snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".re
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class SkewedChi2Sampler(BaseTransformer):
|
71
64
|
r"""Approximate feature map for "skewed chi-squared" kernel
|
72
65
|
For more details on this class, see [sklearn.kernel_approximation.SkewedChi2Sampler]
|
@@ -208,12 +201,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
208
201
|
)
|
209
202
|
return selected_cols
|
210
203
|
|
211
|
-
|
212
|
-
project=_PROJECT,
|
213
|
-
subproject=_SUBPROJECT,
|
214
|
-
custom_tags=dict([("autogen", True)]),
|
215
|
-
)
|
216
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SkewedChi2Sampler":
|
204
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SkewedChi2Sampler":
|
217
205
|
"""Fit the model with X
|
218
206
|
For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.fit]
|
219
207
|
(https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler.fit)
|
@@ -240,12 +228,14 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
240
228
|
|
241
229
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
242
230
|
|
243
|
-
|
231
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
244
232
|
if SNOWML_SPROC_ENV in os.environ:
|
245
233
|
statement_params = telemetry.get_function_usage_statement_params(
|
246
234
|
project=_PROJECT,
|
247
235
|
subproject=_SUBPROJECT,
|
248
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
236
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
237
|
+
inspect.currentframe(), SkewedChi2Sampler.__class__.__name__
|
238
|
+
),
|
249
239
|
api_calls=[Session.call],
|
250
240
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
251
241
|
)
|
@@ -266,27 +256,24 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
266
256
|
)
|
267
257
|
self._sklearn_object = model_trainer.train()
|
268
258
|
self._is_fitted = True
|
269
|
-
self.
|
259
|
+
self._generate_model_signatures(dataset)
|
270
260
|
return self
|
271
261
|
|
272
262
|
def _batch_inference_validate_snowpark(
|
273
263
|
self,
|
274
264
|
dataset: DataFrame,
|
275
265
|
inference_method: str,
|
276
|
-
) ->
|
277
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
278
|
-
return the available package that exists in the snowflake anaconda channel
|
266
|
+
) -> None:
|
267
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
279
268
|
|
280
269
|
Args:
|
281
270
|
dataset: snowpark dataframe
|
282
271
|
inference_method: the inference method such as predict, score...
|
283
|
-
|
272
|
+
|
284
273
|
Raises:
|
285
274
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
286
275
|
SnowflakeMLException: If the session is None, raise error
|
287
276
|
|
288
|
-
Returns:
|
289
|
-
A list of available package that exists in the snowflake anaconda channel
|
290
277
|
"""
|
291
278
|
if not self._is_fitted:
|
292
279
|
raise exceptions.SnowflakeMLException(
|
@@ -304,9 +291,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
304
291
|
"Session must not specified for snowpark dataset."
|
305
292
|
),
|
306
293
|
)
|
307
|
-
|
308
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
309
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
294
|
+
|
310
295
|
|
311
296
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
312
297
|
@telemetry.send_api_usage_telemetry(
|
@@ -340,7 +325,9 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
340
325
|
# when it is classifier, infer the datatype from label columns
|
341
326
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
342
327
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
343
|
-
label_cols_signatures = [
|
328
|
+
label_cols_signatures = [
|
329
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
330
|
+
]
|
344
331
|
if len(label_cols_signatures) == 0:
|
345
332
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
346
333
|
raise exceptions.SnowflakeMLException(
|
@@ -348,25 +335,23 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
348
335
|
original_exception=ValueError(error_str),
|
349
336
|
)
|
350
337
|
|
351
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
352
|
-
label_cols_signatures[0].as_snowpark_type()
|
353
|
-
)
|
338
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
354
339
|
|
355
|
-
self.
|
356
|
-
|
340
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
341
|
+
self._deps = self._get_dependencies()
|
342
|
+
assert isinstance(
|
343
|
+
dataset._session, Session
|
344
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
357
345
|
|
358
346
|
transform_kwargs = dict(
|
359
|
-
session
|
360
|
-
dependencies
|
361
|
-
drop_input_cols
|
362
|
-
expected_output_cols_type
|
347
|
+
session=dataset._session,
|
348
|
+
dependencies=self._deps,
|
349
|
+
drop_input_cols=self._drop_input_cols,
|
350
|
+
expected_output_cols_type=expected_type_inferred,
|
363
351
|
)
|
364
352
|
|
365
353
|
elif isinstance(dataset, pd.DataFrame):
|
366
|
-
transform_kwargs = dict(
|
367
|
-
snowpark_input_cols = self._snowpark_cols,
|
368
|
-
drop_input_cols = self._drop_input_cols
|
369
|
-
)
|
354
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
370
355
|
|
371
356
|
transform_handlers = ModelTransformerBuilder.build(
|
372
357
|
dataset=dataset,
|
@@ -408,7 +393,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
408
393
|
Transformed dataset.
|
409
394
|
"""
|
410
395
|
super()._check_dataset_type(dataset)
|
411
|
-
inference_method="transform"
|
396
|
+
inference_method = "transform"
|
412
397
|
|
413
398
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
414
399
|
# are specific to the type of dataset used.
|
@@ -438,24 +423,19 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
438
423
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
439
424
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
440
425
|
|
441
|
-
self.
|
442
|
-
|
443
|
-
inference_method=inference_method,
|
444
|
-
)
|
426
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
427
|
+
self._deps = self._get_dependencies()
|
445
428
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
446
429
|
|
447
430
|
transform_kwargs = dict(
|
448
|
-
session
|
449
|
-
dependencies
|
450
|
-
drop_input_cols
|
451
|
-
expected_output_cols_type
|
431
|
+
session=dataset._session,
|
432
|
+
dependencies=self._deps,
|
433
|
+
drop_input_cols=self._drop_input_cols,
|
434
|
+
expected_output_cols_type=expected_dtype,
|
452
435
|
)
|
453
436
|
|
454
437
|
elif isinstance(dataset, pd.DataFrame):
|
455
|
-
transform_kwargs = dict(
|
456
|
-
snowpark_input_cols = self._snowpark_cols,
|
457
|
-
drop_input_cols = self._drop_input_cols
|
458
|
-
)
|
438
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
459
439
|
|
460
440
|
transform_handlers = ModelTransformerBuilder.build(
|
461
441
|
dataset=dataset,
|
@@ -474,7 +454,11 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
474
454
|
return output_df
|
475
455
|
|
476
456
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
477
|
-
def fit_predict(
|
457
|
+
def fit_predict(
|
458
|
+
self,
|
459
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
460
|
+
output_cols_prefix: str = "fit_predict_",
|
461
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
478
462
|
""" Method not supported for this class.
|
479
463
|
|
480
464
|
|
@@ -499,22 +483,106 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
499
483
|
)
|
500
484
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
501
485
|
drop_input_cols=self._drop_input_cols,
|
502
|
-
expected_output_cols_list=
|
486
|
+
expected_output_cols_list=(
|
487
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
488
|
+
),
|
503
489
|
)
|
504
490
|
self._sklearn_object = fitted_estimator
|
505
491
|
self._is_fitted = True
|
506
492
|
return output_result
|
507
493
|
|
494
|
+
|
495
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
496
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
497
|
+
""" Fit to data, then transform it
|
498
|
+
For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.fit_transform]
|
499
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler.fit_transform)
|
500
|
+
|
501
|
+
|
502
|
+
Raises:
|
503
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
508
504
|
|
509
|
-
|
510
|
-
|
511
|
-
|
505
|
+
Args:
|
506
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
507
|
+
Snowpark or Pandas DataFrame.
|
508
|
+
output_cols_prefix: Prefix for the response columns
|
512
509
|
Returns:
|
513
510
|
Transformed dataset.
|
514
511
|
"""
|
515
|
-
self.
|
516
|
-
|
517
|
-
|
512
|
+
self._infer_input_output_cols(dataset)
|
513
|
+
super()._check_dataset_type(dataset)
|
514
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
515
|
+
estimator=self._sklearn_object,
|
516
|
+
dataset=dataset,
|
517
|
+
input_cols=self.input_cols,
|
518
|
+
label_cols=self.label_cols,
|
519
|
+
sample_weight_col=self.sample_weight_col,
|
520
|
+
autogenerated=self._autogenerated,
|
521
|
+
subproject=_SUBPROJECT,
|
522
|
+
)
|
523
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
524
|
+
drop_input_cols=self._drop_input_cols,
|
525
|
+
expected_output_cols_list=self.output_cols,
|
526
|
+
)
|
527
|
+
self._sklearn_object = fitted_estimator
|
528
|
+
self._is_fitted = True
|
529
|
+
return output_result
|
530
|
+
|
531
|
+
|
532
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
533
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
534
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
535
|
+
"""
|
536
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
537
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
538
|
+
if output_cols:
|
539
|
+
output_cols = [
|
540
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
541
|
+
for c in output_cols
|
542
|
+
]
|
543
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
544
|
+
output_cols = [output_cols_prefix]
|
545
|
+
elif self._sklearn_object is not None:
|
546
|
+
classes = self._sklearn_object.classes_
|
547
|
+
if isinstance(classes, numpy.ndarray):
|
548
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
549
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
550
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
551
|
+
output_cols = []
|
552
|
+
for i, cl in enumerate(classes):
|
553
|
+
# For binary classification, there is only one output column for each class
|
554
|
+
# ndarray as the two classes are complementary.
|
555
|
+
if len(cl) == 2:
|
556
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
557
|
+
else:
|
558
|
+
output_cols.extend([
|
559
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
560
|
+
])
|
561
|
+
else:
|
562
|
+
output_cols = []
|
563
|
+
|
564
|
+
# Make sure column names are valid snowflake identifiers.
|
565
|
+
assert output_cols is not None # Make MyPy happy
|
566
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
567
|
+
|
568
|
+
return rv
|
569
|
+
|
570
|
+
def _align_expected_output_names(
|
571
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
572
|
+
) -> List[str]:
|
573
|
+
# in case the inferred output column names dimension is different
|
574
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
575
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
576
|
+
output_df_columns = list(output_df_pd.columns)
|
577
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
578
|
+
if self.sample_weight_col:
|
579
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
580
|
+
# if the dimension of inferred output column names is correct; use it
|
581
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
582
|
+
return expected_output_cols_list
|
583
|
+
# otherwise, use the sklearn estimator's output
|
584
|
+
else:
|
585
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
518
586
|
|
519
587
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
520
588
|
@telemetry.send_api_usage_telemetry(
|
@@ -546,24 +614,26 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
546
614
|
# are specific to the type of dataset used.
|
547
615
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
548
616
|
|
617
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
618
|
+
|
549
619
|
if isinstance(dataset, DataFrame):
|
550
|
-
self.
|
551
|
-
|
552
|
-
|
553
|
-
|
554
|
-
|
620
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
621
|
+
self._deps = self._get_dependencies()
|
622
|
+
assert isinstance(
|
623
|
+
dataset._session, Session
|
624
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
555
625
|
transform_kwargs = dict(
|
556
626
|
session=dataset._session,
|
557
627
|
dependencies=self._deps,
|
558
|
-
drop_input_cols
|
628
|
+
drop_input_cols=self._drop_input_cols,
|
559
629
|
expected_output_cols_type="float",
|
560
630
|
)
|
631
|
+
expected_output_cols = self._align_expected_output_names(
|
632
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
633
|
+
)
|
561
634
|
|
562
635
|
elif isinstance(dataset, pd.DataFrame):
|
563
|
-
transform_kwargs = dict(
|
564
|
-
snowpark_input_cols = self._snowpark_cols,
|
565
|
-
drop_input_cols = self._drop_input_cols
|
566
|
-
)
|
636
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
567
637
|
|
568
638
|
transform_handlers = ModelTransformerBuilder.build(
|
569
639
|
dataset=dataset,
|
@@ -575,7 +645,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
575
645
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
576
646
|
inference_method=inference_method,
|
577
647
|
input_cols=self.input_cols,
|
578
|
-
expected_output_cols=
|
648
|
+
expected_output_cols=expected_output_cols,
|
579
649
|
**transform_kwargs
|
580
650
|
)
|
581
651
|
return output_df
|
@@ -605,29 +675,30 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
605
675
|
Output dataset with log probability of the sample for each class in the model.
|
606
676
|
"""
|
607
677
|
super()._check_dataset_type(dataset)
|
608
|
-
inference_method="predict_log_proba"
|
678
|
+
inference_method = "predict_log_proba"
|
679
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
609
680
|
|
610
681
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
611
682
|
# are specific to the type of dataset used.
|
612
683
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
613
684
|
|
614
685
|
if isinstance(dataset, DataFrame):
|
615
|
-
self.
|
616
|
-
|
617
|
-
|
618
|
-
|
619
|
-
|
686
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
687
|
+
self._deps = self._get_dependencies()
|
688
|
+
assert isinstance(
|
689
|
+
dataset._session, Session
|
690
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
620
691
|
transform_kwargs = dict(
|
621
692
|
session=dataset._session,
|
622
693
|
dependencies=self._deps,
|
623
|
-
drop_input_cols
|
694
|
+
drop_input_cols=self._drop_input_cols,
|
624
695
|
expected_output_cols_type="float",
|
625
696
|
)
|
697
|
+
expected_output_cols = self._align_expected_output_names(
|
698
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
699
|
+
)
|
626
700
|
elif isinstance(dataset, pd.DataFrame):
|
627
|
-
transform_kwargs = dict(
|
628
|
-
snowpark_input_cols = self._snowpark_cols,
|
629
|
-
drop_input_cols = self._drop_input_cols
|
630
|
-
)
|
701
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
631
702
|
|
632
703
|
transform_handlers = ModelTransformerBuilder.build(
|
633
704
|
dataset=dataset,
|
@@ -640,7 +711,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
640
711
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
641
712
|
inference_method=inference_method,
|
642
713
|
input_cols=self.input_cols,
|
643
|
-
expected_output_cols=
|
714
|
+
expected_output_cols=expected_output_cols,
|
644
715
|
**transform_kwargs
|
645
716
|
)
|
646
717
|
return output_df
|
@@ -666,30 +737,32 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
666
737
|
Output dataset with results of the decision function for the samples in input dataset.
|
667
738
|
"""
|
668
739
|
super()._check_dataset_type(dataset)
|
669
|
-
inference_method="decision_function"
|
740
|
+
inference_method = "decision_function"
|
670
741
|
|
671
742
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
672
743
|
# are specific to the type of dataset used.
|
673
744
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
674
745
|
|
746
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
747
|
+
|
675
748
|
if isinstance(dataset, DataFrame):
|
676
|
-
self.
|
677
|
-
|
678
|
-
|
679
|
-
|
680
|
-
|
749
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
750
|
+
self._deps = self._get_dependencies()
|
751
|
+
assert isinstance(
|
752
|
+
dataset._session, Session
|
753
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
681
754
|
transform_kwargs = dict(
|
682
755
|
session=dataset._session,
|
683
756
|
dependencies=self._deps,
|
684
|
-
drop_input_cols
|
757
|
+
drop_input_cols=self._drop_input_cols,
|
685
758
|
expected_output_cols_type="float",
|
686
759
|
)
|
760
|
+
expected_output_cols = self._align_expected_output_names(
|
761
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
762
|
+
)
|
687
763
|
|
688
764
|
elif isinstance(dataset, pd.DataFrame):
|
689
|
-
transform_kwargs = dict(
|
690
|
-
snowpark_input_cols = self._snowpark_cols,
|
691
|
-
drop_input_cols = self._drop_input_cols
|
692
|
-
)
|
765
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
693
766
|
|
694
767
|
transform_handlers = ModelTransformerBuilder.build(
|
695
768
|
dataset=dataset,
|
@@ -702,7 +775,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
702
775
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
703
776
|
inference_method=inference_method,
|
704
777
|
input_cols=self.input_cols,
|
705
|
-
expected_output_cols=
|
778
|
+
expected_output_cols=expected_output_cols,
|
706
779
|
**transform_kwargs
|
707
780
|
)
|
708
781
|
return output_df
|
@@ -731,17 +804,17 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
731
804
|
Output dataset with probability of the sample for each class in the model.
|
732
805
|
"""
|
733
806
|
super()._check_dataset_type(dataset)
|
734
|
-
inference_method="score_samples"
|
807
|
+
inference_method = "score_samples"
|
735
808
|
|
736
809
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
737
810
|
# are specific to the type of dataset used.
|
738
811
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
739
812
|
|
813
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
814
|
+
|
740
815
|
if isinstance(dataset, DataFrame):
|
741
|
-
self.
|
742
|
-
|
743
|
-
inference_method=inference_method,
|
744
|
-
)
|
816
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
817
|
+
self._deps = self._get_dependencies()
|
745
818
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
746
819
|
transform_kwargs = dict(
|
747
820
|
session=dataset._session,
|
@@ -749,6 +822,9 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
749
822
|
drop_input_cols = self._drop_input_cols,
|
750
823
|
expected_output_cols_type="float",
|
751
824
|
)
|
825
|
+
expected_output_cols = self._align_expected_output_names(
|
826
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
827
|
+
)
|
752
828
|
|
753
829
|
elif isinstance(dataset, pd.DataFrame):
|
754
830
|
transform_kwargs = dict(
|
@@ -767,7 +843,7 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
767
843
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
768
844
|
inference_method=inference_method,
|
769
845
|
input_cols=self.input_cols,
|
770
|
-
expected_output_cols=
|
846
|
+
expected_output_cols=expected_output_cols,
|
771
847
|
**transform_kwargs
|
772
848
|
)
|
773
849
|
return output_df
|
@@ -800,17 +876,15 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
800
876
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
801
877
|
|
802
878
|
if isinstance(dataset, DataFrame):
|
803
|
-
self.
|
804
|
-
|
805
|
-
inference_method="score",
|
806
|
-
)
|
879
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
880
|
+
self._deps = self._get_dependencies()
|
807
881
|
selected_cols = self._get_active_columns()
|
808
882
|
if len(selected_cols) > 0:
|
809
883
|
dataset = dataset.select(selected_cols)
|
810
884
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
811
885
|
transform_kwargs = dict(
|
812
886
|
session=dataset._session,
|
813
|
-
dependencies=
|
887
|
+
dependencies=self._deps,
|
814
888
|
score_sproc_imports=['sklearn'],
|
815
889
|
)
|
816
890
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -875,11 +949,8 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
875
949
|
|
876
950
|
if isinstance(dataset, DataFrame):
|
877
951
|
|
878
|
-
self.
|
879
|
-
|
880
|
-
inference_method=inference_method,
|
881
|
-
|
882
|
-
)
|
952
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
953
|
+
self._deps = self._get_dependencies()
|
883
954
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
884
955
|
transform_kwargs = dict(
|
885
956
|
session = dataset._session,
|
@@ -912,50 +983,84 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
912
983
|
)
|
913
984
|
return output_df
|
914
985
|
|
986
|
+
|
987
|
+
|
988
|
+
def to_sklearn(self) -> Any:
|
989
|
+
"""Get sklearn.kernel_approximation.SkewedChi2Sampler object.
|
990
|
+
"""
|
991
|
+
if self._sklearn_object is None:
|
992
|
+
self._sklearn_object = self._create_sklearn_object()
|
993
|
+
return self._sklearn_object
|
994
|
+
|
995
|
+
def to_xgboost(self) -> Any:
|
996
|
+
raise exceptions.SnowflakeMLException(
|
997
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
998
|
+
original_exception=AttributeError(
|
999
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1000
|
+
"to_xgboost()",
|
1001
|
+
"to_sklearn()"
|
1002
|
+
)
|
1003
|
+
),
|
1004
|
+
)
|
915
1005
|
|
916
|
-
def
|
1006
|
+
def to_lightgbm(self) -> Any:
|
1007
|
+
raise exceptions.SnowflakeMLException(
|
1008
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1009
|
+
original_exception=AttributeError(
|
1010
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1011
|
+
"to_lightgbm()",
|
1012
|
+
"to_sklearn()"
|
1013
|
+
)
|
1014
|
+
),
|
1015
|
+
)
|
1016
|
+
|
1017
|
+
def _get_dependencies(self) -> List[str]:
|
1018
|
+
return self._deps
|
1019
|
+
|
1020
|
+
|
1021
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
917
1022
|
self._model_signature_dict = dict()
|
918
1023
|
|
919
1024
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
920
1025
|
|
921
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1026
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
922
1027
|
outputs: List[BaseFeatureSpec] = []
|
923
1028
|
if hasattr(self, "predict"):
|
924
1029
|
# keep mypy happy
|
925
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1030
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
926
1031
|
# For classifier, the type of predict is the same as the type of label
|
927
|
-
if self._sklearn_object._estimator_type ==
|
928
|
-
|
1032
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1033
|
+
# label columns is the desired type for output
|
929
1034
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
930
1035
|
# rename the output columns
|
931
1036
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
932
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
933
|
-
|
934
|
-
|
1037
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1038
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1039
|
+
)
|
935
1040
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
936
1041
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
937
|
-
# Clusterer returns int64 cluster labels.
|
1042
|
+
# Clusterer returns int64 cluster labels.
|
938
1043
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
939
1044
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
940
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
941
|
-
|
942
|
-
|
943
|
-
|
1045
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1046
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1047
|
+
)
|
1048
|
+
|
944
1049
|
# For regressor, the type of predict is float64
|
945
|
-
elif self._sklearn_object._estimator_type ==
|
1050
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
946
1051
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
947
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
948
|
-
|
949
|
-
|
950
|
-
|
1052
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1053
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1054
|
+
)
|
1055
|
+
|
951
1056
|
for prob_func in PROB_FUNCTIONS:
|
952
1057
|
if hasattr(self, prob_func):
|
953
1058
|
output_cols_prefix: str = f"{prob_func}_"
|
954
1059
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
955
1060
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
956
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
957
|
-
|
958
|
-
|
1061
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1062
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1063
|
+
)
|
959
1064
|
|
960
1065
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
961
1066
|
items = list(self._model_signature_dict.items())
|
@@ -968,10 +1073,10 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
968
1073
|
"""Returns model signature of current class.
|
969
1074
|
|
970
1075
|
Raises:
|
971
|
-
|
1076
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
972
1077
|
|
973
1078
|
Returns:
|
974
|
-
Dict
|
1079
|
+
Dict with each method and its input output signature
|
975
1080
|
"""
|
976
1081
|
if self._model_signature_dict is None:
|
977
1082
|
raise exceptions.SnowflakeMLException(
|
@@ -979,35 +1084,3 @@ class SkewedChi2Sampler(BaseTransformer):
|
|
979
1084
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
980
1085
|
)
|
981
1086
|
return self._model_signature_dict
|
982
|
-
|
983
|
-
def to_sklearn(self) -> Any:
|
984
|
-
"""Get sklearn.kernel_approximation.SkewedChi2Sampler object.
|
985
|
-
"""
|
986
|
-
if self._sklearn_object is None:
|
987
|
-
self._sklearn_object = self._create_sklearn_object()
|
988
|
-
return self._sklearn_object
|
989
|
-
|
990
|
-
def to_xgboost(self) -> Any:
|
991
|
-
raise exceptions.SnowflakeMLException(
|
992
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
993
|
-
original_exception=AttributeError(
|
994
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
995
|
-
"to_xgboost()",
|
996
|
-
"to_sklearn()"
|
997
|
-
)
|
998
|
-
),
|
999
|
-
)
|
1000
|
-
|
1001
|
-
def to_lightgbm(self) -> Any:
|
1002
|
-
raise exceptions.SnowflakeMLException(
|
1003
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1004
|
-
original_exception=AttributeError(
|
1005
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1006
|
-
"to_lightgbm()",
|
1007
|
-
"to_sklearn()"
|
1008
|
-
)
|
1009
|
-
),
|
1010
|
-
)
|
1011
|
-
|
1012
|
-
def _get_dependencies(self) -> List[str]:
|
1013
|
-
return self._deps
|