snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn."
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class DecisionTreeClassifier(BaseTransformer):
71
64
  r"""A decision tree classifier
72
65
  For more details on this class, see [sklearn.tree.DecisionTreeClassifier]
@@ -330,12 +323,7 @@ class DecisionTreeClassifier(BaseTransformer):
330
323
  )
331
324
  return selected_cols
332
325
 
333
- @telemetry.send_api_usage_telemetry(
334
- project=_PROJECT,
335
- subproject=_SUBPROJECT,
336
- custom_tags=dict([("autogen", True)]),
337
- )
338
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeClassifier":
326
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeClassifier":
339
327
  """Build a decision tree classifier from the training set (X, y)
340
328
  For more details on this function, see [sklearn.tree.DecisionTreeClassifier.fit]
341
329
  (https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.fit)
@@ -362,12 +350,14 @@ class DecisionTreeClassifier(BaseTransformer):
362
350
 
363
351
  self._snowpark_cols = dataset.select(self.input_cols).columns
364
352
 
365
- # If we are already in a stored procedure, no need to kick off another one.
353
+ # If we are already in a stored procedure, no need to kick off another one.
366
354
  if SNOWML_SPROC_ENV in os.environ:
367
355
  statement_params = telemetry.get_function_usage_statement_params(
368
356
  project=_PROJECT,
369
357
  subproject=_SUBPROJECT,
370
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), DecisionTreeClassifier.__class__.__name__),
358
+ function_name=telemetry.get_statement_params_full_func_name(
359
+ inspect.currentframe(), DecisionTreeClassifier.__class__.__name__
360
+ ),
371
361
  api_calls=[Session.call],
372
362
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
373
363
  )
@@ -388,27 +378,24 @@ class DecisionTreeClassifier(BaseTransformer):
388
378
  )
389
379
  self._sklearn_object = model_trainer.train()
390
380
  self._is_fitted = True
391
- self._get_model_signatures(dataset)
381
+ self._generate_model_signatures(dataset)
392
382
  return self
393
383
 
394
384
  def _batch_inference_validate_snowpark(
395
385
  self,
396
386
  dataset: DataFrame,
397
387
  inference_method: str,
398
- ) -> List[str]:
399
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
400
- return the available package that exists in the snowflake anaconda channel
388
+ ) -> None:
389
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
401
390
 
402
391
  Args:
403
392
  dataset: snowpark dataframe
404
393
  inference_method: the inference method such as predict, score...
405
-
394
+
406
395
  Raises:
407
396
  SnowflakeMLException: If the estimator is not fitted, raise error
408
397
  SnowflakeMLException: If the session is None, raise error
409
398
 
410
- Returns:
411
- A list of available package that exists in the snowflake anaconda channel
412
399
  """
413
400
  if not self._is_fitted:
414
401
  raise exceptions.SnowflakeMLException(
@@ -426,9 +413,7 @@ class DecisionTreeClassifier(BaseTransformer):
426
413
  "Session must not specified for snowpark dataset."
427
414
  ),
428
415
  )
429
- # Validate that key package version in user workspace are supported in snowflake conda channel
430
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
431
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
416
+
432
417
 
433
418
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
434
419
  @telemetry.send_api_usage_telemetry(
@@ -464,7 +449,9 @@ class DecisionTreeClassifier(BaseTransformer):
464
449
  # when it is classifier, infer the datatype from label columns
465
450
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
466
451
  # Batch inference takes a single expected output column type. Use the first columns type for now.
467
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
452
+ label_cols_signatures = [
453
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
454
+ ]
468
455
  if len(label_cols_signatures) == 0:
469
456
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
470
457
  raise exceptions.SnowflakeMLException(
@@ -472,25 +459,23 @@ class DecisionTreeClassifier(BaseTransformer):
472
459
  original_exception=ValueError(error_str),
473
460
  )
474
461
 
475
- expected_type_inferred = convert_sp_to_sf_type(
476
- label_cols_signatures[0].as_snowpark_type()
477
- )
462
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
478
463
 
479
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
480
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
464
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
465
+ self._deps = self._get_dependencies()
466
+ assert isinstance(
467
+ dataset._session, Session
468
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
481
469
 
482
470
  transform_kwargs = dict(
483
- session = dataset._session,
484
- dependencies = self._deps,
485
- drop_input_cols = self._drop_input_cols,
486
- expected_output_cols_type = expected_type_inferred,
471
+ session=dataset._session,
472
+ dependencies=self._deps,
473
+ drop_input_cols=self._drop_input_cols,
474
+ expected_output_cols_type=expected_type_inferred,
487
475
  )
488
476
 
489
477
  elif isinstance(dataset, pd.DataFrame):
490
- transform_kwargs = dict(
491
- snowpark_input_cols = self._snowpark_cols,
492
- drop_input_cols = self._drop_input_cols
493
- )
478
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
494
479
 
495
480
  transform_handlers = ModelTransformerBuilder.build(
496
481
  dataset=dataset,
@@ -530,7 +515,7 @@ class DecisionTreeClassifier(BaseTransformer):
530
515
  Transformed dataset.
531
516
  """
532
517
  super()._check_dataset_type(dataset)
533
- inference_method="transform"
518
+ inference_method = "transform"
534
519
 
535
520
  # This dictionary contains optional kwargs for batch inference. These kwargs
536
521
  # are specific to the type of dataset used.
@@ -560,24 +545,19 @@ class DecisionTreeClassifier(BaseTransformer):
560
545
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
561
546
  expected_dtype = convert_sp_to_sf_type(output_types[0])
562
547
 
563
- self._deps = self._batch_inference_validate_snowpark(
564
- dataset=dataset,
565
- inference_method=inference_method,
566
- )
548
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
549
+ self._deps = self._get_dependencies()
567
550
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
568
551
 
569
552
  transform_kwargs = dict(
570
- session = dataset._session,
571
- dependencies = self._deps,
572
- drop_input_cols = self._drop_input_cols,
573
- expected_output_cols_type = expected_dtype,
553
+ session=dataset._session,
554
+ dependencies=self._deps,
555
+ drop_input_cols=self._drop_input_cols,
556
+ expected_output_cols_type=expected_dtype,
574
557
  )
575
558
 
576
559
  elif isinstance(dataset, pd.DataFrame):
577
- transform_kwargs = dict(
578
- snowpark_input_cols = self._snowpark_cols,
579
- drop_input_cols = self._drop_input_cols
580
- )
560
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
581
561
 
582
562
  transform_handlers = ModelTransformerBuilder.build(
583
563
  dataset=dataset,
@@ -596,7 +576,11 @@ class DecisionTreeClassifier(BaseTransformer):
596
576
  return output_df
597
577
 
598
578
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
599
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
579
+ def fit_predict(
580
+ self,
581
+ dataset: Union[DataFrame, pd.DataFrame],
582
+ output_cols_prefix: str = "fit_predict_",
583
+ ) -> Union[DataFrame, pd.DataFrame]:
600
584
  """ Method not supported for this class.
601
585
 
602
586
 
@@ -621,22 +605,104 @@ class DecisionTreeClassifier(BaseTransformer):
621
605
  )
622
606
  output_result, fitted_estimator = model_trainer.train_fit_predict(
623
607
  drop_input_cols=self._drop_input_cols,
624
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
608
+ expected_output_cols_list=(
609
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
610
+ ),
625
611
  )
626
612
  self._sklearn_object = fitted_estimator
627
613
  self._is_fitted = True
628
614
  return output_result
629
615
 
616
+
617
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
618
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
619
+ """ Method not supported for this class.
620
+
630
621
 
631
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
632
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
633
- """
622
+ Raises:
623
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
624
+
625
+ Args:
626
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
627
+ Snowpark or Pandas DataFrame.
628
+ output_cols_prefix: Prefix for the response columns
634
629
  Returns:
635
630
  Transformed dataset.
636
631
  """
637
- self.fit(dataset)
638
- assert self._sklearn_object is not None
639
- return self._sklearn_object.embedding_
632
+ self._infer_input_output_cols(dataset)
633
+ super()._check_dataset_type(dataset)
634
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
635
+ estimator=self._sklearn_object,
636
+ dataset=dataset,
637
+ input_cols=self.input_cols,
638
+ label_cols=self.label_cols,
639
+ sample_weight_col=self.sample_weight_col,
640
+ autogenerated=self._autogenerated,
641
+ subproject=_SUBPROJECT,
642
+ )
643
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
644
+ drop_input_cols=self._drop_input_cols,
645
+ expected_output_cols_list=self.output_cols,
646
+ )
647
+ self._sklearn_object = fitted_estimator
648
+ self._is_fitted = True
649
+ return output_result
650
+
651
+
652
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
653
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
654
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
655
+ """
656
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
657
+ # The following condition is introduced for kneighbors methods, and not used in other methods
658
+ if output_cols:
659
+ output_cols = [
660
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
661
+ for c in output_cols
662
+ ]
663
+ elif getattr(self._sklearn_object, "classes_", None) is None:
664
+ output_cols = [output_cols_prefix]
665
+ elif self._sklearn_object is not None:
666
+ classes = self._sklearn_object.classes_
667
+ if isinstance(classes, numpy.ndarray):
668
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
669
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
670
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
671
+ output_cols = []
672
+ for i, cl in enumerate(classes):
673
+ # For binary classification, there is only one output column for each class
674
+ # ndarray as the two classes are complementary.
675
+ if len(cl) == 2:
676
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
677
+ else:
678
+ output_cols.extend([
679
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
680
+ ])
681
+ else:
682
+ output_cols = []
683
+
684
+ # Make sure column names are valid snowflake identifiers.
685
+ assert output_cols is not None # Make MyPy happy
686
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
687
+
688
+ return rv
689
+
690
+ def _align_expected_output_names(
691
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
692
+ ) -> List[str]:
693
+ # in case the inferred output column names dimension is different
694
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
695
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
696
+ output_df_columns = list(output_df_pd.columns)
697
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
698
+ if self.sample_weight_col:
699
+ output_df_columns_set -= set(self.sample_weight_col)
700
+ # if the dimension of inferred output column names is correct; use it
701
+ if len(expected_output_cols_list) == len(output_df_columns_set):
702
+ return expected_output_cols_list
703
+ # otherwise, use the sklearn estimator's output
704
+ else:
705
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
640
706
 
641
707
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
642
708
  @telemetry.send_api_usage_telemetry(
@@ -670,24 +736,26 @@ class DecisionTreeClassifier(BaseTransformer):
670
736
  # are specific to the type of dataset used.
671
737
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
672
738
 
739
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
740
+
673
741
  if isinstance(dataset, DataFrame):
674
- self._deps = self._batch_inference_validate_snowpark(
675
- dataset=dataset,
676
- inference_method=inference_method,
677
- )
678
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
742
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
743
+ self._deps = self._get_dependencies()
744
+ assert isinstance(
745
+ dataset._session, Session
746
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
679
747
  transform_kwargs = dict(
680
748
  session=dataset._session,
681
749
  dependencies=self._deps,
682
- drop_input_cols = self._drop_input_cols,
750
+ drop_input_cols=self._drop_input_cols,
683
751
  expected_output_cols_type="float",
684
752
  )
753
+ expected_output_cols = self._align_expected_output_names(
754
+ inference_method, dataset, expected_output_cols, output_cols_prefix
755
+ )
685
756
 
686
757
  elif isinstance(dataset, pd.DataFrame):
687
- transform_kwargs = dict(
688
- snowpark_input_cols = self._snowpark_cols,
689
- drop_input_cols = self._drop_input_cols
690
- )
758
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
691
759
 
692
760
  transform_handlers = ModelTransformerBuilder.build(
693
761
  dataset=dataset,
@@ -699,7 +767,7 @@ class DecisionTreeClassifier(BaseTransformer):
699
767
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
700
768
  inference_method=inference_method,
701
769
  input_cols=self.input_cols,
702
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
770
+ expected_output_cols=expected_output_cols,
703
771
  **transform_kwargs
704
772
  )
705
773
  return output_df
@@ -731,29 +799,30 @@ class DecisionTreeClassifier(BaseTransformer):
731
799
  Output dataset with log probability of the sample for each class in the model.
732
800
  """
733
801
  super()._check_dataset_type(dataset)
734
- inference_method="predict_log_proba"
802
+ inference_method = "predict_log_proba"
803
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
735
804
 
736
805
  # This dictionary contains optional kwargs for batch inference. These kwargs
737
806
  # are specific to the type of dataset used.
738
807
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
739
808
 
740
809
  if isinstance(dataset, DataFrame):
741
- self._deps = self._batch_inference_validate_snowpark(
742
- dataset=dataset,
743
- inference_method=inference_method,
744
- )
745
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
810
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
811
+ self._deps = self._get_dependencies()
812
+ assert isinstance(
813
+ dataset._session, Session
814
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
746
815
  transform_kwargs = dict(
747
816
  session=dataset._session,
748
817
  dependencies=self._deps,
749
- drop_input_cols = self._drop_input_cols,
818
+ drop_input_cols=self._drop_input_cols,
750
819
  expected_output_cols_type="float",
751
820
  )
821
+ expected_output_cols = self._align_expected_output_names(
822
+ inference_method, dataset, expected_output_cols, output_cols_prefix
823
+ )
752
824
  elif isinstance(dataset, pd.DataFrame):
753
- transform_kwargs = dict(
754
- snowpark_input_cols = self._snowpark_cols,
755
- drop_input_cols = self._drop_input_cols
756
- )
825
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
757
826
 
758
827
  transform_handlers = ModelTransformerBuilder.build(
759
828
  dataset=dataset,
@@ -766,7 +835,7 @@ class DecisionTreeClassifier(BaseTransformer):
766
835
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
767
836
  inference_method=inference_method,
768
837
  input_cols=self.input_cols,
769
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
838
+ expected_output_cols=expected_output_cols,
770
839
  **transform_kwargs
771
840
  )
772
841
  return output_df
@@ -792,30 +861,32 @@ class DecisionTreeClassifier(BaseTransformer):
792
861
  Output dataset with results of the decision function for the samples in input dataset.
793
862
  """
794
863
  super()._check_dataset_type(dataset)
795
- inference_method="decision_function"
864
+ inference_method = "decision_function"
796
865
 
797
866
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
867
  # are specific to the type of dataset used.
799
868
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
800
869
 
870
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
871
+
801
872
  if isinstance(dataset, DataFrame):
802
- self._deps = self._batch_inference_validate_snowpark(
803
- dataset=dataset,
804
- inference_method=inference_method,
805
- )
806
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
873
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
874
+ self._deps = self._get_dependencies()
875
+ assert isinstance(
876
+ dataset._session, Session
877
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
807
878
  transform_kwargs = dict(
808
879
  session=dataset._session,
809
880
  dependencies=self._deps,
810
- drop_input_cols = self._drop_input_cols,
881
+ drop_input_cols=self._drop_input_cols,
811
882
  expected_output_cols_type="float",
812
883
  )
884
+ expected_output_cols = self._align_expected_output_names(
885
+ inference_method, dataset, expected_output_cols, output_cols_prefix
886
+ )
813
887
 
814
888
  elif isinstance(dataset, pd.DataFrame):
815
- transform_kwargs = dict(
816
- snowpark_input_cols = self._snowpark_cols,
817
- drop_input_cols = self._drop_input_cols
818
- )
889
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
819
890
 
820
891
  transform_handlers = ModelTransformerBuilder.build(
821
892
  dataset=dataset,
@@ -828,7 +899,7 @@ class DecisionTreeClassifier(BaseTransformer):
828
899
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
829
900
  inference_method=inference_method,
830
901
  input_cols=self.input_cols,
831
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
902
+ expected_output_cols=expected_output_cols,
832
903
  **transform_kwargs
833
904
  )
834
905
  return output_df
@@ -857,17 +928,17 @@ class DecisionTreeClassifier(BaseTransformer):
857
928
  Output dataset with probability of the sample for each class in the model.
858
929
  """
859
930
  super()._check_dataset_type(dataset)
860
- inference_method="score_samples"
931
+ inference_method = "score_samples"
861
932
 
862
933
  # This dictionary contains optional kwargs for batch inference. These kwargs
863
934
  # are specific to the type of dataset used.
864
935
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
865
936
 
937
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
938
+
866
939
  if isinstance(dataset, DataFrame):
867
- self._deps = self._batch_inference_validate_snowpark(
868
- dataset=dataset,
869
- inference_method=inference_method,
870
- )
940
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
941
+ self._deps = self._get_dependencies()
871
942
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
872
943
  transform_kwargs = dict(
873
944
  session=dataset._session,
@@ -875,6 +946,9 @@ class DecisionTreeClassifier(BaseTransformer):
875
946
  drop_input_cols = self._drop_input_cols,
876
947
  expected_output_cols_type="float",
877
948
  )
949
+ expected_output_cols = self._align_expected_output_names(
950
+ inference_method, dataset, expected_output_cols, output_cols_prefix
951
+ )
878
952
 
879
953
  elif isinstance(dataset, pd.DataFrame):
880
954
  transform_kwargs = dict(
@@ -893,7 +967,7 @@ class DecisionTreeClassifier(BaseTransformer):
893
967
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
894
968
  inference_method=inference_method,
895
969
  input_cols=self.input_cols,
896
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
970
+ expected_output_cols=expected_output_cols,
897
971
  **transform_kwargs
898
972
  )
899
973
  return output_df
@@ -928,17 +1002,15 @@ class DecisionTreeClassifier(BaseTransformer):
928
1002
  transform_kwargs: ScoreKwargsTypedDict = dict()
929
1003
 
930
1004
  if isinstance(dataset, DataFrame):
931
- self._deps = self._batch_inference_validate_snowpark(
932
- dataset=dataset,
933
- inference_method="score",
934
- )
1005
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1006
+ self._deps = self._get_dependencies()
935
1007
  selected_cols = self._get_active_columns()
936
1008
  if len(selected_cols) > 0:
937
1009
  dataset = dataset.select(selected_cols)
938
1010
  assert isinstance(dataset._session, Session) # keep mypy happy
939
1011
  transform_kwargs = dict(
940
1012
  session=dataset._session,
941
- dependencies=["snowflake-snowpark-python"] + self._deps,
1013
+ dependencies=self._deps,
942
1014
  score_sproc_imports=['sklearn'],
943
1015
  )
944
1016
  elif isinstance(dataset, pd.DataFrame):
@@ -1003,11 +1075,8 @@ class DecisionTreeClassifier(BaseTransformer):
1003
1075
 
1004
1076
  if isinstance(dataset, DataFrame):
1005
1077
 
1006
- self._deps = self._batch_inference_validate_snowpark(
1007
- dataset=dataset,
1008
- inference_method=inference_method,
1009
-
1010
- )
1078
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1079
+ self._deps = self._get_dependencies()
1011
1080
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1012
1081
  transform_kwargs = dict(
1013
1082
  session = dataset._session,
@@ -1040,50 +1109,84 @@ class DecisionTreeClassifier(BaseTransformer):
1040
1109
  )
1041
1110
  return output_df
1042
1111
 
1112
+
1113
+
1114
+ def to_sklearn(self) -> Any:
1115
+ """Get sklearn.tree.DecisionTreeClassifier object.
1116
+ """
1117
+ if self._sklearn_object is None:
1118
+ self._sklearn_object = self._create_sklearn_object()
1119
+ return self._sklearn_object
1120
+
1121
+ def to_xgboost(self) -> Any:
1122
+ raise exceptions.SnowflakeMLException(
1123
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1124
+ original_exception=AttributeError(
1125
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1126
+ "to_xgboost()",
1127
+ "to_sklearn()"
1128
+ )
1129
+ ),
1130
+ )
1131
+
1132
+ def to_lightgbm(self) -> Any:
1133
+ raise exceptions.SnowflakeMLException(
1134
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1135
+ original_exception=AttributeError(
1136
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1137
+ "to_lightgbm()",
1138
+ "to_sklearn()"
1139
+ )
1140
+ ),
1141
+ )
1142
+
1143
+ def _get_dependencies(self) -> List[str]:
1144
+ return self._deps
1145
+
1043
1146
 
1044
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1147
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1045
1148
  self._model_signature_dict = dict()
1046
1149
 
1047
1150
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1048
1151
 
1049
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1152
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1050
1153
  outputs: List[BaseFeatureSpec] = []
1051
1154
  if hasattr(self, "predict"):
1052
1155
  # keep mypy happy
1053
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1156
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1054
1157
  # For classifier, the type of predict is the same as the type of label
1055
- if self._sklearn_object._estimator_type == 'classifier':
1056
- # label columns is the desired type for output
1158
+ if self._sklearn_object._estimator_type == "classifier":
1159
+ # label columns is the desired type for output
1057
1160
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1058
1161
  # rename the output columns
1059
1162
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1060
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1061
- ([] if self._drop_input_cols else inputs)
1062
- + outputs)
1163
+ self._model_signature_dict["predict"] = ModelSignature(
1164
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1165
+ )
1063
1166
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1064
1167
  # For outlier models, returns -1 for outliers and 1 for inliers.
1065
- # Clusterer returns int64 cluster labels.
1168
+ # Clusterer returns int64 cluster labels.
1066
1169
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1067
1170
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1068
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1069
- ([] if self._drop_input_cols else inputs)
1070
- + outputs)
1071
-
1171
+ self._model_signature_dict["predict"] = ModelSignature(
1172
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1173
+ )
1174
+
1072
1175
  # For regressor, the type of predict is float64
1073
- elif self._sklearn_object._estimator_type == 'regressor':
1176
+ elif self._sklearn_object._estimator_type == "regressor":
1074
1177
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1075
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1076
- ([] if self._drop_input_cols else inputs)
1077
- + outputs)
1078
-
1178
+ self._model_signature_dict["predict"] = ModelSignature(
1179
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1180
+ )
1181
+
1079
1182
  for prob_func in PROB_FUNCTIONS:
1080
1183
  if hasattr(self, prob_func):
1081
1184
  output_cols_prefix: str = f"{prob_func}_"
1082
1185
  output_column_names = self._get_output_column_names(output_cols_prefix)
1083
1186
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1084
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1085
- ([] if self._drop_input_cols else inputs)
1086
- + outputs)
1187
+ self._model_signature_dict[prob_func] = ModelSignature(
1188
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1189
+ )
1087
1190
 
1088
1191
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1089
1192
  items = list(self._model_signature_dict.items())
@@ -1096,10 +1199,10 @@ class DecisionTreeClassifier(BaseTransformer):
1096
1199
  """Returns model signature of current class.
1097
1200
 
1098
1201
  Raises:
1099
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1202
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1100
1203
 
1101
1204
  Returns:
1102
- Dict[str, ModelSignature]: each method and its input output signature
1205
+ Dict with each method and its input output signature
1103
1206
  """
1104
1207
  if self._model_signature_dict is None:
1105
1208
  raise exceptions.SnowflakeMLException(
@@ -1107,35 +1210,3 @@ class DecisionTreeClassifier(BaseTransformer):
1107
1210
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1108
1211
  )
1109
1212
  return self._model_signature_dict
1110
-
1111
- def to_sklearn(self) -> Any:
1112
- """Get sklearn.tree.DecisionTreeClassifier object.
1113
- """
1114
- if self._sklearn_object is None:
1115
- self._sklearn_object = self._create_sklearn_object()
1116
- return self._sklearn_object
1117
-
1118
- def to_xgboost(self) -> Any:
1119
- raise exceptions.SnowflakeMLException(
1120
- error_code=error_codes.METHOD_NOT_ALLOWED,
1121
- original_exception=AttributeError(
1122
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1123
- "to_xgboost()",
1124
- "to_sklearn()"
1125
- )
1126
- ),
1127
- )
1128
-
1129
- def to_lightgbm(self) -> Any:
1130
- raise exceptions.SnowflakeMLException(
1131
- error_code=error_codes.METHOD_NOT_ALLOWED,
1132
- original_exception=AttributeError(
1133
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1134
- "to_lightgbm()",
1135
- "to_sklearn()"
1136
- )
1137
- ),
1138
- )
1139
-
1140
- def _get_dependencies(self) -> List[str]:
1141
- return self._deps