snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.kernel_approximation".re
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SkewedChi2Sampler(BaseTransformer):
71
64
  r"""Approximate feature map for "skewed chi-squared" kernel
72
65
  For more details on this class, see [sklearn.kernel_approximation.SkewedChi2Sampler]
@@ -208,12 +201,7 @@ class SkewedChi2Sampler(BaseTransformer):
208
201
  )
209
202
  return selected_cols
210
203
 
211
- @telemetry.send_api_usage_telemetry(
212
- project=_PROJECT,
213
- subproject=_SUBPROJECT,
214
- custom_tags=dict([("autogen", True)]),
215
- )
216
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SkewedChi2Sampler":
204
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SkewedChi2Sampler":
217
205
  """Fit the model with X
218
206
  For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.fit]
219
207
  (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler.fit)
@@ -240,12 +228,14 @@ class SkewedChi2Sampler(BaseTransformer):
240
228
 
241
229
  self._snowpark_cols = dataset.select(self.input_cols).columns
242
230
 
243
- # If we are already in a stored procedure, no need to kick off another one.
231
+ # If we are already in a stored procedure, no need to kick off another one.
244
232
  if SNOWML_SPROC_ENV in os.environ:
245
233
  statement_params = telemetry.get_function_usage_statement_params(
246
234
  project=_PROJECT,
247
235
  subproject=_SUBPROJECT,
248
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SkewedChi2Sampler.__class__.__name__),
236
+ function_name=telemetry.get_statement_params_full_func_name(
237
+ inspect.currentframe(), SkewedChi2Sampler.__class__.__name__
238
+ ),
249
239
  api_calls=[Session.call],
250
240
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
251
241
  )
@@ -266,27 +256,24 @@ class SkewedChi2Sampler(BaseTransformer):
266
256
  )
267
257
  self._sklearn_object = model_trainer.train()
268
258
  self._is_fitted = True
269
- self._get_model_signatures(dataset)
259
+ self._generate_model_signatures(dataset)
270
260
  return self
271
261
 
272
262
  def _batch_inference_validate_snowpark(
273
263
  self,
274
264
  dataset: DataFrame,
275
265
  inference_method: str,
276
- ) -> List[str]:
277
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
278
- return the available package that exists in the snowflake anaconda channel
266
+ ) -> None:
267
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
279
268
 
280
269
  Args:
281
270
  dataset: snowpark dataframe
282
271
  inference_method: the inference method such as predict, score...
283
-
272
+
284
273
  Raises:
285
274
  SnowflakeMLException: If the estimator is not fitted, raise error
286
275
  SnowflakeMLException: If the session is None, raise error
287
276
 
288
- Returns:
289
- A list of available package that exists in the snowflake anaconda channel
290
277
  """
291
278
  if not self._is_fitted:
292
279
  raise exceptions.SnowflakeMLException(
@@ -304,9 +291,7 @@ class SkewedChi2Sampler(BaseTransformer):
304
291
  "Session must not specified for snowpark dataset."
305
292
  ),
306
293
  )
307
- # Validate that key package version in user workspace are supported in snowflake conda channel
308
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
309
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
294
+
310
295
 
311
296
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
312
297
  @telemetry.send_api_usage_telemetry(
@@ -340,7 +325,9 @@ class SkewedChi2Sampler(BaseTransformer):
340
325
  # when it is classifier, infer the datatype from label columns
341
326
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
342
327
  # Batch inference takes a single expected output column type. Use the first columns type for now.
343
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
328
+ label_cols_signatures = [
329
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
330
+ ]
344
331
  if len(label_cols_signatures) == 0:
345
332
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
346
333
  raise exceptions.SnowflakeMLException(
@@ -348,25 +335,23 @@ class SkewedChi2Sampler(BaseTransformer):
348
335
  original_exception=ValueError(error_str),
349
336
  )
350
337
 
351
- expected_type_inferred = convert_sp_to_sf_type(
352
- label_cols_signatures[0].as_snowpark_type()
353
- )
338
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
354
339
 
355
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
356
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
340
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
341
+ self._deps = self._get_dependencies()
342
+ assert isinstance(
343
+ dataset._session, Session
344
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
357
345
 
358
346
  transform_kwargs = dict(
359
- session = dataset._session,
360
- dependencies = self._deps,
361
- drop_input_cols = self._drop_input_cols,
362
- expected_output_cols_type = expected_type_inferred,
347
+ session=dataset._session,
348
+ dependencies=self._deps,
349
+ drop_input_cols=self._drop_input_cols,
350
+ expected_output_cols_type=expected_type_inferred,
363
351
  )
364
352
 
365
353
  elif isinstance(dataset, pd.DataFrame):
366
- transform_kwargs = dict(
367
- snowpark_input_cols = self._snowpark_cols,
368
- drop_input_cols = self._drop_input_cols
369
- )
354
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
370
355
 
371
356
  transform_handlers = ModelTransformerBuilder.build(
372
357
  dataset=dataset,
@@ -408,7 +393,7 @@ class SkewedChi2Sampler(BaseTransformer):
408
393
  Transformed dataset.
409
394
  """
410
395
  super()._check_dataset_type(dataset)
411
- inference_method="transform"
396
+ inference_method = "transform"
412
397
 
413
398
  # This dictionary contains optional kwargs for batch inference. These kwargs
414
399
  # are specific to the type of dataset used.
@@ -438,24 +423,19 @@ class SkewedChi2Sampler(BaseTransformer):
438
423
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
439
424
  expected_dtype = convert_sp_to_sf_type(output_types[0])
440
425
 
441
- self._deps = self._batch_inference_validate_snowpark(
442
- dataset=dataset,
443
- inference_method=inference_method,
444
- )
426
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
427
+ self._deps = self._get_dependencies()
445
428
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
446
429
 
447
430
  transform_kwargs = dict(
448
- session = dataset._session,
449
- dependencies = self._deps,
450
- drop_input_cols = self._drop_input_cols,
451
- expected_output_cols_type = expected_dtype,
431
+ session=dataset._session,
432
+ dependencies=self._deps,
433
+ drop_input_cols=self._drop_input_cols,
434
+ expected_output_cols_type=expected_dtype,
452
435
  )
453
436
 
454
437
  elif isinstance(dataset, pd.DataFrame):
455
- transform_kwargs = dict(
456
- snowpark_input_cols = self._snowpark_cols,
457
- drop_input_cols = self._drop_input_cols
458
- )
438
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
459
439
 
460
440
  transform_handlers = ModelTransformerBuilder.build(
461
441
  dataset=dataset,
@@ -474,7 +454,11 @@ class SkewedChi2Sampler(BaseTransformer):
474
454
  return output_df
475
455
 
476
456
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
477
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
457
+ def fit_predict(
458
+ self,
459
+ dataset: Union[DataFrame, pd.DataFrame],
460
+ output_cols_prefix: str = "fit_predict_",
461
+ ) -> Union[DataFrame, pd.DataFrame]:
478
462
  """ Method not supported for this class.
479
463
 
480
464
 
@@ -499,22 +483,106 @@ class SkewedChi2Sampler(BaseTransformer):
499
483
  )
500
484
  output_result, fitted_estimator = model_trainer.train_fit_predict(
501
485
  drop_input_cols=self._drop_input_cols,
502
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
486
+ expected_output_cols_list=(
487
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
488
+ ),
503
489
  )
504
490
  self._sklearn_object = fitted_estimator
505
491
  self._is_fitted = True
506
492
  return output_result
507
493
 
494
+
495
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
496
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
497
+ """ Fit to data, then transform it
498
+ For more details on this function, see [sklearn.kernel_approximation.SkewedChi2Sampler.fit_transform]
499
+ (https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler.fit_transform)
500
+
501
+
502
+ Raises:
503
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
508
504
 
509
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
510
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
511
- """
505
+ Args:
506
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
507
+ Snowpark or Pandas DataFrame.
508
+ output_cols_prefix: Prefix for the response columns
512
509
  Returns:
513
510
  Transformed dataset.
514
511
  """
515
- self.fit(dataset)
516
- assert self._sklearn_object is not None
517
- return self._sklearn_object.embedding_
512
+ self._infer_input_output_cols(dataset)
513
+ super()._check_dataset_type(dataset)
514
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
515
+ estimator=self._sklearn_object,
516
+ dataset=dataset,
517
+ input_cols=self.input_cols,
518
+ label_cols=self.label_cols,
519
+ sample_weight_col=self.sample_weight_col,
520
+ autogenerated=self._autogenerated,
521
+ subproject=_SUBPROJECT,
522
+ )
523
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
524
+ drop_input_cols=self._drop_input_cols,
525
+ expected_output_cols_list=self.output_cols,
526
+ )
527
+ self._sklearn_object = fitted_estimator
528
+ self._is_fitted = True
529
+ return output_result
530
+
531
+
532
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
533
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
534
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
535
+ """
536
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
537
+ # The following condition is introduced for kneighbors methods, and not used in other methods
538
+ if output_cols:
539
+ output_cols = [
540
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
541
+ for c in output_cols
542
+ ]
543
+ elif getattr(self._sklearn_object, "classes_", None) is None:
544
+ output_cols = [output_cols_prefix]
545
+ elif self._sklearn_object is not None:
546
+ classes = self._sklearn_object.classes_
547
+ if isinstance(classes, numpy.ndarray):
548
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
549
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
550
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
551
+ output_cols = []
552
+ for i, cl in enumerate(classes):
553
+ # For binary classification, there is only one output column for each class
554
+ # ndarray as the two classes are complementary.
555
+ if len(cl) == 2:
556
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
557
+ else:
558
+ output_cols.extend([
559
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
560
+ ])
561
+ else:
562
+ output_cols = []
563
+
564
+ # Make sure column names are valid snowflake identifiers.
565
+ assert output_cols is not None # Make MyPy happy
566
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
567
+
568
+ return rv
569
+
570
+ def _align_expected_output_names(
571
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
572
+ ) -> List[str]:
573
+ # in case the inferred output column names dimension is different
574
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
575
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
576
+ output_df_columns = list(output_df_pd.columns)
577
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
578
+ if self.sample_weight_col:
579
+ output_df_columns_set -= set(self.sample_weight_col)
580
+ # if the dimension of inferred output column names is correct; use it
581
+ if len(expected_output_cols_list) == len(output_df_columns_set):
582
+ return expected_output_cols_list
583
+ # otherwise, use the sklearn estimator's output
584
+ else:
585
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
518
586
 
519
587
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
520
588
  @telemetry.send_api_usage_telemetry(
@@ -546,24 +614,26 @@ class SkewedChi2Sampler(BaseTransformer):
546
614
  # are specific to the type of dataset used.
547
615
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
548
616
 
617
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
618
+
549
619
  if isinstance(dataset, DataFrame):
550
- self._deps = self._batch_inference_validate_snowpark(
551
- dataset=dataset,
552
- inference_method=inference_method,
553
- )
554
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
620
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
621
+ self._deps = self._get_dependencies()
622
+ assert isinstance(
623
+ dataset._session, Session
624
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
555
625
  transform_kwargs = dict(
556
626
  session=dataset._session,
557
627
  dependencies=self._deps,
558
- drop_input_cols = self._drop_input_cols,
628
+ drop_input_cols=self._drop_input_cols,
559
629
  expected_output_cols_type="float",
560
630
  )
631
+ expected_output_cols = self._align_expected_output_names(
632
+ inference_method, dataset, expected_output_cols, output_cols_prefix
633
+ )
561
634
 
562
635
  elif isinstance(dataset, pd.DataFrame):
563
- transform_kwargs = dict(
564
- snowpark_input_cols = self._snowpark_cols,
565
- drop_input_cols = self._drop_input_cols
566
- )
636
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
567
637
 
568
638
  transform_handlers = ModelTransformerBuilder.build(
569
639
  dataset=dataset,
@@ -575,7 +645,7 @@ class SkewedChi2Sampler(BaseTransformer):
575
645
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
576
646
  inference_method=inference_method,
577
647
  input_cols=self.input_cols,
578
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
648
+ expected_output_cols=expected_output_cols,
579
649
  **transform_kwargs
580
650
  )
581
651
  return output_df
@@ -605,29 +675,30 @@ class SkewedChi2Sampler(BaseTransformer):
605
675
  Output dataset with log probability of the sample for each class in the model.
606
676
  """
607
677
  super()._check_dataset_type(dataset)
608
- inference_method="predict_log_proba"
678
+ inference_method = "predict_log_proba"
679
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
609
680
 
610
681
  # This dictionary contains optional kwargs for batch inference. These kwargs
611
682
  # are specific to the type of dataset used.
612
683
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
613
684
 
614
685
  if isinstance(dataset, DataFrame):
615
- self._deps = self._batch_inference_validate_snowpark(
616
- dataset=dataset,
617
- inference_method=inference_method,
618
- )
619
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
686
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
687
+ self._deps = self._get_dependencies()
688
+ assert isinstance(
689
+ dataset._session, Session
690
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
620
691
  transform_kwargs = dict(
621
692
  session=dataset._session,
622
693
  dependencies=self._deps,
623
- drop_input_cols = self._drop_input_cols,
694
+ drop_input_cols=self._drop_input_cols,
624
695
  expected_output_cols_type="float",
625
696
  )
697
+ expected_output_cols = self._align_expected_output_names(
698
+ inference_method, dataset, expected_output_cols, output_cols_prefix
699
+ )
626
700
  elif isinstance(dataset, pd.DataFrame):
627
- transform_kwargs = dict(
628
- snowpark_input_cols = self._snowpark_cols,
629
- drop_input_cols = self._drop_input_cols
630
- )
701
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
631
702
 
632
703
  transform_handlers = ModelTransformerBuilder.build(
633
704
  dataset=dataset,
@@ -640,7 +711,7 @@ class SkewedChi2Sampler(BaseTransformer):
640
711
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
641
712
  inference_method=inference_method,
642
713
  input_cols=self.input_cols,
643
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
714
+ expected_output_cols=expected_output_cols,
644
715
  **transform_kwargs
645
716
  )
646
717
  return output_df
@@ -666,30 +737,32 @@ class SkewedChi2Sampler(BaseTransformer):
666
737
  Output dataset with results of the decision function for the samples in input dataset.
667
738
  """
668
739
  super()._check_dataset_type(dataset)
669
- inference_method="decision_function"
740
+ inference_method = "decision_function"
670
741
 
671
742
  # This dictionary contains optional kwargs for batch inference. These kwargs
672
743
  # are specific to the type of dataset used.
673
744
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
674
745
 
746
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
747
+
675
748
  if isinstance(dataset, DataFrame):
676
- self._deps = self._batch_inference_validate_snowpark(
677
- dataset=dataset,
678
- inference_method=inference_method,
679
- )
680
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
749
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
750
+ self._deps = self._get_dependencies()
751
+ assert isinstance(
752
+ dataset._session, Session
753
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
681
754
  transform_kwargs = dict(
682
755
  session=dataset._session,
683
756
  dependencies=self._deps,
684
- drop_input_cols = self._drop_input_cols,
757
+ drop_input_cols=self._drop_input_cols,
685
758
  expected_output_cols_type="float",
686
759
  )
760
+ expected_output_cols = self._align_expected_output_names(
761
+ inference_method, dataset, expected_output_cols, output_cols_prefix
762
+ )
687
763
 
688
764
  elif isinstance(dataset, pd.DataFrame):
689
- transform_kwargs = dict(
690
- snowpark_input_cols = self._snowpark_cols,
691
- drop_input_cols = self._drop_input_cols
692
- )
765
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
693
766
 
694
767
  transform_handlers = ModelTransformerBuilder.build(
695
768
  dataset=dataset,
@@ -702,7 +775,7 @@ class SkewedChi2Sampler(BaseTransformer):
702
775
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
703
776
  inference_method=inference_method,
704
777
  input_cols=self.input_cols,
705
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
778
+ expected_output_cols=expected_output_cols,
706
779
  **transform_kwargs
707
780
  )
708
781
  return output_df
@@ -731,17 +804,17 @@ class SkewedChi2Sampler(BaseTransformer):
731
804
  Output dataset with probability of the sample for each class in the model.
732
805
  """
733
806
  super()._check_dataset_type(dataset)
734
- inference_method="score_samples"
807
+ inference_method = "score_samples"
735
808
 
736
809
  # This dictionary contains optional kwargs for batch inference. These kwargs
737
810
  # are specific to the type of dataset used.
738
811
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
739
812
 
813
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
814
+
740
815
  if isinstance(dataset, DataFrame):
741
- self._deps = self._batch_inference_validate_snowpark(
742
- dataset=dataset,
743
- inference_method=inference_method,
744
- )
816
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
817
+ self._deps = self._get_dependencies()
745
818
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
746
819
  transform_kwargs = dict(
747
820
  session=dataset._session,
@@ -749,6 +822,9 @@ class SkewedChi2Sampler(BaseTransformer):
749
822
  drop_input_cols = self._drop_input_cols,
750
823
  expected_output_cols_type="float",
751
824
  )
825
+ expected_output_cols = self._align_expected_output_names(
826
+ inference_method, dataset, expected_output_cols, output_cols_prefix
827
+ )
752
828
 
753
829
  elif isinstance(dataset, pd.DataFrame):
754
830
  transform_kwargs = dict(
@@ -767,7 +843,7 @@ class SkewedChi2Sampler(BaseTransformer):
767
843
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
768
844
  inference_method=inference_method,
769
845
  input_cols=self.input_cols,
770
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
846
+ expected_output_cols=expected_output_cols,
771
847
  **transform_kwargs
772
848
  )
773
849
  return output_df
@@ -800,17 +876,15 @@ class SkewedChi2Sampler(BaseTransformer):
800
876
  transform_kwargs: ScoreKwargsTypedDict = dict()
801
877
 
802
878
  if isinstance(dataset, DataFrame):
803
- self._deps = self._batch_inference_validate_snowpark(
804
- dataset=dataset,
805
- inference_method="score",
806
- )
879
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
880
+ self._deps = self._get_dependencies()
807
881
  selected_cols = self._get_active_columns()
808
882
  if len(selected_cols) > 0:
809
883
  dataset = dataset.select(selected_cols)
810
884
  assert isinstance(dataset._session, Session) # keep mypy happy
811
885
  transform_kwargs = dict(
812
886
  session=dataset._session,
813
- dependencies=["snowflake-snowpark-python"] + self._deps,
887
+ dependencies=self._deps,
814
888
  score_sproc_imports=['sklearn'],
815
889
  )
816
890
  elif isinstance(dataset, pd.DataFrame):
@@ -875,11 +949,8 @@ class SkewedChi2Sampler(BaseTransformer):
875
949
 
876
950
  if isinstance(dataset, DataFrame):
877
951
 
878
- self._deps = self._batch_inference_validate_snowpark(
879
- dataset=dataset,
880
- inference_method=inference_method,
881
-
882
- )
952
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
953
+ self._deps = self._get_dependencies()
883
954
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
884
955
  transform_kwargs = dict(
885
956
  session = dataset._session,
@@ -912,50 +983,84 @@ class SkewedChi2Sampler(BaseTransformer):
912
983
  )
913
984
  return output_df
914
985
 
986
+
987
+
988
+ def to_sklearn(self) -> Any:
989
+ """Get sklearn.kernel_approximation.SkewedChi2Sampler object.
990
+ """
991
+ if self._sklearn_object is None:
992
+ self._sklearn_object = self._create_sklearn_object()
993
+ return self._sklearn_object
994
+
995
+ def to_xgboost(self) -> Any:
996
+ raise exceptions.SnowflakeMLException(
997
+ error_code=error_codes.METHOD_NOT_ALLOWED,
998
+ original_exception=AttributeError(
999
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1000
+ "to_xgboost()",
1001
+ "to_sklearn()"
1002
+ )
1003
+ ),
1004
+ )
915
1005
 
916
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1006
+ def to_lightgbm(self) -> Any:
1007
+ raise exceptions.SnowflakeMLException(
1008
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1009
+ original_exception=AttributeError(
1010
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
+ "to_lightgbm()",
1012
+ "to_sklearn()"
1013
+ )
1014
+ ),
1015
+ )
1016
+
1017
+ def _get_dependencies(self) -> List[str]:
1018
+ return self._deps
1019
+
1020
+
1021
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
917
1022
  self._model_signature_dict = dict()
918
1023
 
919
1024
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
920
1025
 
921
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1026
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
922
1027
  outputs: List[BaseFeatureSpec] = []
923
1028
  if hasattr(self, "predict"):
924
1029
  # keep mypy happy
925
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1030
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
926
1031
  # For classifier, the type of predict is the same as the type of label
927
- if self._sklearn_object._estimator_type == 'classifier':
928
- # label columns is the desired type for output
1032
+ if self._sklearn_object._estimator_type == "classifier":
1033
+ # label columns is the desired type for output
929
1034
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
930
1035
  # rename the output columns
931
1036
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
932
- self._model_signature_dict["predict"] = ModelSignature(inputs,
933
- ([] if self._drop_input_cols else inputs)
934
- + outputs)
1037
+ self._model_signature_dict["predict"] = ModelSignature(
1038
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1039
+ )
935
1040
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
936
1041
  # For outlier models, returns -1 for outliers and 1 for inliers.
937
- # Clusterer returns int64 cluster labels.
1042
+ # Clusterer returns int64 cluster labels.
938
1043
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
939
1044
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
940
- self._model_signature_dict["predict"] = ModelSignature(inputs,
941
- ([] if self._drop_input_cols else inputs)
942
- + outputs)
943
-
1045
+ self._model_signature_dict["predict"] = ModelSignature(
1046
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1047
+ )
1048
+
944
1049
  # For regressor, the type of predict is float64
945
- elif self._sklearn_object._estimator_type == 'regressor':
1050
+ elif self._sklearn_object._estimator_type == "regressor":
946
1051
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
947
- self._model_signature_dict["predict"] = ModelSignature(inputs,
948
- ([] if self._drop_input_cols else inputs)
949
- + outputs)
950
-
1052
+ self._model_signature_dict["predict"] = ModelSignature(
1053
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1054
+ )
1055
+
951
1056
  for prob_func in PROB_FUNCTIONS:
952
1057
  if hasattr(self, prob_func):
953
1058
  output_cols_prefix: str = f"{prob_func}_"
954
1059
  output_column_names = self._get_output_column_names(output_cols_prefix)
955
1060
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
956
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
957
- ([] if self._drop_input_cols else inputs)
958
- + outputs)
1061
+ self._model_signature_dict[prob_func] = ModelSignature(
1062
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1063
+ )
959
1064
 
960
1065
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
961
1066
  items = list(self._model_signature_dict.items())
@@ -968,10 +1073,10 @@ class SkewedChi2Sampler(BaseTransformer):
968
1073
  """Returns model signature of current class.
969
1074
 
970
1075
  Raises:
971
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1076
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
972
1077
 
973
1078
  Returns:
974
- Dict[str, ModelSignature]: each method and its input output signature
1079
+ Dict with each method and its input output signature
975
1080
  """
976
1081
  if self._model_signature_dict is None:
977
1082
  raise exceptions.SnowflakeMLException(
@@ -979,35 +1084,3 @@ class SkewedChi2Sampler(BaseTransformer):
979
1084
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
980
1085
  )
981
1086
  return self._model_signature_dict
982
-
983
- def to_sklearn(self) -> Any:
984
- """Get sklearn.kernel_approximation.SkewedChi2Sampler object.
985
- """
986
- if self._sklearn_object is None:
987
- self._sklearn_object = self._create_sklearn_object()
988
- return self._sklearn_object
989
-
990
- def to_xgboost(self) -> Any:
991
- raise exceptions.SnowflakeMLException(
992
- error_code=error_codes.METHOD_NOT_ALLOWED,
993
- original_exception=AttributeError(
994
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
995
- "to_xgboost()",
996
- "to_sklearn()"
997
- )
998
- ),
999
- )
1000
-
1001
- def to_lightgbm(self) -> Any:
1002
- raise exceptions.SnowflakeMLException(
1003
- error_code=error_codes.METHOD_NOT_ALLOWED,
1004
- original_exception=AttributeError(
1005
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1006
- "to_lightgbm()",
1007
- "to_sklearn()"
1008
- )
1009
- ),
1010
- )
1011
-
1012
- def _get_dependencies(self) -> List[str]:
1013
- return self._deps