snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class MultiTaskLassoCV(BaseTransformer):
|
71
64
|
r"""Multi-task Lasso model trained with L1/L2 mixed-norm as regularizer
|
72
65
|
For more details on this class, see [sklearn.linear_model.MultiTaskLassoCV]
|
@@ -279,12 +272,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
279
272
|
)
|
280
273
|
return selected_cols
|
281
274
|
|
282
|
-
|
283
|
-
project=_PROJECT,
|
284
|
-
subproject=_SUBPROJECT,
|
285
|
-
custom_tags=dict([("autogen", True)]),
|
286
|
-
)
|
287
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskLassoCV":
|
275
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MultiTaskLassoCV":
|
288
276
|
"""Fit MultiTaskLasso model with coordinate descent
|
289
277
|
For more details on this function, see [sklearn.linear_model.MultiTaskLassoCV.fit]
|
290
278
|
(https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.MultiTaskLassoCV.html#sklearn.linear_model.MultiTaskLassoCV.fit)
|
@@ -311,12 +299,14 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
311
299
|
|
312
300
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
313
301
|
|
314
|
-
|
302
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
315
303
|
if SNOWML_SPROC_ENV in os.environ:
|
316
304
|
statement_params = telemetry.get_function_usage_statement_params(
|
317
305
|
project=_PROJECT,
|
318
306
|
subproject=_SUBPROJECT,
|
319
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
307
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
308
|
+
inspect.currentframe(), MultiTaskLassoCV.__class__.__name__
|
309
|
+
),
|
320
310
|
api_calls=[Session.call],
|
321
311
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
322
312
|
)
|
@@ -337,27 +327,24 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
337
327
|
)
|
338
328
|
self._sklearn_object = model_trainer.train()
|
339
329
|
self._is_fitted = True
|
340
|
-
self.
|
330
|
+
self._generate_model_signatures(dataset)
|
341
331
|
return self
|
342
332
|
|
343
333
|
def _batch_inference_validate_snowpark(
|
344
334
|
self,
|
345
335
|
dataset: DataFrame,
|
346
336
|
inference_method: str,
|
347
|
-
) ->
|
348
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
349
|
-
return the available package that exists in the snowflake anaconda channel
|
337
|
+
) -> None:
|
338
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
350
339
|
|
351
340
|
Args:
|
352
341
|
dataset: snowpark dataframe
|
353
342
|
inference_method: the inference method such as predict, score...
|
354
|
-
|
343
|
+
|
355
344
|
Raises:
|
356
345
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
357
346
|
SnowflakeMLException: If the session is None, raise error
|
358
347
|
|
359
|
-
Returns:
|
360
|
-
A list of available package that exists in the snowflake anaconda channel
|
361
348
|
"""
|
362
349
|
if not self._is_fitted:
|
363
350
|
raise exceptions.SnowflakeMLException(
|
@@ -375,9 +362,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
375
362
|
"Session must not specified for snowpark dataset."
|
376
363
|
),
|
377
364
|
)
|
378
|
-
|
379
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
380
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
365
|
+
|
381
366
|
|
382
367
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
383
368
|
@telemetry.send_api_usage_telemetry(
|
@@ -413,7 +398,9 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
413
398
|
# when it is classifier, infer the datatype from label columns
|
414
399
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
415
400
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
416
|
-
label_cols_signatures = [
|
401
|
+
label_cols_signatures = [
|
402
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
403
|
+
]
|
417
404
|
if len(label_cols_signatures) == 0:
|
418
405
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
419
406
|
raise exceptions.SnowflakeMLException(
|
@@ -421,25 +408,23 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
421
408
|
original_exception=ValueError(error_str),
|
422
409
|
)
|
423
410
|
|
424
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
425
|
-
label_cols_signatures[0].as_snowpark_type()
|
426
|
-
)
|
411
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
427
412
|
|
428
|
-
self.
|
429
|
-
|
413
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
414
|
+
self._deps = self._get_dependencies()
|
415
|
+
assert isinstance(
|
416
|
+
dataset._session, Session
|
417
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
430
418
|
|
431
419
|
transform_kwargs = dict(
|
432
|
-
session
|
433
|
-
dependencies
|
434
|
-
drop_input_cols
|
435
|
-
expected_output_cols_type
|
420
|
+
session=dataset._session,
|
421
|
+
dependencies=self._deps,
|
422
|
+
drop_input_cols=self._drop_input_cols,
|
423
|
+
expected_output_cols_type=expected_type_inferred,
|
436
424
|
)
|
437
425
|
|
438
426
|
elif isinstance(dataset, pd.DataFrame):
|
439
|
-
transform_kwargs = dict(
|
440
|
-
snowpark_input_cols = self._snowpark_cols,
|
441
|
-
drop_input_cols = self._drop_input_cols
|
442
|
-
)
|
427
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
443
428
|
|
444
429
|
transform_handlers = ModelTransformerBuilder.build(
|
445
430
|
dataset=dataset,
|
@@ -479,7 +464,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
479
464
|
Transformed dataset.
|
480
465
|
"""
|
481
466
|
super()._check_dataset_type(dataset)
|
482
|
-
inference_method="transform"
|
467
|
+
inference_method = "transform"
|
483
468
|
|
484
469
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
485
470
|
# are specific to the type of dataset used.
|
@@ -509,24 +494,19 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
509
494
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
510
495
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
511
496
|
|
512
|
-
self.
|
513
|
-
|
514
|
-
inference_method=inference_method,
|
515
|
-
)
|
497
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
498
|
+
self._deps = self._get_dependencies()
|
516
499
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
517
500
|
|
518
501
|
transform_kwargs = dict(
|
519
|
-
session
|
520
|
-
dependencies
|
521
|
-
drop_input_cols
|
522
|
-
expected_output_cols_type
|
502
|
+
session=dataset._session,
|
503
|
+
dependencies=self._deps,
|
504
|
+
drop_input_cols=self._drop_input_cols,
|
505
|
+
expected_output_cols_type=expected_dtype,
|
523
506
|
)
|
524
507
|
|
525
508
|
elif isinstance(dataset, pd.DataFrame):
|
526
|
-
transform_kwargs = dict(
|
527
|
-
snowpark_input_cols = self._snowpark_cols,
|
528
|
-
drop_input_cols = self._drop_input_cols
|
529
|
-
)
|
509
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
530
510
|
|
531
511
|
transform_handlers = ModelTransformerBuilder.build(
|
532
512
|
dataset=dataset,
|
@@ -545,7 +525,11 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
545
525
|
return output_df
|
546
526
|
|
547
527
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
548
|
-
def fit_predict(
|
528
|
+
def fit_predict(
|
529
|
+
self,
|
530
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
531
|
+
output_cols_prefix: str = "fit_predict_",
|
532
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
549
533
|
""" Method not supported for this class.
|
550
534
|
|
551
535
|
|
@@ -570,22 +554,104 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
570
554
|
)
|
571
555
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
572
556
|
drop_input_cols=self._drop_input_cols,
|
573
|
-
expected_output_cols_list=
|
557
|
+
expected_output_cols_list=(
|
558
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
559
|
+
),
|
574
560
|
)
|
575
561
|
self._sklearn_object = fitted_estimator
|
576
562
|
self._is_fitted = True
|
577
563
|
return output_result
|
578
564
|
|
565
|
+
|
566
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
567
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
568
|
+
""" Method not supported for this class.
|
569
|
+
|
579
570
|
|
580
|
-
|
581
|
-
|
582
|
-
|
571
|
+
Raises:
|
572
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
573
|
+
|
574
|
+
Args:
|
575
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
576
|
+
Snowpark or Pandas DataFrame.
|
577
|
+
output_cols_prefix: Prefix for the response columns
|
583
578
|
Returns:
|
584
579
|
Transformed dataset.
|
585
580
|
"""
|
586
|
-
self.
|
587
|
-
|
588
|
-
|
581
|
+
self._infer_input_output_cols(dataset)
|
582
|
+
super()._check_dataset_type(dataset)
|
583
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
584
|
+
estimator=self._sklearn_object,
|
585
|
+
dataset=dataset,
|
586
|
+
input_cols=self.input_cols,
|
587
|
+
label_cols=self.label_cols,
|
588
|
+
sample_weight_col=self.sample_weight_col,
|
589
|
+
autogenerated=self._autogenerated,
|
590
|
+
subproject=_SUBPROJECT,
|
591
|
+
)
|
592
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
593
|
+
drop_input_cols=self._drop_input_cols,
|
594
|
+
expected_output_cols_list=self.output_cols,
|
595
|
+
)
|
596
|
+
self._sklearn_object = fitted_estimator
|
597
|
+
self._is_fitted = True
|
598
|
+
return output_result
|
599
|
+
|
600
|
+
|
601
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
602
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
603
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
604
|
+
"""
|
605
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
606
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
607
|
+
if output_cols:
|
608
|
+
output_cols = [
|
609
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
610
|
+
for c in output_cols
|
611
|
+
]
|
612
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
613
|
+
output_cols = [output_cols_prefix]
|
614
|
+
elif self._sklearn_object is not None:
|
615
|
+
classes = self._sklearn_object.classes_
|
616
|
+
if isinstance(classes, numpy.ndarray):
|
617
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
618
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
619
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
620
|
+
output_cols = []
|
621
|
+
for i, cl in enumerate(classes):
|
622
|
+
# For binary classification, there is only one output column for each class
|
623
|
+
# ndarray as the two classes are complementary.
|
624
|
+
if len(cl) == 2:
|
625
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
626
|
+
else:
|
627
|
+
output_cols.extend([
|
628
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
629
|
+
])
|
630
|
+
else:
|
631
|
+
output_cols = []
|
632
|
+
|
633
|
+
# Make sure column names are valid snowflake identifiers.
|
634
|
+
assert output_cols is not None # Make MyPy happy
|
635
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
636
|
+
|
637
|
+
return rv
|
638
|
+
|
639
|
+
def _align_expected_output_names(
|
640
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
641
|
+
) -> List[str]:
|
642
|
+
# in case the inferred output column names dimension is different
|
643
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
644
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
645
|
+
output_df_columns = list(output_df_pd.columns)
|
646
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
647
|
+
if self.sample_weight_col:
|
648
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
649
|
+
# if the dimension of inferred output column names is correct; use it
|
650
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
651
|
+
return expected_output_cols_list
|
652
|
+
# otherwise, use the sklearn estimator's output
|
653
|
+
else:
|
654
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
589
655
|
|
590
656
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
591
657
|
@telemetry.send_api_usage_telemetry(
|
@@ -617,24 +683,26 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
617
683
|
# are specific to the type of dataset used.
|
618
684
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
619
685
|
|
686
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
687
|
+
|
620
688
|
if isinstance(dataset, DataFrame):
|
621
|
-
self.
|
622
|
-
|
623
|
-
|
624
|
-
|
625
|
-
|
689
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
690
|
+
self._deps = self._get_dependencies()
|
691
|
+
assert isinstance(
|
692
|
+
dataset._session, Session
|
693
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
626
694
|
transform_kwargs = dict(
|
627
695
|
session=dataset._session,
|
628
696
|
dependencies=self._deps,
|
629
|
-
drop_input_cols
|
697
|
+
drop_input_cols=self._drop_input_cols,
|
630
698
|
expected_output_cols_type="float",
|
631
699
|
)
|
700
|
+
expected_output_cols = self._align_expected_output_names(
|
701
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
702
|
+
)
|
632
703
|
|
633
704
|
elif isinstance(dataset, pd.DataFrame):
|
634
|
-
transform_kwargs = dict(
|
635
|
-
snowpark_input_cols = self._snowpark_cols,
|
636
|
-
drop_input_cols = self._drop_input_cols
|
637
|
-
)
|
705
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
638
706
|
|
639
707
|
transform_handlers = ModelTransformerBuilder.build(
|
640
708
|
dataset=dataset,
|
@@ -646,7 +714,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
646
714
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
647
715
|
inference_method=inference_method,
|
648
716
|
input_cols=self.input_cols,
|
649
|
-
expected_output_cols=
|
717
|
+
expected_output_cols=expected_output_cols,
|
650
718
|
**transform_kwargs
|
651
719
|
)
|
652
720
|
return output_df
|
@@ -676,29 +744,30 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
676
744
|
Output dataset with log probability of the sample for each class in the model.
|
677
745
|
"""
|
678
746
|
super()._check_dataset_type(dataset)
|
679
|
-
inference_method="predict_log_proba"
|
747
|
+
inference_method = "predict_log_proba"
|
748
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
680
749
|
|
681
750
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
682
751
|
# are specific to the type of dataset used.
|
683
752
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
684
753
|
|
685
754
|
if isinstance(dataset, DataFrame):
|
686
|
-
self.
|
687
|
-
|
688
|
-
|
689
|
-
|
690
|
-
|
755
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
756
|
+
self._deps = self._get_dependencies()
|
757
|
+
assert isinstance(
|
758
|
+
dataset._session, Session
|
759
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
691
760
|
transform_kwargs = dict(
|
692
761
|
session=dataset._session,
|
693
762
|
dependencies=self._deps,
|
694
|
-
drop_input_cols
|
763
|
+
drop_input_cols=self._drop_input_cols,
|
695
764
|
expected_output_cols_type="float",
|
696
765
|
)
|
766
|
+
expected_output_cols = self._align_expected_output_names(
|
767
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
768
|
+
)
|
697
769
|
elif isinstance(dataset, pd.DataFrame):
|
698
|
-
transform_kwargs = dict(
|
699
|
-
snowpark_input_cols = self._snowpark_cols,
|
700
|
-
drop_input_cols = self._drop_input_cols
|
701
|
-
)
|
770
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
702
771
|
|
703
772
|
transform_handlers = ModelTransformerBuilder.build(
|
704
773
|
dataset=dataset,
|
@@ -711,7 +780,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
711
780
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
712
781
|
inference_method=inference_method,
|
713
782
|
input_cols=self.input_cols,
|
714
|
-
expected_output_cols=
|
783
|
+
expected_output_cols=expected_output_cols,
|
715
784
|
**transform_kwargs
|
716
785
|
)
|
717
786
|
return output_df
|
@@ -737,30 +806,32 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
737
806
|
Output dataset with results of the decision function for the samples in input dataset.
|
738
807
|
"""
|
739
808
|
super()._check_dataset_type(dataset)
|
740
|
-
inference_method="decision_function"
|
809
|
+
inference_method = "decision_function"
|
741
810
|
|
742
811
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
743
812
|
# are specific to the type of dataset used.
|
744
813
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
745
814
|
|
815
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
816
|
+
|
746
817
|
if isinstance(dataset, DataFrame):
|
747
|
-
self.
|
748
|
-
|
749
|
-
|
750
|
-
|
751
|
-
|
818
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
819
|
+
self._deps = self._get_dependencies()
|
820
|
+
assert isinstance(
|
821
|
+
dataset._session, Session
|
822
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
752
823
|
transform_kwargs = dict(
|
753
824
|
session=dataset._session,
|
754
825
|
dependencies=self._deps,
|
755
|
-
drop_input_cols
|
826
|
+
drop_input_cols=self._drop_input_cols,
|
756
827
|
expected_output_cols_type="float",
|
757
828
|
)
|
829
|
+
expected_output_cols = self._align_expected_output_names(
|
830
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
831
|
+
)
|
758
832
|
|
759
833
|
elif isinstance(dataset, pd.DataFrame):
|
760
|
-
transform_kwargs = dict(
|
761
|
-
snowpark_input_cols = self._snowpark_cols,
|
762
|
-
drop_input_cols = self._drop_input_cols
|
763
|
-
)
|
834
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
764
835
|
|
765
836
|
transform_handlers = ModelTransformerBuilder.build(
|
766
837
|
dataset=dataset,
|
@@ -773,7 +844,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
773
844
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
774
845
|
inference_method=inference_method,
|
775
846
|
input_cols=self.input_cols,
|
776
|
-
expected_output_cols=
|
847
|
+
expected_output_cols=expected_output_cols,
|
777
848
|
**transform_kwargs
|
778
849
|
)
|
779
850
|
return output_df
|
@@ -802,17 +873,17 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
802
873
|
Output dataset with probability of the sample for each class in the model.
|
803
874
|
"""
|
804
875
|
super()._check_dataset_type(dataset)
|
805
|
-
inference_method="score_samples"
|
876
|
+
inference_method = "score_samples"
|
806
877
|
|
807
878
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
808
879
|
# are specific to the type of dataset used.
|
809
880
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
810
881
|
|
882
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
883
|
+
|
811
884
|
if isinstance(dataset, DataFrame):
|
812
|
-
self.
|
813
|
-
|
814
|
-
inference_method=inference_method,
|
815
|
-
)
|
885
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
886
|
+
self._deps = self._get_dependencies()
|
816
887
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
817
888
|
transform_kwargs = dict(
|
818
889
|
session=dataset._session,
|
@@ -820,6 +891,9 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
820
891
|
drop_input_cols = self._drop_input_cols,
|
821
892
|
expected_output_cols_type="float",
|
822
893
|
)
|
894
|
+
expected_output_cols = self._align_expected_output_names(
|
895
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
896
|
+
)
|
823
897
|
|
824
898
|
elif isinstance(dataset, pd.DataFrame):
|
825
899
|
transform_kwargs = dict(
|
@@ -838,7 +912,7 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
838
912
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
839
913
|
inference_method=inference_method,
|
840
914
|
input_cols=self.input_cols,
|
841
|
-
expected_output_cols=
|
915
|
+
expected_output_cols=expected_output_cols,
|
842
916
|
**transform_kwargs
|
843
917
|
)
|
844
918
|
return output_df
|
@@ -873,17 +947,15 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
873
947
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
874
948
|
|
875
949
|
if isinstance(dataset, DataFrame):
|
876
|
-
self.
|
877
|
-
|
878
|
-
inference_method="score",
|
879
|
-
)
|
950
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
951
|
+
self._deps = self._get_dependencies()
|
880
952
|
selected_cols = self._get_active_columns()
|
881
953
|
if len(selected_cols) > 0:
|
882
954
|
dataset = dataset.select(selected_cols)
|
883
955
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
884
956
|
transform_kwargs = dict(
|
885
957
|
session=dataset._session,
|
886
|
-
dependencies=
|
958
|
+
dependencies=self._deps,
|
887
959
|
score_sproc_imports=['sklearn'],
|
888
960
|
)
|
889
961
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -948,11 +1020,8 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
948
1020
|
|
949
1021
|
if isinstance(dataset, DataFrame):
|
950
1022
|
|
951
|
-
self.
|
952
|
-
|
953
|
-
inference_method=inference_method,
|
954
|
-
|
955
|
-
)
|
1023
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1024
|
+
self._deps = self._get_dependencies()
|
956
1025
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
957
1026
|
transform_kwargs = dict(
|
958
1027
|
session = dataset._session,
|
@@ -985,50 +1054,84 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
985
1054
|
)
|
986
1055
|
return output_df
|
987
1056
|
|
1057
|
+
|
1058
|
+
|
1059
|
+
def to_sklearn(self) -> Any:
|
1060
|
+
"""Get sklearn.linear_model.MultiTaskLassoCV object.
|
1061
|
+
"""
|
1062
|
+
if self._sklearn_object is None:
|
1063
|
+
self._sklearn_object = self._create_sklearn_object()
|
1064
|
+
return self._sklearn_object
|
1065
|
+
|
1066
|
+
def to_xgboost(self) -> Any:
|
1067
|
+
raise exceptions.SnowflakeMLException(
|
1068
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1069
|
+
original_exception=AttributeError(
|
1070
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1071
|
+
"to_xgboost()",
|
1072
|
+
"to_sklearn()"
|
1073
|
+
)
|
1074
|
+
),
|
1075
|
+
)
|
1076
|
+
|
1077
|
+
def to_lightgbm(self) -> Any:
|
1078
|
+
raise exceptions.SnowflakeMLException(
|
1079
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1080
|
+
original_exception=AttributeError(
|
1081
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1082
|
+
"to_lightgbm()",
|
1083
|
+
"to_sklearn()"
|
1084
|
+
)
|
1085
|
+
),
|
1086
|
+
)
|
1087
|
+
|
1088
|
+
def _get_dependencies(self) -> List[str]:
|
1089
|
+
return self._deps
|
1090
|
+
|
988
1091
|
|
989
|
-
def
|
1092
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
990
1093
|
self._model_signature_dict = dict()
|
991
1094
|
|
992
1095
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
993
1096
|
|
994
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1097
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
995
1098
|
outputs: List[BaseFeatureSpec] = []
|
996
1099
|
if hasattr(self, "predict"):
|
997
1100
|
# keep mypy happy
|
998
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1101
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
999
1102
|
# For classifier, the type of predict is the same as the type of label
|
1000
|
-
if self._sklearn_object._estimator_type ==
|
1001
|
-
|
1103
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1104
|
+
# label columns is the desired type for output
|
1002
1105
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1003
1106
|
# rename the output columns
|
1004
1107
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1005
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1006
|
-
|
1007
|
-
|
1108
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1109
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1110
|
+
)
|
1008
1111
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1009
1112
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1010
|
-
# Clusterer returns int64 cluster labels.
|
1113
|
+
# Clusterer returns int64 cluster labels.
|
1011
1114
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1012
1115
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1013
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1014
|
-
|
1015
|
-
|
1016
|
-
|
1116
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1117
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1118
|
+
)
|
1119
|
+
|
1017
1120
|
# For regressor, the type of predict is float64
|
1018
|
-
elif self._sklearn_object._estimator_type ==
|
1121
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1019
1122
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1020
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1021
|
-
|
1022
|
-
|
1023
|
-
|
1123
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1124
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1125
|
+
)
|
1126
|
+
|
1024
1127
|
for prob_func in PROB_FUNCTIONS:
|
1025
1128
|
if hasattr(self, prob_func):
|
1026
1129
|
output_cols_prefix: str = f"{prob_func}_"
|
1027
1130
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1028
1131
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1029
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1030
|
-
|
1031
|
-
|
1132
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1133
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1134
|
+
)
|
1032
1135
|
|
1033
1136
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1034
1137
|
items = list(self._model_signature_dict.items())
|
@@ -1041,10 +1144,10 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
1041
1144
|
"""Returns model signature of current class.
|
1042
1145
|
|
1043
1146
|
Raises:
|
1044
|
-
|
1147
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1045
1148
|
|
1046
1149
|
Returns:
|
1047
|
-
Dict
|
1150
|
+
Dict with each method and its input output signature
|
1048
1151
|
"""
|
1049
1152
|
if self._model_signature_dict is None:
|
1050
1153
|
raise exceptions.SnowflakeMLException(
|
@@ -1052,35 +1155,3 @@ class MultiTaskLassoCV(BaseTransformer):
|
|
1052
1155
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1053
1156
|
)
|
1054
1157
|
return self._model_signature_dict
|
1055
|
-
|
1056
|
-
def to_sklearn(self) -> Any:
|
1057
|
-
"""Get sklearn.linear_model.MultiTaskLassoCV object.
|
1058
|
-
"""
|
1059
|
-
if self._sklearn_object is None:
|
1060
|
-
self._sklearn_object = self._create_sklearn_object()
|
1061
|
-
return self._sklearn_object
|
1062
|
-
|
1063
|
-
def to_xgboost(self) -> Any:
|
1064
|
-
raise exceptions.SnowflakeMLException(
|
1065
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1066
|
-
original_exception=AttributeError(
|
1067
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1068
|
-
"to_xgboost()",
|
1069
|
-
"to_sklearn()"
|
1070
|
-
)
|
1071
|
-
),
|
1072
|
-
)
|
1073
|
-
|
1074
|
-
def to_lightgbm(self) -> Any:
|
1075
|
-
raise exceptions.SnowflakeMLException(
|
1076
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1077
|
-
original_exception=AttributeError(
|
1078
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1079
|
-
"to_lightgbm()",
|
1080
|
-
"to_sklearn()"
|
1081
|
-
)
|
1082
|
-
),
|
1083
|
-
)
|
1084
|
-
|
1085
|
-
def _get_dependencies(self) -> List[str]:
|
1086
|
-
return self._deps
|