snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.naive_bayes".replace("sk
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class CategoricalNB(BaseTransformer):
|
71
64
|
r"""Naive Bayes classifier for categorical features
|
72
65
|
For more details on this class, see [sklearn.naive_bayes.CategoricalNB]
|
@@ -228,12 +221,7 @@ class CategoricalNB(BaseTransformer):
|
|
228
221
|
)
|
229
222
|
return selected_cols
|
230
223
|
|
231
|
-
|
232
|
-
project=_PROJECT,
|
233
|
-
subproject=_SUBPROJECT,
|
234
|
-
custom_tags=dict([("autogen", True)]),
|
235
|
-
)
|
236
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CategoricalNB":
|
224
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "CategoricalNB":
|
237
225
|
"""Fit Naive Bayes classifier according to X, y
|
238
226
|
For more details on this function, see [sklearn.naive_bayes.CategoricalNB.fit]
|
239
227
|
(https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.CategoricalNB.html#sklearn.naive_bayes.CategoricalNB.fit)
|
@@ -260,12 +248,14 @@ class CategoricalNB(BaseTransformer):
|
|
260
248
|
|
261
249
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
262
250
|
|
263
|
-
|
251
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
264
252
|
if SNOWML_SPROC_ENV in os.environ:
|
265
253
|
statement_params = telemetry.get_function_usage_statement_params(
|
266
254
|
project=_PROJECT,
|
267
255
|
subproject=_SUBPROJECT,
|
268
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
256
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
257
|
+
inspect.currentframe(), CategoricalNB.__class__.__name__
|
258
|
+
),
|
269
259
|
api_calls=[Session.call],
|
270
260
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
271
261
|
)
|
@@ -286,27 +276,24 @@ class CategoricalNB(BaseTransformer):
|
|
286
276
|
)
|
287
277
|
self._sklearn_object = model_trainer.train()
|
288
278
|
self._is_fitted = True
|
289
|
-
self.
|
279
|
+
self._generate_model_signatures(dataset)
|
290
280
|
return self
|
291
281
|
|
292
282
|
def _batch_inference_validate_snowpark(
|
293
283
|
self,
|
294
284
|
dataset: DataFrame,
|
295
285
|
inference_method: str,
|
296
|
-
) ->
|
297
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
298
|
-
return the available package that exists in the snowflake anaconda channel
|
286
|
+
) -> None:
|
287
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
299
288
|
|
300
289
|
Args:
|
301
290
|
dataset: snowpark dataframe
|
302
291
|
inference_method: the inference method such as predict, score...
|
303
|
-
|
292
|
+
|
304
293
|
Raises:
|
305
294
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
306
295
|
SnowflakeMLException: If the session is None, raise error
|
307
296
|
|
308
|
-
Returns:
|
309
|
-
A list of available package that exists in the snowflake anaconda channel
|
310
297
|
"""
|
311
298
|
if not self._is_fitted:
|
312
299
|
raise exceptions.SnowflakeMLException(
|
@@ -324,9 +311,7 @@ class CategoricalNB(BaseTransformer):
|
|
324
311
|
"Session must not specified for snowpark dataset."
|
325
312
|
),
|
326
313
|
)
|
327
|
-
|
328
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
329
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
314
|
+
|
330
315
|
|
331
316
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
332
317
|
@telemetry.send_api_usage_telemetry(
|
@@ -362,7 +347,9 @@ class CategoricalNB(BaseTransformer):
|
|
362
347
|
# when it is classifier, infer the datatype from label columns
|
363
348
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
364
349
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
365
|
-
label_cols_signatures = [
|
350
|
+
label_cols_signatures = [
|
351
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
352
|
+
]
|
366
353
|
if len(label_cols_signatures) == 0:
|
367
354
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
368
355
|
raise exceptions.SnowflakeMLException(
|
@@ -370,25 +357,23 @@ class CategoricalNB(BaseTransformer):
|
|
370
357
|
original_exception=ValueError(error_str),
|
371
358
|
)
|
372
359
|
|
373
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
374
|
-
label_cols_signatures[0].as_snowpark_type()
|
375
|
-
)
|
360
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
376
361
|
|
377
|
-
self.
|
378
|
-
|
362
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
363
|
+
self._deps = self._get_dependencies()
|
364
|
+
assert isinstance(
|
365
|
+
dataset._session, Session
|
366
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
379
367
|
|
380
368
|
transform_kwargs = dict(
|
381
|
-
session
|
382
|
-
dependencies
|
383
|
-
drop_input_cols
|
384
|
-
expected_output_cols_type
|
369
|
+
session=dataset._session,
|
370
|
+
dependencies=self._deps,
|
371
|
+
drop_input_cols=self._drop_input_cols,
|
372
|
+
expected_output_cols_type=expected_type_inferred,
|
385
373
|
)
|
386
374
|
|
387
375
|
elif isinstance(dataset, pd.DataFrame):
|
388
|
-
transform_kwargs = dict(
|
389
|
-
snowpark_input_cols = self._snowpark_cols,
|
390
|
-
drop_input_cols = self._drop_input_cols
|
391
|
-
)
|
376
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
392
377
|
|
393
378
|
transform_handlers = ModelTransformerBuilder.build(
|
394
379
|
dataset=dataset,
|
@@ -428,7 +413,7 @@ class CategoricalNB(BaseTransformer):
|
|
428
413
|
Transformed dataset.
|
429
414
|
"""
|
430
415
|
super()._check_dataset_type(dataset)
|
431
|
-
inference_method="transform"
|
416
|
+
inference_method = "transform"
|
432
417
|
|
433
418
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
434
419
|
# are specific to the type of dataset used.
|
@@ -458,24 +443,19 @@ class CategoricalNB(BaseTransformer):
|
|
458
443
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
459
444
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
460
445
|
|
461
|
-
self.
|
462
|
-
|
463
|
-
inference_method=inference_method,
|
464
|
-
)
|
446
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
447
|
+
self._deps = self._get_dependencies()
|
465
448
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
466
449
|
|
467
450
|
transform_kwargs = dict(
|
468
|
-
session
|
469
|
-
dependencies
|
470
|
-
drop_input_cols
|
471
|
-
expected_output_cols_type
|
451
|
+
session=dataset._session,
|
452
|
+
dependencies=self._deps,
|
453
|
+
drop_input_cols=self._drop_input_cols,
|
454
|
+
expected_output_cols_type=expected_dtype,
|
472
455
|
)
|
473
456
|
|
474
457
|
elif isinstance(dataset, pd.DataFrame):
|
475
|
-
transform_kwargs = dict(
|
476
|
-
snowpark_input_cols = self._snowpark_cols,
|
477
|
-
drop_input_cols = self._drop_input_cols
|
478
|
-
)
|
458
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
479
459
|
|
480
460
|
transform_handlers = ModelTransformerBuilder.build(
|
481
461
|
dataset=dataset,
|
@@ -494,7 +474,11 @@ class CategoricalNB(BaseTransformer):
|
|
494
474
|
return output_df
|
495
475
|
|
496
476
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
497
|
-
def fit_predict(
|
477
|
+
def fit_predict(
|
478
|
+
self,
|
479
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
480
|
+
output_cols_prefix: str = "fit_predict_",
|
481
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
498
482
|
""" Method not supported for this class.
|
499
483
|
|
500
484
|
|
@@ -519,22 +503,104 @@ class CategoricalNB(BaseTransformer):
|
|
519
503
|
)
|
520
504
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
521
505
|
drop_input_cols=self._drop_input_cols,
|
522
|
-
expected_output_cols_list=
|
506
|
+
expected_output_cols_list=(
|
507
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
508
|
+
),
|
523
509
|
)
|
524
510
|
self._sklearn_object = fitted_estimator
|
525
511
|
self._is_fitted = True
|
526
512
|
return output_result
|
527
513
|
|
514
|
+
|
515
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
516
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
517
|
+
""" Method not supported for this class.
|
518
|
+
|
528
519
|
|
529
|
-
|
530
|
-
|
531
|
-
|
520
|
+
Raises:
|
521
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
522
|
+
|
523
|
+
Args:
|
524
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
525
|
+
Snowpark or Pandas DataFrame.
|
526
|
+
output_cols_prefix: Prefix for the response columns
|
532
527
|
Returns:
|
533
528
|
Transformed dataset.
|
534
529
|
"""
|
535
|
-
self.
|
536
|
-
|
537
|
-
|
530
|
+
self._infer_input_output_cols(dataset)
|
531
|
+
super()._check_dataset_type(dataset)
|
532
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
533
|
+
estimator=self._sklearn_object,
|
534
|
+
dataset=dataset,
|
535
|
+
input_cols=self.input_cols,
|
536
|
+
label_cols=self.label_cols,
|
537
|
+
sample_weight_col=self.sample_weight_col,
|
538
|
+
autogenerated=self._autogenerated,
|
539
|
+
subproject=_SUBPROJECT,
|
540
|
+
)
|
541
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
542
|
+
drop_input_cols=self._drop_input_cols,
|
543
|
+
expected_output_cols_list=self.output_cols,
|
544
|
+
)
|
545
|
+
self._sklearn_object = fitted_estimator
|
546
|
+
self._is_fitted = True
|
547
|
+
return output_result
|
548
|
+
|
549
|
+
|
550
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
551
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
552
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
553
|
+
"""
|
554
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
555
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
556
|
+
if output_cols:
|
557
|
+
output_cols = [
|
558
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
559
|
+
for c in output_cols
|
560
|
+
]
|
561
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
562
|
+
output_cols = [output_cols_prefix]
|
563
|
+
elif self._sklearn_object is not None:
|
564
|
+
classes = self._sklearn_object.classes_
|
565
|
+
if isinstance(classes, numpy.ndarray):
|
566
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
567
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
568
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
569
|
+
output_cols = []
|
570
|
+
for i, cl in enumerate(classes):
|
571
|
+
# For binary classification, there is only one output column for each class
|
572
|
+
# ndarray as the two classes are complementary.
|
573
|
+
if len(cl) == 2:
|
574
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
575
|
+
else:
|
576
|
+
output_cols.extend([
|
577
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
578
|
+
])
|
579
|
+
else:
|
580
|
+
output_cols = []
|
581
|
+
|
582
|
+
# Make sure column names are valid snowflake identifiers.
|
583
|
+
assert output_cols is not None # Make MyPy happy
|
584
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
585
|
+
|
586
|
+
return rv
|
587
|
+
|
588
|
+
def _align_expected_output_names(
|
589
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
590
|
+
) -> List[str]:
|
591
|
+
# in case the inferred output column names dimension is different
|
592
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
593
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
594
|
+
output_df_columns = list(output_df_pd.columns)
|
595
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
596
|
+
if self.sample_weight_col:
|
597
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
598
|
+
# if the dimension of inferred output column names is correct; use it
|
599
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
600
|
+
return expected_output_cols_list
|
601
|
+
# otherwise, use the sklearn estimator's output
|
602
|
+
else:
|
603
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
538
604
|
|
539
605
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
540
606
|
@telemetry.send_api_usage_telemetry(
|
@@ -568,24 +634,26 @@ class CategoricalNB(BaseTransformer):
|
|
568
634
|
# are specific to the type of dataset used.
|
569
635
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
570
636
|
|
637
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
638
|
+
|
571
639
|
if isinstance(dataset, DataFrame):
|
572
|
-
self.
|
573
|
-
|
574
|
-
|
575
|
-
|
576
|
-
|
640
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
641
|
+
self._deps = self._get_dependencies()
|
642
|
+
assert isinstance(
|
643
|
+
dataset._session, Session
|
644
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
577
645
|
transform_kwargs = dict(
|
578
646
|
session=dataset._session,
|
579
647
|
dependencies=self._deps,
|
580
|
-
drop_input_cols
|
648
|
+
drop_input_cols=self._drop_input_cols,
|
581
649
|
expected_output_cols_type="float",
|
582
650
|
)
|
651
|
+
expected_output_cols = self._align_expected_output_names(
|
652
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
653
|
+
)
|
583
654
|
|
584
655
|
elif isinstance(dataset, pd.DataFrame):
|
585
|
-
transform_kwargs = dict(
|
586
|
-
snowpark_input_cols = self._snowpark_cols,
|
587
|
-
drop_input_cols = self._drop_input_cols
|
588
|
-
)
|
656
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
589
657
|
|
590
658
|
transform_handlers = ModelTransformerBuilder.build(
|
591
659
|
dataset=dataset,
|
@@ -597,7 +665,7 @@ class CategoricalNB(BaseTransformer):
|
|
597
665
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
598
666
|
inference_method=inference_method,
|
599
667
|
input_cols=self.input_cols,
|
600
|
-
expected_output_cols=
|
668
|
+
expected_output_cols=expected_output_cols,
|
601
669
|
**transform_kwargs
|
602
670
|
)
|
603
671
|
return output_df
|
@@ -629,29 +697,30 @@ class CategoricalNB(BaseTransformer):
|
|
629
697
|
Output dataset with log probability of the sample for each class in the model.
|
630
698
|
"""
|
631
699
|
super()._check_dataset_type(dataset)
|
632
|
-
inference_method="predict_log_proba"
|
700
|
+
inference_method = "predict_log_proba"
|
701
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
633
702
|
|
634
703
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
635
704
|
# are specific to the type of dataset used.
|
636
705
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
637
706
|
|
638
707
|
if isinstance(dataset, DataFrame):
|
639
|
-
self.
|
640
|
-
|
641
|
-
|
642
|
-
|
643
|
-
|
708
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
709
|
+
self._deps = self._get_dependencies()
|
710
|
+
assert isinstance(
|
711
|
+
dataset._session, Session
|
712
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
644
713
|
transform_kwargs = dict(
|
645
714
|
session=dataset._session,
|
646
715
|
dependencies=self._deps,
|
647
|
-
drop_input_cols
|
716
|
+
drop_input_cols=self._drop_input_cols,
|
648
717
|
expected_output_cols_type="float",
|
649
718
|
)
|
719
|
+
expected_output_cols = self._align_expected_output_names(
|
720
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
721
|
+
)
|
650
722
|
elif isinstance(dataset, pd.DataFrame):
|
651
|
-
transform_kwargs = dict(
|
652
|
-
snowpark_input_cols = self._snowpark_cols,
|
653
|
-
drop_input_cols = self._drop_input_cols
|
654
|
-
)
|
723
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
655
724
|
|
656
725
|
transform_handlers = ModelTransformerBuilder.build(
|
657
726
|
dataset=dataset,
|
@@ -664,7 +733,7 @@ class CategoricalNB(BaseTransformer):
|
|
664
733
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
665
734
|
inference_method=inference_method,
|
666
735
|
input_cols=self.input_cols,
|
667
|
-
expected_output_cols=
|
736
|
+
expected_output_cols=expected_output_cols,
|
668
737
|
**transform_kwargs
|
669
738
|
)
|
670
739
|
return output_df
|
@@ -690,30 +759,32 @@ class CategoricalNB(BaseTransformer):
|
|
690
759
|
Output dataset with results of the decision function for the samples in input dataset.
|
691
760
|
"""
|
692
761
|
super()._check_dataset_type(dataset)
|
693
|
-
inference_method="decision_function"
|
762
|
+
inference_method = "decision_function"
|
694
763
|
|
695
764
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
696
765
|
# are specific to the type of dataset used.
|
697
766
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
698
767
|
|
768
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
769
|
+
|
699
770
|
if isinstance(dataset, DataFrame):
|
700
|
-
self.
|
701
|
-
|
702
|
-
|
703
|
-
|
704
|
-
|
771
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
772
|
+
self._deps = self._get_dependencies()
|
773
|
+
assert isinstance(
|
774
|
+
dataset._session, Session
|
775
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
705
776
|
transform_kwargs = dict(
|
706
777
|
session=dataset._session,
|
707
778
|
dependencies=self._deps,
|
708
|
-
drop_input_cols
|
779
|
+
drop_input_cols=self._drop_input_cols,
|
709
780
|
expected_output_cols_type="float",
|
710
781
|
)
|
782
|
+
expected_output_cols = self._align_expected_output_names(
|
783
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
784
|
+
)
|
711
785
|
|
712
786
|
elif isinstance(dataset, pd.DataFrame):
|
713
|
-
transform_kwargs = dict(
|
714
|
-
snowpark_input_cols = self._snowpark_cols,
|
715
|
-
drop_input_cols = self._drop_input_cols
|
716
|
-
)
|
787
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
717
788
|
|
718
789
|
transform_handlers = ModelTransformerBuilder.build(
|
719
790
|
dataset=dataset,
|
@@ -726,7 +797,7 @@ class CategoricalNB(BaseTransformer):
|
|
726
797
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
727
798
|
inference_method=inference_method,
|
728
799
|
input_cols=self.input_cols,
|
729
|
-
expected_output_cols=
|
800
|
+
expected_output_cols=expected_output_cols,
|
730
801
|
**transform_kwargs
|
731
802
|
)
|
732
803
|
return output_df
|
@@ -755,17 +826,17 @@ class CategoricalNB(BaseTransformer):
|
|
755
826
|
Output dataset with probability of the sample for each class in the model.
|
756
827
|
"""
|
757
828
|
super()._check_dataset_type(dataset)
|
758
|
-
inference_method="score_samples"
|
829
|
+
inference_method = "score_samples"
|
759
830
|
|
760
831
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
761
832
|
# are specific to the type of dataset used.
|
762
833
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
763
834
|
|
835
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
836
|
+
|
764
837
|
if isinstance(dataset, DataFrame):
|
765
|
-
self.
|
766
|
-
|
767
|
-
inference_method=inference_method,
|
768
|
-
)
|
838
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
839
|
+
self._deps = self._get_dependencies()
|
769
840
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
770
841
|
transform_kwargs = dict(
|
771
842
|
session=dataset._session,
|
@@ -773,6 +844,9 @@ class CategoricalNB(BaseTransformer):
|
|
773
844
|
drop_input_cols = self._drop_input_cols,
|
774
845
|
expected_output_cols_type="float",
|
775
846
|
)
|
847
|
+
expected_output_cols = self._align_expected_output_names(
|
848
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
849
|
+
)
|
776
850
|
|
777
851
|
elif isinstance(dataset, pd.DataFrame):
|
778
852
|
transform_kwargs = dict(
|
@@ -791,7 +865,7 @@ class CategoricalNB(BaseTransformer):
|
|
791
865
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
792
866
|
inference_method=inference_method,
|
793
867
|
input_cols=self.input_cols,
|
794
|
-
expected_output_cols=
|
868
|
+
expected_output_cols=expected_output_cols,
|
795
869
|
**transform_kwargs
|
796
870
|
)
|
797
871
|
return output_df
|
@@ -826,17 +900,15 @@ class CategoricalNB(BaseTransformer):
|
|
826
900
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
827
901
|
|
828
902
|
if isinstance(dataset, DataFrame):
|
829
|
-
self.
|
830
|
-
|
831
|
-
inference_method="score",
|
832
|
-
)
|
903
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
904
|
+
self._deps = self._get_dependencies()
|
833
905
|
selected_cols = self._get_active_columns()
|
834
906
|
if len(selected_cols) > 0:
|
835
907
|
dataset = dataset.select(selected_cols)
|
836
908
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
837
909
|
transform_kwargs = dict(
|
838
910
|
session=dataset._session,
|
839
|
-
dependencies=
|
911
|
+
dependencies=self._deps,
|
840
912
|
score_sproc_imports=['sklearn'],
|
841
913
|
)
|
842
914
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -901,11 +973,8 @@ class CategoricalNB(BaseTransformer):
|
|
901
973
|
|
902
974
|
if isinstance(dataset, DataFrame):
|
903
975
|
|
904
|
-
self.
|
905
|
-
|
906
|
-
inference_method=inference_method,
|
907
|
-
|
908
|
-
)
|
976
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
977
|
+
self._deps = self._get_dependencies()
|
909
978
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
910
979
|
transform_kwargs = dict(
|
911
980
|
session = dataset._session,
|
@@ -938,50 +1007,84 @@ class CategoricalNB(BaseTransformer):
|
|
938
1007
|
)
|
939
1008
|
return output_df
|
940
1009
|
|
1010
|
+
|
1011
|
+
|
1012
|
+
def to_sklearn(self) -> Any:
|
1013
|
+
"""Get sklearn.naive_bayes.CategoricalNB object.
|
1014
|
+
"""
|
1015
|
+
if self._sklearn_object is None:
|
1016
|
+
self._sklearn_object = self._create_sklearn_object()
|
1017
|
+
return self._sklearn_object
|
1018
|
+
|
1019
|
+
def to_xgboost(self) -> Any:
|
1020
|
+
raise exceptions.SnowflakeMLException(
|
1021
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1022
|
+
original_exception=AttributeError(
|
1023
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1024
|
+
"to_xgboost()",
|
1025
|
+
"to_sklearn()"
|
1026
|
+
)
|
1027
|
+
),
|
1028
|
+
)
|
1029
|
+
|
1030
|
+
def to_lightgbm(self) -> Any:
|
1031
|
+
raise exceptions.SnowflakeMLException(
|
1032
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1033
|
+
original_exception=AttributeError(
|
1034
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1035
|
+
"to_lightgbm()",
|
1036
|
+
"to_sklearn()"
|
1037
|
+
)
|
1038
|
+
),
|
1039
|
+
)
|
1040
|
+
|
1041
|
+
def _get_dependencies(self) -> List[str]:
|
1042
|
+
return self._deps
|
1043
|
+
|
941
1044
|
|
942
|
-
def
|
1045
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
943
1046
|
self._model_signature_dict = dict()
|
944
1047
|
|
945
1048
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
946
1049
|
|
947
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1050
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
948
1051
|
outputs: List[BaseFeatureSpec] = []
|
949
1052
|
if hasattr(self, "predict"):
|
950
1053
|
# keep mypy happy
|
951
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1054
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
952
1055
|
# For classifier, the type of predict is the same as the type of label
|
953
|
-
if self._sklearn_object._estimator_type ==
|
954
|
-
|
1056
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1057
|
+
# label columns is the desired type for output
|
955
1058
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
956
1059
|
# rename the output columns
|
957
1060
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
958
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
959
|
-
|
960
|
-
|
1061
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1062
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1063
|
+
)
|
961
1064
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
962
1065
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
963
|
-
# Clusterer returns int64 cluster labels.
|
1066
|
+
# Clusterer returns int64 cluster labels.
|
964
1067
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
965
1068
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
966
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
967
|
-
|
968
|
-
|
969
|
-
|
1069
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1070
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1071
|
+
)
|
1072
|
+
|
970
1073
|
# For regressor, the type of predict is float64
|
971
|
-
elif self._sklearn_object._estimator_type ==
|
1074
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
972
1075
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
973
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
974
|
-
|
975
|
-
|
976
|
-
|
1076
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1077
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1078
|
+
)
|
1079
|
+
|
977
1080
|
for prob_func in PROB_FUNCTIONS:
|
978
1081
|
if hasattr(self, prob_func):
|
979
1082
|
output_cols_prefix: str = f"{prob_func}_"
|
980
1083
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
981
1084
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
982
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
983
|
-
|
984
|
-
|
1085
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
985
1088
|
|
986
1089
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
987
1090
|
items = list(self._model_signature_dict.items())
|
@@ -994,10 +1097,10 @@ class CategoricalNB(BaseTransformer):
|
|
994
1097
|
"""Returns model signature of current class.
|
995
1098
|
|
996
1099
|
Raises:
|
997
|
-
|
1100
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
998
1101
|
|
999
1102
|
Returns:
|
1000
|
-
Dict
|
1103
|
+
Dict with each method and its input output signature
|
1001
1104
|
"""
|
1002
1105
|
if self._model_signature_dict is None:
|
1003
1106
|
raise exceptions.SnowflakeMLException(
|
@@ -1005,35 +1108,3 @@ class CategoricalNB(BaseTransformer):
|
|
1005
1108
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1006
1109
|
)
|
1007
1110
|
return self._model_signature_dict
|
1008
|
-
|
1009
|
-
def to_sklearn(self) -> Any:
|
1010
|
-
"""Get sklearn.naive_bayes.CategoricalNB object.
|
1011
|
-
"""
|
1012
|
-
if self._sklearn_object is None:
|
1013
|
-
self._sklearn_object = self._create_sklearn_object()
|
1014
|
-
return self._sklearn_object
|
1015
|
-
|
1016
|
-
def to_xgboost(self) -> Any:
|
1017
|
-
raise exceptions.SnowflakeMLException(
|
1018
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1019
|
-
original_exception=AttributeError(
|
1020
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1021
|
-
"to_xgboost()",
|
1022
|
-
"to_sklearn()"
|
1023
|
-
)
|
1024
|
-
),
|
1025
|
-
)
|
1026
|
-
|
1027
|
-
def to_lightgbm(self) -> Any:
|
1028
|
-
raise exceptions.SnowflakeMLException(
|
1029
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1030
|
-
original_exception=AttributeError(
|
1031
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1032
|
-
"to_lightgbm()",
|
1033
|
-
"to_sklearn()"
|
1034
|
-
)
|
1035
|
-
),
|
1036
|
-
)
|
1037
|
-
|
1038
|
-
def _get_dependencies(self) -> List[str]:
|
1039
|
-
return self._deps
|