snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MultiTaskLassoCV(BaseTransformer):
71
64
  r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
72
65
  For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
@@ -279,12 +272,7 @@ class MultiTaskLassoCV(BaseTransformer):
279
272
  )
280
273
  return selected_cols
281
274
 
282
- @telemetry.send_api_usage_telemetry(
283
- project=_PROJECT,
284
- subproject=_SUBPROJECT,
285
- custom_tags=dict([("autogen", True)]),
286
- )
287
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskLassoCV":
275
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskLassoCV":
288
276
  """Fit MultiTaskLasso model with coordinate descent
289
277
  For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.fit]
290
278
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLassoCV.html#sklearn.linear_model.MultiTaskLassoCV.fit)
@@ -311,12 +299,14 @@ class MultiTaskLassoCV(BaseTransformer):
311
299
 
312
300
  self._snowpark_cols = dataset.select(self.input_cols).columns
313
301
 
314
- # If we are already in a stored procedure, no need to kick off another one.
302
+ # If we are already in a stored procedure, no need to kick off another one.
315
303
  if SNOWML_SPROC_ENV in os.environ:
316
304
  statement_params = telemetry.get_function_usage_statement_params(
317
305
  project=_PROJECT,
318
306
  subproject=_SUBPROJECT,
319
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MultiTaskLassoCV.__class__.__name__),
307
+ function_name=telemetry.get_statement_params_full_func_name(
308
+ inspect.currentframe(), MultiTaskLassoCV.__class__.__name__
309
+ ),
320
310
  api_calls=[Session.call],
321
311
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
322
312
  )
@@ -337,27 +327,24 @@ class MultiTaskLassoCV(BaseTransformer):
337
327
  )
338
328
  self._sklearn_object = model_trainer.train()
339
329
  self._is_fitted = True
340
- self._get_model_signatures(dataset)
330
+ self._generate_model_signatures(dataset)
341
331
  return self
342
332
 
343
333
  def _batch_inference_validate_snowpark(
344
334
  self,
345
335
  dataset: DataFrame,
346
336
  inference_method: str,
347
- ) -> List[str]:
348
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
349
- return the available package that exists in the snowflake anaconda channel
337
+ ) -> None:
338
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
350
339
 
351
340
  Args:
352
341
  dataset: snowpark dataframe
353
342
  inference_method: the inference method such as predict, score...
354
-
343
+
355
344
  Raises:
356
345
  SnowflakeMLException: If the estimator is not fitted, raise error
357
346
  SnowflakeMLException: If the session is None, raise error
358
347
 
359
- Returns:
360
- A list of available package that exists in the snowflake anaconda channel
361
348
  """
362
349
  if not self._is_fitted:
363
350
  raise exceptions.SnowflakeMLException(
@@ -375,9 +362,7 @@ class MultiTaskLassoCV(BaseTransformer):
375
362
  "Session must not specified for snowpark dataset."
376
363
  ),
377
364
  )
378
- # Validate that key package version in user workspace are supported in snowflake conda channel
379
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
380
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
365
+
381
366
 
382
367
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
383
368
  @telemetry.send_api_usage_telemetry(
@@ -413,7 +398,9 @@ class MultiTaskLassoCV(BaseTransformer):
413
398
  # when it is classifier, infer the datatype from label columns
414
399
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
415
400
  # Batch inference takes a single expected output column type. Use the first columns type for now.
416
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
401
+ label_cols_signatures = [
402
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
403
+ ]
417
404
  if len(label_cols_signatures) == 0:
418
405
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
419
406
  raise exceptions.SnowflakeMLException(
@@ -421,25 +408,23 @@ class MultiTaskLassoCV(BaseTransformer):
421
408
  original_exception=ValueError(error_str),
422
409
  )
423
410
 
424
- expected_type_inferred = convert_sp_to_sf_type(
425
- label_cols_signatures[0].as_snowpark_type()
426
- )
411
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
427
412
 
428
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
429
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
413
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
414
+ self._deps = self._get_dependencies()
415
+ assert isinstance(
416
+ dataset._session, Session
417
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
430
418
 
431
419
  transform_kwargs = dict(
432
- session = dataset._session,
433
- dependencies = self._deps,
434
- drop_input_cols = self._drop_input_cols,
435
- expected_output_cols_type = expected_type_inferred,
420
+ session=dataset._session,
421
+ dependencies=self._deps,
422
+ drop_input_cols=self._drop_input_cols,
423
+ expected_output_cols_type=expected_type_inferred,
436
424
  )
437
425
 
438
426
  elif isinstance(dataset, pd.DataFrame):
439
- transform_kwargs = dict(
440
- snowpark_input_cols = self._snowpark_cols,
441
- drop_input_cols = self._drop_input_cols
442
- )
427
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
443
428
 
444
429
  transform_handlers = ModelTransformerBuilder.build(
445
430
  dataset=dataset,
@@ -479,7 +464,7 @@ class MultiTaskLassoCV(BaseTransformer):
479
464
  Transformed dataset.
480
465
  """
481
466
  super()._check_dataset_type(dataset)
482
- inference_method="transform"
467
+ inference_method = "transform"
483
468
 
484
469
  # This dictionary contains optional kwargs for batch inference. These kwargs
485
470
  # are specific to the type of dataset used.
@@ -509,24 +494,19 @@ class MultiTaskLassoCV(BaseTransformer):
509
494
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
510
495
  expected_dtype = convert_sp_to_sf_type(output_types[0])
511
496
 
512
- self._deps = self._batch_inference_validate_snowpark(
513
- dataset=dataset,
514
- inference_method=inference_method,
515
- )
497
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
498
+ self._deps = self._get_dependencies()
516
499
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
517
500
 
518
501
  transform_kwargs = dict(
519
- session = dataset._session,
520
- dependencies = self._deps,
521
- drop_input_cols = self._drop_input_cols,
522
- expected_output_cols_type = expected_dtype,
502
+ session=dataset._session,
503
+ dependencies=self._deps,
504
+ drop_input_cols=self._drop_input_cols,
505
+ expected_output_cols_type=expected_dtype,
523
506
  )
524
507
 
525
508
  elif isinstance(dataset, pd.DataFrame):
526
- transform_kwargs = dict(
527
- snowpark_input_cols = self._snowpark_cols,
528
- drop_input_cols = self._drop_input_cols
529
- )
509
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
530
510
 
531
511
  transform_handlers = ModelTransformerBuilder.build(
532
512
  dataset=dataset,
@@ -545,7 +525,11 @@ class MultiTaskLassoCV(BaseTransformer):
545
525
  return output_df
546
526
 
547
527
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
548
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
528
+ def fit_predict(
529
+ self,
530
+ dataset: Union[DataFrame, pd.DataFrame],
531
+ output_cols_prefix: str = "fit_predict_",
532
+ ) -> Union[DataFrame, pd.DataFrame]:
549
533
  """ Method not supported for this class.
550
534
 
551
535
 
@@ -570,22 +554,104 @@ class MultiTaskLassoCV(BaseTransformer):
570
554
  )
571
555
  output_result, fitted_estimator = model_trainer.train_fit_predict(
572
556
  drop_input_cols=self._drop_input_cols,
573
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
557
+ expected_output_cols_list=(
558
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
559
+ ),
574
560
  )
575
561
  self._sklearn_object = fitted_estimator
576
562
  self._is_fitted = True
577
563
  return output_result
578
564
 
565
+
566
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
567
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
568
+ """ Method not supported for this class.
569
+
579
570
 
580
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
581
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
582
- """
571
+ Raises:
572
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
573
+
574
+ Args:
575
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
576
+ Snowpark or Pandas DataFrame.
577
+ output_cols_prefix: Prefix for the response columns
583
578
  Returns:
584
579
  Transformed dataset.
585
580
  """
586
- self.fit(dataset)
587
- assert self._sklearn_object is not None
588
- return self._sklearn_object.embedding_
581
+ self._infer_input_output_cols(dataset)
582
+ super()._check_dataset_type(dataset)
583
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
584
+ estimator=self._sklearn_object,
585
+ dataset=dataset,
586
+ input_cols=self.input_cols,
587
+ label_cols=self.label_cols,
588
+ sample_weight_col=self.sample_weight_col,
589
+ autogenerated=self._autogenerated,
590
+ subproject=_SUBPROJECT,
591
+ )
592
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
593
+ drop_input_cols=self._drop_input_cols,
594
+ expected_output_cols_list=self.output_cols,
595
+ )
596
+ self._sklearn_object = fitted_estimator
597
+ self._is_fitted = True
598
+ return output_result
599
+
600
+
601
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
602
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
603
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
604
+ """
605
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
606
+ # The following condition is introduced for kneighbors methods, and not used in other methods
607
+ if output_cols:
608
+ output_cols = [
609
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
610
+ for c in output_cols
611
+ ]
612
+ elif getattr(self._sklearn_object, "classes_", None) is None:
613
+ output_cols = [output_cols_prefix]
614
+ elif self._sklearn_object is not None:
615
+ classes = self._sklearn_object.classes_
616
+ if isinstance(classes, numpy.ndarray):
617
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
618
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
619
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
620
+ output_cols = []
621
+ for i, cl in enumerate(classes):
622
+ # For binary classification, there is only one output column for each class
623
+ # ndarray as the two classes are complementary.
624
+ if len(cl) == 2:
625
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
626
+ else:
627
+ output_cols.extend([
628
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
629
+ ])
630
+ else:
631
+ output_cols = []
632
+
633
+ # Make sure column names are valid snowflake identifiers.
634
+ assert output_cols is not None # Make MyPy happy
635
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
636
+
637
+ return rv
638
+
639
+ def _align_expected_output_names(
640
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
641
+ ) -> List[str]:
642
+ # in case the inferred output column names dimension is different
643
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
644
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
645
+ output_df_columns = list(output_df_pd.columns)
646
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
647
+ if self.sample_weight_col:
648
+ output_df_columns_set -= set(self.sample_weight_col)
649
+ # if the dimension of inferred output column names is correct; use it
650
+ if len(expected_output_cols_list) == len(output_df_columns_set):
651
+ return expected_output_cols_list
652
+ # otherwise, use the sklearn estimator's output
653
+ else:
654
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
589
655
 
590
656
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
591
657
  @telemetry.send_api_usage_telemetry(
@@ -617,24 +683,26 @@ class MultiTaskLassoCV(BaseTransformer):
617
683
  # are specific to the type of dataset used.
618
684
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
619
685
 
686
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
687
+
620
688
  if isinstance(dataset, DataFrame):
621
- self._deps = self._batch_inference_validate_snowpark(
622
- dataset=dataset,
623
- inference_method=inference_method,
624
- )
625
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
689
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
690
+ self._deps = self._get_dependencies()
691
+ assert isinstance(
692
+ dataset._session, Session
693
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
626
694
  transform_kwargs = dict(
627
695
  session=dataset._session,
628
696
  dependencies=self._deps,
629
- drop_input_cols = self._drop_input_cols,
697
+ drop_input_cols=self._drop_input_cols,
630
698
  expected_output_cols_type="float",
631
699
  )
700
+ expected_output_cols = self._align_expected_output_names(
701
+ inference_method, dataset, expected_output_cols, output_cols_prefix
702
+ )
632
703
 
633
704
  elif isinstance(dataset, pd.DataFrame):
634
- transform_kwargs = dict(
635
- snowpark_input_cols = self._snowpark_cols,
636
- drop_input_cols = self._drop_input_cols
637
- )
705
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
638
706
 
639
707
  transform_handlers = ModelTransformerBuilder.build(
640
708
  dataset=dataset,
@@ -646,7 +714,7 @@ class MultiTaskLassoCV(BaseTransformer):
646
714
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
647
715
  inference_method=inference_method,
648
716
  input_cols=self.input_cols,
649
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
717
+ expected_output_cols=expected_output_cols,
650
718
  **transform_kwargs
651
719
  )
652
720
  return output_df
@@ -676,29 +744,30 @@ class MultiTaskLassoCV(BaseTransformer):
676
744
  Output dataset with log probability of the sample for each class in the model.
677
745
  """
678
746
  super()._check_dataset_type(dataset)
679
- inference_method="predict_log_proba"
747
+ inference_method = "predict_log_proba"
748
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
680
749
 
681
750
  # This dictionary contains optional kwargs for batch inference. These kwargs
682
751
  # are specific to the type of dataset used.
683
752
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
684
753
 
685
754
  if isinstance(dataset, DataFrame):
686
- self._deps = self._batch_inference_validate_snowpark(
687
- dataset=dataset,
688
- inference_method=inference_method,
689
- )
690
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
755
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
756
+ self._deps = self._get_dependencies()
757
+ assert isinstance(
758
+ dataset._session, Session
759
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
691
760
  transform_kwargs = dict(
692
761
  session=dataset._session,
693
762
  dependencies=self._deps,
694
- drop_input_cols = self._drop_input_cols,
763
+ drop_input_cols=self._drop_input_cols,
695
764
  expected_output_cols_type="float",
696
765
  )
766
+ expected_output_cols = self._align_expected_output_names(
767
+ inference_method, dataset, expected_output_cols, output_cols_prefix
768
+ )
697
769
  elif isinstance(dataset, pd.DataFrame):
698
- transform_kwargs = dict(
699
- snowpark_input_cols = self._snowpark_cols,
700
- drop_input_cols = self._drop_input_cols
701
- )
770
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
702
771
 
703
772
  transform_handlers = ModelTransformerBuilder.build(
704
773
  dataset=dataset,
@@ -711,7 +780,7 @@ class MultiTaskLassoCV(BaseTransformer):
711
780
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
712
781
  inference_method=inference_method,
713
782
  input_cols=self.input_cols,
714
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
783
+ expected_output_cols=expected_output_cols,
715
784
  **transform_kwargs
716
785
  )
717
786
  return output_df
@@ -737,30 +806,32 @@ class MultiTaskLassoCV(BaseTransformer):
737
806
  Output dataset with results of the decision function for the samples in input dataset.
738
807
  """
739
808
  super()._check_dataset_type(dataset)
740
- inference_method="decision_function"
809
+ inference_method = "decision_function"
741
810
 
742
811
  # This dictionary contains optional kwargs for batch inference. These kwargs
743
812
  # are specific to the type of dataset used.
744
813
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
745
814
 
815
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
816
+
746
817
  if isinstance(dataset, DataFrame):
747
- self._deps = self._batch_inference_validate_snowpark(
748
- dataset=dataset,
749
- inference_method=inference_method,
750
- )
751
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
818
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
819
+ self._deps = self._get_dependencies()
820
+ assert isinstance(
821
+ dataset._session, Session
822
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
752
823
  transform_kwargs = dict(
753
824
  session=dataset._session,
754
825
  dependencies=self._deps,
755
- drop_input_cols = self._drop_input_cols,
826
+ drop_input_cols=self._drop_input_cols,
756
827
  expected_output_cols_type="float",
757
828
  )
829
+ expected_output_cols = self._align_expected_output_names(
830
+ inference_method, dataset, expected_output_cols, output_cols_prefix
831
+ )
758
832
 
759
833
  elif isinstance(dataset, pd.DataFrame):
760
- transform_kwargs = dict(
761
- snowpark_input_cols = self._snowpark_cols,
762
- drop_input_cols = self._drop_input_cols
763
- )
834
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
764
835
 
765
836
  transform_handlers = ModelTransformerBuilder.build(
766
837
  dataset=dataset,
@@ -773,7 +844,7 @@ class MultiTaskLassoCV(BaseTransformer):
773
844
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
774
845
  inference_method=inference_method,
775
846
  input_cols=self.input_cols,
776
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
847
+ expected_output_cols=expected_output_cols,
777
848
  **transform_kwargs
778
849
  )
779
850
  return output_df
@@ -802,17 +873,17 @@ class MultiTaskLassoCV(BaseTransformer):
802
873
  Output dataset with probability of the sample for each class in the model.
803
874
  """
804
875
  super()._check_dataset_type(dataset)
805
- inference_method="score_samples"
876
+ inference_method = "score_samples"
806
877
 
807
878
  # This dictionary contains optional kwargs for batch inference. These kwargs
808
879
  # are specific to the type of dataset used.
809
880
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
810
881
 
882
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
883
+
811
884
  if isinstance(dataset, DataFrame):
812
- self._deps = self._batch_inference_validate_snowpark(
813
- dataset=dataset,
814
- inference_method=inference_method,
815
- )
885
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
886
+ self._deps = self._get_dependencies()
816
887
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
817
888
  transform_kwargs = dict(
818
889
  session=dataset._session,
@@ -820,6 +891,9 @@ class MultiTaskLassoCV(BaseTransformer):
820
891
  drop_input_cols = self._drop_input_cols,
821
892
  expected_output_cols_type="float",
822
893
  )
894
+ expected_output_cols = self._align_expected_output_names(
895
+ inference_method, dataset, expected_output_cols, output_cols_prefix
896
+ )
823
897
 
824
898
  elif isinstance(dataset, pd.DataFrame):
825
899
  transform_kwargs = dict(
@@ -838,7 +912,7 @@ class MultiTaskLassoCV(BaseTransformer):
838
912
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
839
913
  inference_method=inference_method,
840
914
  input_cols=self.input_cols,
841
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
915
+ expected_output_cols=expected_output_cols,
842
916
  **transform_kwargs
843
917
  )
844
918
  return output_df
@@ -873,17 +947,15 @@ class MultiTaskLassoCV(BaseTransformer):
873
947
  transform_kwargs: ScoreKwargsTypedDict = dict()
874
948
 
875
949
  if isinstance(dataset, DataFrame):
876
- self._deps = self._batch_inference_validate_snowpark(
877
- dataset=dataset,
878
- inference_method="score",
879
- )
950
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
951
+ self._deps = self._get_dependencies()
880
952
  selected_cols = self._get_active_columns()
881
953
  if len(selected_cols) > 0:
882
954
  dataset = dataset.select(selected_cols)
883
955
  assert isinstance(dataset._session, Session) # keep mypy happy
884
956
  transform_kwargs = dict(
885
957
  session=dataset._session,
886
- dependencies=["snowflake-snowpark-python"] + self._deps,
958
+ dependencies=self._deps,
887
959
  score_sproc_imports=['sklearn'],
888
960
  )
889
961
  elif isinstance(dataset, pd.DataFrame):
@@ -948,11 +1020,8 @@ class MultiTaskLassoCV(BaseTransformer):
948
1020
 
949
1021
  if isinstance(dataset, DataFrame):
950
1022
 
951
- self._deps = self._batch_inference_validate_snowpark(
952
- dataset=dataset,
953
- inference_method=inference_method,
954
-
955
- )
1023
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1024
+ self._deps = self._get_dependencies()
956
1025
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
957
1026
  transform_kwargs = dict(
958
1027
  session = dataset._session,
@@ -985,50 +1054,84 @@ class MultiTaskLassoCV(BaseTransformer):
985
1054
  )
986
1055
  return output_df
987
1056
 
1057
+
1058
+
1059
+ def to_sklearn(self) -> Any:
1060
+ """Get sklearn.linear_model.MultiTaskLassoCV object.
1061
+ """
1062
+ if self._sklearn_object is None:
1063
+ self._sklearn_object = self._create_sklearn_object()
1064
+ return self._sklearn_object
1065
+
1066
+ def to_xgboost(self) -> Any:
1067
+ raise exceptions.SnowflakeMLException(
1068
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1069
+ original_exception=AttributeError(
1070
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
+ "to_xgboost()",
1072
+ "to_sklearn()"
1073
+ )
1074
+ ),
1075
+ )
1076
+
1077
+ def to_lightgbm(self) -> Any:
1078
+ raise exceptions.SnowflakeMLException(
1079
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1080
+ original_exception=AttributeError(
1081
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
+ "to_lightgbm()",
1083
+ "to_sklearn()"
1084
+ )
1085
+ ),
1086
+ )
1087
+
1088
+ def _get_dependencies(self) -> List[str]:
1089
+ return self._deps
1090
+
988
1091
 
989
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1092
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
990
1093
  self._model_signature_dict = dict()
991
1094
 
992
1095
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
993
1096
 
994
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1097
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
995
1098
  outputs: List[BaseFeatureSpec] = []
996
1099
  if hasattr(self, "predict"):
997
1100
  # keep mypy happy
998
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1101
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
999
1102
  # For classifier, the type of predict is the same as the type of label
1000
- if self._sklearn_object._estimator_type == 'classifier':
1001
- # label columns is the desired type for output
1103
+ if self._sklearn_object._estimator_type == "classifier":
1104
+ # label columns is the desired type for output
1002
1105
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1003
1106
  # rename the output columns
1004
1107
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1005
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1006
- ([] if self._drop_input_cols else inputs)
1007
- + outputs)
1108
+ self._model_signature_dict["predict"] = ModelSignature(
1109
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1110
+ )
1008
1111
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1009
1112
  # For outlier models, returns -1 for outliers and 1 for inliers.
1010
- # Clusterer returns int64 cluster labels.
1113
+ # Clusterer returns int64 cluster labels.
1011
1114
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1012
1115
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1013
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1014
- ([] if self._drop_input_cols else inputs)
1015
- + outputs)
1016
-
1116
+ self._model_signature_dict["predict"] = ModelSignature(
1117
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1118
+ )
1119
+
1017
1120
  # For regressor, the type of predict is float64
1018
- elif self._sklearn_object._estimator_type == 'regressor':
1121
+ elif self._sklearn_object._estimator_type == "regressor":
1019
1122
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1020
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1021
- ([] if self._drop_input_cols else inputs)
1022
- + outputs)
1023
-
1123
+ self._model_signature_dict["predict"] = ModelSignature(
1124
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1125
+ )
1126
+
1024
1127
  for prob_func in PROB_FUNCTIONS:
1025
1128
  if hasattr(self, prob_func):
1026
1129
  output_cols_prefix: str = f"{prob_func}_"
1027
1130
  output_column_names = self._get_output_column_names(output_cols_prefix)
1028
1131
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1029
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1030
- ([] if self._drop_input_cols else inputs)
1031
- + outputs)
1132
+ self._model_signature_dict[prob_func] = ModelSignature(
1133
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1134
+ )
1032
1135
 
1033
1136
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1034
1137
  items = list(self._model_signature_dict.items())
@@ -1041,10 +1144,10 @@ class MultiTaskLassoCV(BaseTransformer):
1041
1144
  """Returns model signature of current class.
1042
1145
 
1043
1146
  Raises:
1044
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1147
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1045
1148
 
1046
1149
  Returns:
1047
- Dict[str, ModelSignature]: each method and its input output signature
1150
+ Dict with each method and its input output signature
1048
1151
  """
1049
1152
  if self._model_signature_dict is None:
1050
1153
  raise exceptions.SnowflakeMLException(
@@ -1052,35 +1155,3 @@ class MultiTaskLassoCV(BaseTransformer):
1052
1155
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1053
1156
  )
1054
1157
  return self._model_signature_dict
1055
-
1056
- def to_sklearn(self) -> Any:
1057
- """Get sklearn.linear_model.MultiTaskLassoCV object.
1058
- """
1059
- if self._sklearn_object is None:
1060
- self._sklearn_object = self._create_sklearn_object()
1061
- return self._sklearn_object
1062
-
1063
- def to_xgboost(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_xgboost()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def to_lightgbm(self) -> Any:
1075
- raise exceptions.SnowflakeMLException(
1076
- error_code=error_codes.METHOD_NOT_ALLOWED,
1077
- original_exception=AttributeError(
1078
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1079
- "to_lightgbm()",
1080
- "to_sklearn()"
1081
- )
1082
- ),
1083
- )
1084
-
1085
- def _get_dependencies(self) -> List[str]:
1086
- return self._deps