|
+
drop_input_cols=self._drop_input_cols,
|
420
|
+
expected_output_cols_type=expected_type_inferred,
|
433
421
|
)
|
434
422
|
|
435
423
|
elif isinstance(dataset, pd.DataFrame):
|
436
|
-
transform_kwargs = dict(
|
437
|
-
snowpark_input_cols = self._snowpark_cols,
|
438
|
-
drop_input_cols = self._drop_input_cols
|
439
|
-
)
|
424
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
440
425
|
|
441
426
|
transform_handlers = ModelTransformerBuilder.build(
|
442
427
|
dataset=dataset,
|
@@ -476,7 +461,7 @@ class BaggingRegressor(BaseTransformer):
|
|
476
461
|
Transformed dataset.
|
477
462
|
"""
|
478
463
|
super()._check_dataset_type(dataset)
|
479
|
-
inference_method="transform"
|
464
|
+
inference_method = "transform"
|
480
465
|
|
481
466
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
482
467
|
# are specific to the type of dataset used.
|
@@ -506,24 +491,19 @@ class BaggingRegressor(BaseTransformer):
|
|
506
491
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
507
492
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
508
493
|
|
509
|
-
self.
|
510
|
-
|
511
|
-
inference_method=inference_method,
|
512
|
-
)
|
494
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
495
|
+
self._deps = self._get_dependencies()
|
513
496
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
514
497
|
|
515
498
|
transform_kwargs = dict(
|
516
|
-
session
|
517
|
-
dependencies
|
518
|
-
drop_input_cols
|
519
|
-
expected_output_cols_type
|
499
|
+
session=dataset._session,
|
500
|
+
dependencies=self._deps,
|
501
|
+
drop_input_cols=self._drop_input_cols,
|
502
|
+
expected_output_cols_type=expected_dtype,
|
520
503
|
)
|
521
504
|
|
522
505
|
elif isinstance(dataset, pd.DataFrame):
|
523
|
-
transform_kwargs = dict(
|
524
|
-
snowpark_input_cols = self._snowpark_cols,
|
525
|
-
drop_input_cols = self._drop_input_cols
|
526
|
-
)
|
506
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
527
507
|
|
528
508
|
transform_handlers = ModelTransformerBuilder.build(
|
529
509
|
dataset=dataset,
|
@@ -542,7 +522,11 @@ class BaggingRegressor(BaseTransformer):
|
|
542
522
|
return output_df
|
543
523
|
|
544
524
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
545
|
-
def fit_predict(
|
525
|
+
def fit_predict(
|
526
|
+
self,
|
527
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
528
|
+
output_cols_prefix: str = "fit_predict_",
|
529
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
546
530
|
""" Method not supported for this class.
|
547
531
|
|
548
532
|
|
@@ -567,22 +551,104 @@ class BaggingRegressor(BaseTransformer):
|
|
567
551
|
)
|
568
552
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
569
553
|
drop_input_cols=self._drop_input_cols,
|
570
|
-
expected_output_cols_list=
|
554
|
+
expected_output_cols_list=(
|
555
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
556
|
+
),
|
571
557
|
)
|
572
558
|
self._sklearn_object = fitted_estimator
|
573
559
|
self._is_fitted = True
|
574
560
|
return output_result
|
575
561
|
|
562
|
+
|
563
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
564
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
565
|
+
""" Method not supported for this class.
|
566
|
+
|
576
567
|
|
577
|
-
|
578
|
-
|
579
|
-
|
568
|
+
Raises:
|
569
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
570
|
+
|
571
|
+
Args:
|
572
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
573
|
+
Snowpark or Pandas DataFrame.
|
574
|
+
output_cols_prefix: Prefix for the response columns
|
580
575
|
Returns:
|
581
576
|
Transformed dataset.
|
582
577
|
"""
|
583
|
-
self.
|
584
|
-
|
585
|
-
|
578
|
+
self._infer_input_output_cols(dataset)
|
579
|
+
super()._check_dataset_type(dataset)
|
580
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
581
|
+
estimator=self._sklearn_object,
|
582
|
+
dataset=dataset,
|
583
|
+
input_cols=self.input_cols,
|
584
|
+
label_cols=self.label_cols,
|
585
|
+
sample_weight_col=self.sample_weight_col,
|
586
|
+
autogenerated=self._autogenerated,
|
587
|
+
subproject=_SUBPROJECT,
|
588
|
+
)
|
589
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
590
|
+
drop_input_cols=self._drop_input_cols,
|
591
|
+
expected_output_cols_list=self.output_cols,
|
592
|
+
)
|
593
|
+
self._sklearn_object = fitted_estimator
|
594
|
+
self._is_fitted = True
|
595
|
+
return output_result
|
596
|
+
|
597
|
+
|
598
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
599
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
600
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
601
|
+
"""
|
602
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
603
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
604
|
+
if output_cols:
|
605
|
+
output_cols = [
|
606
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
607
|
+
for c in output_cols
|
608
|
+
]
|
609
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
610
|
+
output_cols = [output_cols_prefix]
|
611
|
+
elif self._sklearn_object is not None:
|
612
|
+
classes = self._sklearn_object.classes_
|
613
|
+
if isinstance(classes, numpy.ndarray):
|
614
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
615
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
616
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
617
|
+
output_cols = []
|
618
|
+
for i, cl in enumerate(classes):
|
619
|
+
# For binary classification, there is only one output column for each class
|
620
|
+
# ndarray as the two classes are complementary.
|
621
|
+
if len(cl) == 2:
|
622
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
623
|
+
else:
|
624
|
+
output_cols.extend([
|
625
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
626
|
+
])
|
627
|
+
else:
|
628
|
+
output_cols = []
|
629
|
+
|
630
|
+
# Make sure column names are valid snowflake identifiers.
|
631
|
+
assert output_cols is not None # Make MyPy happy
|
632
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
633
|
+
|
634
|
+
return rv
|
635
|
+
|
636
|
+
def _align_expected_output_names(
|
637
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
638
|
+
) -> List[str]:
|
639
|
+
# in case the inferred output column names dimension is different
|
640
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
641
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
642
|
+
output_df_columns = list(output_df_pd.columns)
|
643
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
644
|
+
if self.sample_weight_col:
|
645
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
646
|
+
# if the dimension of inferred output column names is correct; use it
|
647
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
648
|
+
return expected_output_cols_list
|
649
|
+
# otherwise, use the sklearn estimator's output
|
650
|
+
else:
|
651
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
586
652
|
|
587
653
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
588
654
|
@telemetry.send_api_usage_telemetry(
|
@@ -614,24 +680,26 @@ class BaggingRegressor(BaseTransformer):
|
|
614
680
|
# are specific to the type of dataset used.
|
615
681
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
616
682
|
|
683
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
684
|
+
|
617
685
|
if isinstance(dataset, DataFrame):
|
618
|
-
self.
|
619
|
-
|
620
|
-
|
621
|
-
|
622
|
-
|
686
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
687
|
+
self._deps = self._get_dependencies()
|
688
|
+
assert isinstance(
|
689
|
+
dataset._session, Session
|
690
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
623
691
|
transform_kwargs = dict(
|
624
692
|
session=dataset._session,
|
625
693
|
dependencies=self._deps,
|
626
|
-
drop_input_cols
|
694
|
+
drop_input_cols=self._drop_input_cols,
|
627
695
|
expected_output_cols_type="float",
|
628
696
|
)
|
697
|
+
expected_output_cols = self._align_expected_output_names(
|
698
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
699
|
+
)
|
629
700
|
|
630
701
|
elif isinstance(dataset, pd.DataFrame):
|
631
|
-
transform_kwargs = dict(
|
632
|
-
snowpark_input_cols = self._snowpark_cols,
|
633
|
-
drop_input_cols = self._drop_input_cols
|
634
|
-
)
|
702
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
635
703
|
|
636
704
|
transform_handlers = ModelTransformerBuilder.build(
|
637
705
|
dataset=dataset,
|
@@ -643,7 +711,7 @@ class BaggingRegressor(BaseTransformer):
|
|
643
711
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
644
712
|
inference_method=inference_method,
|
645
713
|
input_cols=self.input_cols,
|
646
|
-
expected_output_cols=
|
714
|
+
expected_output_cols=expected_output_cols,
|
647
715
|
**transform_kwargs
|
648
716
|
)
|
649
717
|
return output_df
|
@@ -673,29 +741,30 @@ class BaggingRegressor(BaseTransformer):
|
|
673
741
|
Output dataset with log probability of the sample for each class in the model.
|
674
742
|
"""
|
675
743
|
super()._check_dataset_type(dataset)
|
676
|
-
inference_method="predict_log_proba"
|
744
|
+
inference_method = "predict_log_proba"
|
745
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
677
746
|
|
678
747
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
679
748
|
# are specific to the type of dataset used.
|
680
749
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
681
750
|
|
682
751
|
if isinstance(dataset, DataFrame):
|
683
|
-
self.
|
684
|
-
|
685
|
-
|
686
|
-
|
687
|
-
|
752
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
753
|
+
self._deps = self._get_dependencies()
|
754
|
+
assert isinstance(
|
755
|
+
dataset._session, Session
|
756
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
688
757
|
transform_kwargs = dict(
|
689
758
|
session=dataset._session,
|
690
759
|
dependencies=self._deps,
|
691
|
-
drop_input_cols
|
760
|
+
drop_input_cols=self._drop_input_cols,
|
692
761
|
expected_output_cols_type="float",
|
693
762
|
)
|
763
|
+
expected_output_cols = self._align_expected_output_names(
|
764
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
765
|
+
)
|
694
766
|
elif isinstance(dataset, pd.DataFrame):
|
695
|
-
transform_kwargs = dict(
|
696
|
-
snowpark_input_cols = self._snowpark_cols,
|
697
|
-
drop_input_cols = self._drop_input_cols
|
698
|
-
)
|
767
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
699
768
|
|
700
769
|
transform_handlers = ModelTransformerBuilder.build(
|
701
770
|
dataset=dataset,
|
@@ -708,7 +777,7 @@ class BaggingRegressor(BaseTransformer):
|
|
708
777
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
709
778
|
inference_method=inference_method,
|
710
779
|
input_cols=self.input_cols,
|
711
|
-
expected_output_cols=
|
780
|
+
expected_output_cols=expected_output_cols,
|
712
781
|
**transform_kwargs
|
713
782
|
)
|
714
783
|
return output_df
|
@@ -734,30 +803,32 @@ class BaggingRegressor(BaseTransformer):
|
|
734
803
|
Output dataset with results of the decision function for the samples in input dataset.
|
735
804
|
"""
|
736
805
|
super()._check_dataset_type(dataset)
|
737
|
-
inference_method="decision_function"
|
806
|
+
inference_method = "decision_function"
|
738
807
|
|
739
808
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
740
809
|
# are specific to the type of dataset used.
|
741
810
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
742
811
|
|
812
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
813
|
+
|
743
814
|
if isinstance(dataset, DataFrame):
|
744
|
-
self.
|
745
|
-
|
746
|
-
|
747
|
-
|
748
|
-
|
815
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
816
|
+
self._deps = self._get_dependencies()
|
817
|
+
assert isinstance(
|
818
|
+
dataset._session, Session
|
819
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
749
820
|
transform_kwargs = dict(
|
750
821
|
session=dataset._session,
|
751
822
|
dependencies=self._deps,
|
752
|
-
drop_input_cols
|
823
|
+
drop_input_cols=self._drop_input_cols,
|
753
824
|
expected_output_cols_type="float",
|
754
825
|
)
|
826
|
+
expected_output_cols = self._align_expected_output_names(
|
827
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
828
|
+
)
|
755
829
|
|
756
830
|
elif isinstance(dataset, pd.DataFrame):
|
757
|
-
transform_kwargs = dict(
|
758
|
-
snowpark_input_cols = self._snowpark_cols,
|
759
|
-
drop_input_cols = self._drop_input_cols
|
760
|
-
)
|
831
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
761
832
|
|
762
833
|
transform_handlers = ModelTransformerBuilder.build(
|
763
834
|
dataset=dataset,
|
@@ -770,7 +841,7 @@ class BaggingRegressor(BaseTransformer):
|
|
770
841
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
771
842
|
inference_method=inference_method,
|
772
843
|
input_cols=self.input_cols,
|
773
|
-
expected_output_cols=
|
844
|
+
expected_output_cols=expected_output_cols,
|
774
845
|
**transform_kwargs
|
775
846
|
)
|
776
847
|
return output_df
|
@@ -799,17 +870,17 @@ class BaggingRegressor(BaseTransformer):
|
|
799
870
|
Output dataset with probability of the sample for each class in the model.
|
800
871
|
"""
|
801
872
|
super()._check_dataset_type(dataset)
|
802
|
-
inference_method="score_samples"
|
873
|
+
inference_method = "score_samples"
|
803
874
|
|
804
875
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
805
876
|
# are specific to the type of dataset used.
|
806
877
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
807
878
|
|
879
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
880
|
+
|
808
881
|
if isinstance(dataset, DataFrame):
|
809
|
-
self.
|
810
|
-
|
811
|
-
inference_method=inference_method,
|
812
|
-
)
|
882
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
883
|
+
self._deps = self._get_dependencies()
|
813
884
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
814
885
|
transform_kwargs = dict(
|
815
886
|
session=dataset._session,
|
@@ -817,6 +888,9 @@ class BaggingRegressor(BaseTransformer):
|
|
817
888
|
drop_input_cols = self._drop_input_cols,
|
818
889
|
expected_output_cols_type="float",
|
819
890
|
)
|
891
|
+
expected_output_cols = self._align_expected_output_names(
|
892
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
893
|
+
)
|
820
894
|
|
821
895
|
elif isinstance(dataset, pd.DataFrame):
|
822
896
|
transform_kwargs = dict(
|
@@ -835,7 +909,7 @@ class BaggingRegressor(BaseTransformer):
|
|
835
909
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
836
910
|
inference_method=inference_method,
|
837
911
|
input_cols=self.input_cols,
|
838
|
-
expected_output_cols=
|
912
|
+
expected_output_cols=expected_output_cols,
|
839
913
|
**transform_kwargs
|
840
914
|
)
|
841
915
|
return output_df
|
@@ -870,17 +944,15 @@ class BaggingRegressor(BaseTransformer):
|
|
870
944
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
871
945
|
|
872
946
|
if isinstance(dataset, DataFrame):
|
873
|
-
self.
|
874
|
-
|
875
|
-
inference_method="score",
|
876
|
-
)
|
947
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
948
|
+
self._deps = self._get_dependencies()
|
877
949
|
selected_cols = self._get_active_columns()
|
878
950
|
if len(selected_cols) > 0:
|
879
951
|
dataset = dataset.select(selected_cols)
|
880
952
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
881
953
|
transform_kwargs = dict(
|
882
954
|
session=dataset._session,
|
883
|
-
dependencies=
|
955
|
+
dependencies=self._deps,
|
884
956
|
score_sproc_imports=['sklearn'],
|
885
957
|
)
|
886
958
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -945,11 +1017,8 @@ class BaggingRegressor(BaseTransformer):
|
|
945
1017
|
|
946
1018
|
if isinstance(dataset, DataFrame):
|
947
1019
|
|
948
|
-
self.
|
949
|
-
|
950
|
-
inference_method=inference_method,
|
951
|
-
|
952
|
-
)
|
1020
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1021
|
+
self._deps = self._get_dependencies()
|
953
1022
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
954
1023
|
transform_kwargs = dict(
|
955
1024
|
session = dataset._session,
|
@@ -982,50 +1051,84 @@ class BaggingRegressor(BaseTransformer):
|
|
982
1051
|
)
|
983
1052
|
return output_df
|
984
1053
|
|
1054
|
+
|
1055
|
+
|
1056
|
+
def to_sklearn(self) -> Any:
|
1057
|
+
"""Get sklearn.ensemble.BaggingRegressor object.
|
1058
|
+
"""
|
1059
|
+
if self._sklearn_object is None:
|
1060
|
+
self._sklearn_object = self._create_sklearn_object()
|
1061
|
+
return self._sklearn_object
|
1062
|
+
|
1063
|
+
def to_xgboost(self) -> Any:
|
1064
|
+
raise exceptions.SnowflakeMLException(
|
1065
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1066
|
+
original_exception=AttributeError(
|
1067
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1068
|
+
"to_xgboost()",
|
1069
|
+
"to_sklearn()"
|
1070
|
+
)
|
1071
|
+
),
|
1072
|
+
)
|
1073
|
+
|
1074
|
+
def to_lightgbm(self) -> Any:
|
1075
|
+
raise exceptions.SnowflakeMLException(
|
1076
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1077
|
+
original_exception=AttributeError(
|
1078
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1079
|
+
"to_lightgbm()",
|
1080
|
+
"to_sklearn()"
|
1081
|
+
)
|
1082
|
+
),
|
1083
|
+
)
|
1084
|
+
|
1085
|
+
def _get_dependencies(self) -> List[str]:
|
1086
|
+
return self._deps
|
1087
|
+
|
985
1088
|
|
986
|
-
def
|
1089
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
987
1090
|
self._model_signature_dict = dict()
|
988
1091
|
|
989
1092
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
990
1093
|
|
991
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1094
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
992
1095
|
outputs: List[BaseFeatureSpec] = []
|
993
1096
|
if hasattr(self, "predict"):
|
994
1097
|
# keep mypy happy
|
995
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1098
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
996
1099
|
# For classifier, the type of predict is the same as the type of label
|
997
|
-
if self._sklearn_object._estimator_type ==
|
998
|
-
|
1100
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1101
|
+
# label columns is the desired type for output
|
999
1102
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1000
1103
|
# rename the output columns
|
1001
1104
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1002
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1105
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1106
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1107
|
+
)
|
1005
1108
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1006
1109
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1007
|
-
# Clusterer returns int64 cluster labels.
|
1110
|
+
# Clusterer returns int64 cluster labels.
|
1008
1111
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1009
1112
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1010
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1011
|
-
|
1012
|
-
|
1013
|
-
|
1113
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1114
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1115
|
+
)
|
1116
|
+
|
1014
1117
|
# For regressor, the type of predict is float64
|
1015
|
-
elif self._sklearn_object._estimator_type ==
|
1118
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1016
1119
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1017
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1018
|
-
|
1019
|
-
|
1020
|
-
|
1120
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1121
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1122
|
+
)
|
1123
|
+
|
1021
1124
|
for prob_func in PROB_FUNCTIONS:
|
1022
1125
|
if hasattr(self, prob_func):
|
1023
1126
|
output_cols_prefix: str = f"{prob_func}_"
|
1024
1127
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1025
1128
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1026
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1027
|
-
|
1028
|
-
|
1129
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1130
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1131
|
+
)
|
1029
1132
|
|
1030
1133
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1031
1134
|
items = list(self._model_signature_dict.items())
|
@@ -1038,10 +1141,10 @@ class BaggingRegressor(BaseTransformer):
|
|
1038
1141
|
"""Returns model signature of current class.
|
1039
1142
|
|
1040
1143
|
Raises:
|
1041
|
-
|
1144
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1042
1145
|
|
1043
1146
|
Returns:
|
1044
|
-
Dict
|
1147
|
+
Dict with each method and its input output signature
|
1045
1148
|
"""
|
1046
1149
|
if self._model_signature_dict is None:
|
1047
1150
|
raise exceptions.SnowflakeMLException(
|
@@ -1049,35 +1152,3 @@ class BaggingRegressor(BaseTransformer):
|
|
1049
1152
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1050
1153
|
)
|
1051
1154
|
return self._model_signature_dict
|
1052
|
-
|
1053
|
-
def to_sklearn(self) -> Any:
|
1054
|
-
"""Get sklearn.ensemble.BaggingRegressor object.
|
1055
|
-
"""
|
1056
|
-
if self._sklearn_object is None:
|
1057
|
-
self._sklearn_object = self._create_sklearn_object()
|
1058
|
-
return self._sklearn_object
|
1059
|
-
|
1060
|
-
def to_xgboost(self) -> Any:
|
1061
|
-
raise exceptions.SnowflakeMLException(
|
1062
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1063
|
-
original_exception=AttributeError(
|
1064
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1065
|
-
"to_xgboost()",
|
1066
|
-
"to_sklearn()"
|
1067
|
-
)
|
1068
|
-
),
|
1069
|
-
)
|
1070
|
-
|
1071
|
-
def to_lightgbm(self) -> Any:
|
1072
|
-
raise exceptions.SnowflakeMLException(
|
1073
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1074
|
-
original_exception=AttributeError(
|
1075
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1076
|
-
"to_lightgbm()",
|
1077
|
-
"to_sklearn()"
|
1078
|
-
)
|
1079
|
-
),
|
1080
|
-
)
|
1081
|
-
|
1082
|
-
def _get_dependencies(self) -> List[str]:
|
1083
|
-
return self._deps
|