snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class BaggingRegressor(BaseTransformer):
71
64
  r"""A Bagging regressor
72
65
  For more details on this class, see [sklearn.ensemble.BaggingRegressor]
@@ -276,12 +269,7 @@ class BaggingRegressor(BaseTransformer):
276
269
  )
277
270
  return selected_cols
278
271
 
279
- @telemetry.send_api_usage_telemetry(
280
- project=_PROJECT,
281
- subproject=_SUBPROJECT,
282
- custom_tags=dict([("autogen", True)]),
283
- )
284
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
272
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingRegressor":
285
273
  """Build a Bagging ensemble of estimators from the training set (X, y)
286
274
  For more details on this function, see [sklearn.ensemble.BaggingRegressor.fit]
287
275
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingRegressor.html#sklearn.ensemble.BaggingRegressor.fit)
@@ -308,12 +296,14 @@ class BaggingRegressor(BaseTransformer):
308
296
 
309
297
  self._snowpark_cols = dataset.select(self.input_cols).columns
310
298
 
311
- # If we are already in a stored procedure, no need to kick off another one.
299
+ # If we are already in a stored procedure, no need to kick off another one.
312
300
  if SNOWML_SPROC_ENV in os.environ:
313
301
  statement_params = telemetry.get_function_usage_statement_params(
314
302
  project=_PROJECT,
315
303
  subproject=_SUBPROJECT,
316
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingRegressor.__class__.__name__),
304
+ function_name=telemetry.get_statement_params_full_func_name(
305
+ inspect.currentframe(), BaggingRegressor.__class__.__name__
306
+ ),
317
307
  api_calls=[Session.call],
318
308
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
319
309
  )
@@ -334,27 +324,24 @@ class BaggingRegressor(BaseTransformer):
334
324
  )
335
325
  self._sklearn_object = model_trainer.train()
336
326
  self._is_fitted = True
337
- self._get_model_signatures(dataset)
327
+ self._generate_model_signatures(dataset)
338
328
  return self
339
329
 
340
330
  def _batch_inference_validate_snowpark(
341
331
  self,
342
332
  dataset: DataFrame,
343
333
  inference_method: str,
344
- ) -> List[str]:
345
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
346
- return the available package that exists in the snowflake anaconda channel
334
+ ) -> None:
335
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
347
336
 
348
337
  Args:
349
338
  dataset: snowpark dataframe
350
339
  inference_method: the inference method such as predict, score...
351
-
340
+
352
341
  Raises:
353
342
  SnowflakeMLException: If the estimator is not fitted, raise error
354
343
  SnowflakeMLException: If the session is None, raise error
355
344
 
356
- Returns:
357
- A list of available package that exists in the snowflake anaconda channel
358
345
  """
359
346
  if not self._is_fitted:
360
347
  raise exceptions.SnowflakeMLException(
@@ -372,9 +359,7 @@ class BaggingRegressor(BaseTransformer):
372
359
  "Session must not specified for snowpark dataset."
373
360
  ),
374
361
  )
375
- # Validate that key package version in user workspace are supported in snowflake conda channel
376
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
377
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
362
+
378
363
 
379
364
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
380
365
  @telemetry.send_api_usage_telemetry(
@@ -410,7 +395,9 @@ class BaggingRegressor(BaseTransformer):
410
395
  # when it is classifier, infer the datatype from label columns
411
396
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
412
397
  # Batch inference takes a single expected output column type. Use the first columns type for now.
413
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
398
+ label_cols_signatures = [
399
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
400
+ ]
414
401
  if len(label_cols_signatures) == 0:
415
402
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
416
403
  raise exceptions.SnowflakeMLException(
@@ -418,25 +405,23 @@ class BaggingRegressor(BaseTransformer):
418
405
  original_exception=ValueError(error_str),
419
406
  )
420
407
 
421
- expected_type_inferred = convert_sp_to_sf_type(
422
- label_cols_signatures[0].as_snowpark_type()
423
- )
408
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
424
409
 
425
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
426
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
410
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
+ self._deps = self._get_dependencies()
412
+ assert isinstance(
413
+ dataset._session, Session
414
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
427
415
 
428
416
  transform_kwargs = dict(
429
- session = dataset._session,
430
- dependencies = self._deps,
431
- drop_input_cols = self._drop_input_cols,
432
- expected_output_cols_type = expected_type_inferred,
417
+ session=dataset._session,
418
+ dependencies=self._deps,
419
+ drop_input_cols=self._drop_input_cols,
420
+ expected_output_cols_type=expected_type_inferred,
433
421
  )
434
422
 
435
423
  elif isinstance(dataset, pd.DataFrame):
436
- transform_kwargs = dict(
437
- snowpark_input_cols = self._snowpark_cols,
438
- drop_input_cols = self._drop_input_cols
439
- )
424
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
440
425
 
441
426
  transform_handlers = ModelTransformerBuilder.build(
442
427
  dataset=dataset,
@@ -476,7 +461,7 @@ class BaggingRegressor(BaseTransformer):
476
461
  Transformed dataset.
477
462
  """
478
463
  super()._check_dataset_type(dataset)
479
- inference_method="transform"
464
+ inference_method = "transform"
480
465
 
481
466
  # This dictionary contains optional kwargs for batch inference. These kwargs
482
467
  # are specific to the type of dataset used.
@@ -506,24 +491,19 @@ class BaggingRegressor(BaseTransformer):
506
491
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
507
492
  expected_dtype = convert_sp_to_sf_type(output_types[0])
508
493
 
509
- self._deps = self._batch_inference_validate_snowpark(
510
- dataset=dataset,
511
- inference_method=inference_method,
512
- )
494
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
495
+ self._deps = self._get_dependencies()
513
496
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
514
497
 
515
498
  transform_kwargs = dict(
516
- session = dataset._session,
517
- dependencies = self._deps,
518
- drop_input_cols = self._drop_input_cols,
519
- expected_output_cols_type = expected_dtype,
499
+ session=dataset._session,
500
+ dependencies=self._deps,
501
+ drop_input_cols=self._drop_input_cols,
502
+ expected_output_cols_type=expected_dtype,
520
503
  )
521
504
 
522
505
  elif isinstance(dataset, pd.DataFrame):
523
- transform_kwargs = dict(
524
- snowpark_input_cols = self._snowpark_cols,
525
- drop_input_cols = self._drop_input_cols
526
- )
506
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
527
507
 
528
508
  transform_handlers = ModelTransformerBuilder.build(
529
509
  dataset=dataset,
@@ -542,7 +522,11 @@ class BaggingRegressor(BaseTransformer):
542
522
  return output_df
543
523
 
544
524
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
545
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
525
+ def fit_predict(
526
+ self,
527
+ dataset: Union[DataFrame, pd.DataFrame],
528
+ output_cols_prefix: str = "fit_predict_",
529
+ ) -> Union[DataFrame, pd.DataFrame]:
546
530
  """ Method not supported for this class.
547
531
 
548
532
 
@@ -567,22 +551,104 @@ class BaggingRegressor(BaseTransformer):
567
551
  )
568
552
  output_result, fitted_estimator = model_trainer.train_fit_predict(
569
553
  drop_input_cols=self._drop_input_cols,
570
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
554
+ expected_output_cols_list=(
555
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
556
+ ),
571
557
  )
572
558
  self._sklearn_object = fitted_estimator
573
559
  self._is_fitted = True
574
560
  return output_result
575
561
 
562
+
563
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
564
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
565
+ """ Method not supported for this class.
566
+
576
567
 
577
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
578
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
579
- """
568
+ Raises:
569
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
570
+
571
+ Args:
572
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
573
+ Snowpark or Pandas DataFrame.
574
+ output_cols_prefix: Prefix for the response columns
580
575
  Returns:
581
576
  Transformed dataset.
582
577
  """
583
- self.fit(dataset)
584
- assert self._sklearn_object is not None
585
- return self._sklearn_object.embedding_
578
+ self._infer_input_output_cols(dataset)
579
+ super()._check_dataset_type(dataset)
580
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
581
+ estimator=self._sklearn_object,
582
+ dataset=dataset,
583
+ input_cols=self.input_cols,
584
+ label_cols=self.label_cols,
585
+ sample_weight_col=self.sample_weight_col,
586
+ autogenerated=self._autogenerated,
587
+ subproject=_SUBPROJECT,
588
+ )
589
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
590
+ drop_input_cols=self._drop_input_cols,
591
+ expected_output_cols_list=self.output_cols,
592
+ )
593
+ self._sklearn_object = fitted_estimator
594
+ self._is_fitted = True
595
+ return output_result
596
+
597
+
598
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
599
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
600
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
601
+ """
602
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
603
+ # The following condition is introduced for kneighbors methods, and not used in other methods
604
+ if output_cols:
605
+ output_cols = [
606
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
607
+ for c in output_cols
608
+ ]
609
+ elif getattr(self._sklearn_object, "classes_", None) is None:
610
+ output_cols = [output_cols_prefix]
611
+ elif self._sklearn_object is not None:
612
+ classes = self._sklearn_object.classes_
613
+ if isinstance(classes, numpy.ndarray):
614
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
615
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
616
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
617
+ output_cols = []
618
+ for i, cl in enumerate(classes):
619
+ # For binary classification, there is only one output column for each class
620
+ # ndarray as the two classes are complementary.
621
+ if len(cl) == 2:
622
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
623
+ else:
624
+ output_cols.extend([
625
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
626
+ ])
627
+ else:
628
+ output_cols = []
629
+
630
+ # Make sure column names are valid snowflake identifiers.
631
+ assert output_cols is not None # Make MyPy happy
632
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
633
+
634
+ return rv
635
+
636
+ def _align_expected_output_names(
637
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
638
+ ) -> List[str]:
639
+ # in case the inferred output column names dimension is different
640
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
641
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
642
+ output_df_columns = list(output_df_pd.columns)
643
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
644
+ if self.sample_weight_col:
645
+ output_df_columns_set -= set(self.sample_weight_col)
646
+ # if the dimension of inferred output column names is correct; use it
647
+ if len(expected_output_cols_list) == len(output_df_columns_set):
648
+ return expected_output_cols_list
649
+ # otherwise, use the sklearn estimator's output
650
+ else:
651
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
586
652
 
587
653
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
588
654
  @telemetry.send_api_usage_telemetry(
@@ -614,24 +680,26 @@ class BaggingRegressor(BaseTransformer):
614
680
  # are specific to the type of dataset used.
615
681
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
616
682
 
683
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
684
+
617
685
  if isinstance(dataset, DataFrame):
618
- self._deps = self._batch_inference_validate_snowpark(
619
- dataset=dataset,
620
- inference_method=inference_method,
621
- )
622
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
687
+ self._deps = self._get_dependencies()
688
+ assert isinstance(
689
+ dataset._session, Session
690
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
623
691
  transform_kwargs = dict(
624
692
  session=dataset._session,
625
693
  dependencies=self._deps,
626
- drop_input_cols = self._drop_input_cols,
694
+ drop_input_cols=self._drop_input_cols,
627
695
  expected_output_cols_type="float",
628
696
  )
697
+ expected_output_cols = self._align_expected_output_names(
698
+ inference_method, dataset, expected_output_cols, output_cols_prefix
699
+ )
629
700
 
630
701
  elif isinstance(dataset, pd.DataFrame):
631
- transform_kwargs = dict(
632
- snowpark_input_cols = self._snowpark_cols,
633
- drop_input_cols = self._drop_input_cols
634
- )
702
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
635
703
 
636
704
  transform_handlers = ModelTransformerBuilder.build(
637
705
  dataset=dataset,
@@ -643,7 +711,7 @@ class BaggingRegressor(BaseTransformer):
643
711
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
644
712
  inference_method=inference_method,
645
713
  input_cols=self.input_cols,
646
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
714
+ expected_output_cols=expected_output_cols,
647
715
  **transform_kwargs
648
716
  )
649
717
  return output_df
@@ -673,29 +741,30 @@ class BaggingRegressor(BaseTransformer):
673
741
  Output dataset with log probability of the sample for each class in the model.
674
742
  """
675
743
  super()._check_dataset_type(dataset)
676
- inference_method="predict_log_proba"
744
+ inference_method = "predict_log_proba"
745
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
677
746
 
678
747
  # This dictionary contains optional kwargs for batch inference. These kwargs
679
748
  # are specific to the type of dataset used.
680
749
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
681
750
 
682
751
  if isinstance(dataset, DataFrame):
683
- self._deps = self._batch_inference_validate_snowpark(
684
- dataset=dataset,
685
- inference_method=inference_method,
686
- )
687
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
752
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
753
+ self._deps = self._get_dependencies()
754
+ assert isinstance(
755
+ dataset._session, Session
756
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
688
757
  transform_kwargs = dict(
689
758
  session=dataset._session,
690
759
  dependencies=self._deps,
691
- drop_input_cols = self._drop_input_cols,
760
+ drop_input_cols=self._drop_input_cols,
692
761
  expected_output_cols_type="float",
693
762
  )
763
+ expected_output_cols = self._align_expected_output_names(
764
+ inference_method, dataset, expected_output_cols, output_cols_prefix
765
+ )
694
766
  elif isinstance(dataset, pd.DataFrame):
695
- transform_kwargs = dict(
696
- snowpark_input_cols = self._snowpark_cols,
697
- drop_input_cols = self._drop_input_cols
698
- )
767
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
699
768
 
700
769
  transform_handlers = ModelTransformerBuilder.build(
701
770
  dataset=dataset,
@@ -708,7 +777,7 @@ class BaggingRegressor(BaseTransformer):
708
777
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
709
778
  inference_method=inference_method,
710
779
  input_cols=self.input_cols,
711
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
780
+ expected_output_cols=expected_output_cols,
712
781
  **transform_kwargs
713
782
  )
714
783
  return output_df
@@ -734,30 +803,32 @@ class BaggingRegressor(BaseTransformer):
734
803
  Output dataset with results of the decision function for the samples in input dataset.
735
804
  """
736
805
  super()._check_dataset_type(dataset)
737
- inference_method="decision_function"
806
+ inference_method = "decision_function"
738
807
 
739
808
  # This dictionary contains optional kwargs for batch inference. These kwargs
740
809
  # are specific to the type of dataset used.
741
810
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
742
811
 
812
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
813
+
743
814
  if isinstance(dataset, DataFrame):
744
- self._deps = self._batch_inference_validate_snowpark(
745
- dataset=dataset,
746
- inference_method=inference_method,
747
- )
748
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
815
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
816
+ self._deps = self._get_dependencies()
817
+ assert isinstance(
818
+ dataset._session, Session
819
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
749
820
  transform_kwargs = dict(
750
821
  session=dataset._session,
751
822
  dependencies=self._deps,
752
- drop_input_cols = self._drop_input_cols,
823
+ drop_input_cols=self._drop_input_cols,
753
824
  expected_output_cols_type="float",
754
825
  )
826
+ expected_output_cols = self._align_expected_output_names(
827
+ inference_method, dataset, expected_output_cols, output_cols_prefix
828
+ )
755
829
 
756
830
  elif isinstance(dataset, pd.DataFrame):
757
- transform_kwargs = dict(
758
- snowpark_input_cols = self._snowpark_cols,
759
- drop_input_cols = self._drop_input_cols
760
- )
831
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
761
832
 
762
833
  transform_handlers = ModelTransformerBuilder.build(
763
834
  dataset=dataset,
@@ -770,7 +841,7 @@ class BaggingRegressor(BaseTransformer):
770
841
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
771
842
  inference_method=inference_method,
772
843
  input_cols=self.input_cols,
773
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
844
+ expected_output_cols=expected_output_cols,
774
845
  **transform_kwargs
775
846
  )
776
847
  return output_df
@@ -799,17 +870,17 @@ class BaggingRegressor(BaseTransformer):
799
870
  Output dataset with probability of the sample for each class in the model.
800
871
  """
801
872
  super()._check_dataset_type(dataset)
802
- inference_method="score_samples"
873
+ inference_method = "score_samples"
803
874
 
804
875
  # This dictionary contains optional kwargs for batch inference. These kwargs
805
876
  # are specific to the type of dataset used.
806
877
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
807
878
 
879
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
880
+
808
881
  if isinstance(dataset, DataFrame):
809
- self._deps = self._batch_inference_validate_snowpark(
810
- dataset=dataset,
811
- inference_method=inference_method,
812
- )
882
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
883
+ self._deps = self._get_dependencies()
813
884
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
814
885
  transform_kwargs = dict(
815
886
  session=dataset._session,
@@ -817,6 +888,9 @@ class BaggingRegressor(BaseTransformer):
817
888
  drop_input_cols = self._drop_input_cols,
818
889
  expected_output_cols_type="float",
819
890
  )
891
+ expected_output_cols = self._align_expected_output_names(
892
+ inference_method, dataset, expected_output_cols, output_cols_prefix
893
+ )
820
894
 
821
895
  elif isinstance(dataset, pd.DataFrame):
822
896
  transform_kwargs = dict(
@@ -835,7 +909,7 @@ class BaggingRegressor(BaseTransformer):
835
909
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
836
910
  inference_method=inference_method,
837
911
  input_cols=self.input_cols,
838
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
912
+ expected_output_cols=expected_output_cols,
839
913
  **transform_kwargs
840
914
  )
841
915
  return output_df
@@ -870,17 +944,15 @@ class BaggingRegressor(BaseTransformer):
870
944
  transform_kwargs: ScoreKwargsTypedDict = dict()
871
945
 
872
946
  if isinstance(dataset, DataFrame):
873
- self._deps = self._batch_inference_validate_snowpark(
874
- dataset=dataset,
875
- inference_method="score",
876
- )
947
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
948
+ self._deps = self._get_dependencies()
877
949
  selected_cols = self._get_active_columns()
878
950
  if len(selected_cols) > 0:
879
951
  dataset = dataset.select(selected_cols)
880
952
  assert isinstance(dataset._session, Session) # keep mypy happy
881
953
  transform_kwargs = dict(
882
954
  session=dataset._session,
883
- dependencies=["snowflake-snowpark-python"] + self._deps,
955
+ dependencies=self._deps,
884
956
  score_sproc_imports=['sklearn'],
885
957
  )
886
958
  elif isinstance(dataset, pd.DataFrame):
@@ -945,11 +1017,8 @@ class BaggingRegressor(BaseTransformer):
945
1017
 
946
1018
  if isinstance(dataset, DataFrame):
947
1019
 
948
- self._deps = self._batch_inference_validate_snowpark(
949
- dataset=dataset,
950
- inference_method=inference_method,
951
-
952
- )
1020
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1021
+ self._deps = self._get_dependencies()
953
1022
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
954
1023
  transform_kwargs = dict(
955
1024
  session = dataset._session,
@@ -982,50 +1051,84 @@ class BaggingRegressor(BaseTransformer):
982
1051
  )
983
1052
  return output_df
984
1053
 
1054
+
1055
+
1056
+ def to_sklearn(self) -> Any:
1057
+ """Get sklearn.ensemble.BaggingRegressor object.
1058
+ """
1059
+ if self._sklearn_object is None:
1060
+ self._sklearn_object = self._create_sklearn_object()
1061
+ return self._sklearn_object
1062
+
1063
+ def to_xgboost(self) -> Any:
1064
+ raise exceptions.SnowflakeMLException(
1065
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1066
+ original_exception=AttributeError(
1067
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
+ "to_xgboost()",
1069
+ "to_sklearn()"
1070
+ )
1071
+ ),
1072
+ )
1073
+
1074
+ def to_lightgbm(self) -> Any:
1075
+ raise exceptions.SnowflakeMLException(
1076
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1077
+ original_exception=AttributeError(
1078
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
+ "to_lightgbm()",
1080
+ "to_sklearn()"
1081
+ )
1082
+ ),
1083
+ )
1084
+
1085
+ def _get_dependencies(self) -> List[str]:
1086
+ return self._deps
1087
+
985
1088
 
986
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1089
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
987
1090
  self._model_signature_dict = dict()
988
1091
 
989
1092
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
990
1093
 
991
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1094
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
992
1095
  outputs: List[BaseFeatureSpec] = []
993
1096
  if hasattr(self, "predict"):
994
1097
  # keep mypy happy
995
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1098
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
996
1099
  # For classifier, the type of predict is the same as the type of label
997
- if self._sklearn_object._estimator_type == 'classifier':
998
- # label columns is the desired type for output
1100
+ if self._sklearn_object._estimator_type == "classifier":
1101
+ # label columns is the desired type for output
999
1102
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1000
1103
  # rename the output columns
1001
1104
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1105
+ self._model_signature_dict["predict"] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1005
1108
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1006
1109
  # For outlier models, returns -1 for outliers and 1 for inliers.
1007
- # Clusterer returns int64 cluster labels.
1110
+ # Clusterer returns int64 cluster labels.
1008
1111
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1009
1112
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1010
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1011
- ([] if self._drop_input_cols else inputs)
1012
- + outputs)
1013
-
1113
+ self._model_signature_dict["predict"] = ModelSignature(
1114
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1115
+ )
1116
+
1014
1117
  # For regressor, the type of predict is float64
1015
- elif self._sklearn_object._estimator_type == 'regressor':
1118
+ elif self._sklearn_object._estimator_type == "regressor":
1016
1119
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1017
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1020
-
1120
+ self._model_signature_dict["predict"] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1123
+
1021
1124
  for prob_func in PROB_FUNCTIONS:
1022
1125
  if hasattr(self, prob_func):
1023
1126
  output_cols_prefix: str = f"{prob_func}_"
1024
1127
  output_column_names = self._get_output_column_names(output_cols_prefix)
1025
1128
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1026
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1027
- ([] if self._drop_input_cols else inputs)
1028
- + outputs)
1129
+ self._model_signature_dict[prob_func] = ModelSignature(
1130
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1131
+ )
1029
1132
 
1030
1133
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1031
1134
  items = list(self._model_signature_dict.items())
@@ -1038,10 +1141,10 @@ class BaggingRegressor(BaseTransformer):
1038
1141
  """Returns model signature of current class.
1039
1142
 
1040
1143
  Raises:
1041
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1144
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1042
1145
 
1043
1146
  Returns:
1044
- Dict[str, ModelSignature]: each method and its input output signature
1147
+ Dict with each method and its input output signature
1045
1148
  """
1046
1149
  if self._model_signature_dict is None:
1047
1150
  raise exceptions.SnowflakeMLException(
@@ -1049,35 +1152,3 @@ class BaggingRegressor(BaseTransformer):
1049
1152
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1050
1153
  )
1051
1154
  return self._model_signature_dict
1052
-
1053
- def to_sklearn(self) -> Any:
1054
- """Get sklearn.ensemble.BaggingRegressor object.
1055
- """
1056
- if self._sklearn_object is None:
1057
- self._sklearn_object = self._create_sklearn_object()
1058
- return self._sklearn_object
1059
-
1060
- def to_xgboost(self) -> Any:
1061
- raise exceptions.SnowflakeMLException(
1062
- error_code=error_codes.METHOD_NOT_ALLOWED,
1063
- original_exception=AttributeError(
1064
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
- "to_xgboost()",
1066
- "to_sklearn()"
1067
- )
1068
- ),
1069
- )
1070
-
1071
- def to_lightgbm(self) -> Any:
1072
- raise exceptions.SnowflakeMLException(
1073
- error_code=error_codes.METHOD_NOT_ALLOWED,
1074
- original_exception=AttributeError(
1075
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1076
- "to_lightgbm()",
1077
- "to_sklearn()"
1078
- )
1079
- ),
1080
- )
1081
-
1082
- def _get_dependencies(self) -> List[str]:
1083
- return self._deps