snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.tree".replace("sklearn."
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class DecisionTreeClassifier(BaseTransformer):
|
71
64
|
r"""A decision tree classifier
|
72
65
|
For more details on this class, see [sklearn.tree.DecisionTreeClassifier]
|
@@ -330,12 +323,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
330
323
|
)
|
331
324
|
return selected_cols
|
332
325
|
|
333
|
-
|
334
|
-
project=_PROJECT,
|
335
|
-
subproject=_SUBPROJECT,
|
336
|
-
custom_tags=dict([("autogen", True)]),
|
337
|
-
)
|
338
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeClassifier":
|
326
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "DecisionTreeClassifier":
|
339
327
|
"""Build a decision tree classifier from the training set (X, y)
|
340
328
|
For more details on this function, see [sklearn.tree.DecisionTreeClassifier.fit]
|
341
329
|
(https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier.fit)
|
@@ -362,12 +350,14 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
362
350
|
|
363
351
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
364
352
|
|
365
|
-
|
353
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
366
354
|
if SNOWML_SPROC_ENV in os.environ:
|
367
355
|
statement_params = telemetry.get_function_usage_statement_params(
|
368
356
|
project=_PROJECT,
|
369
357
|
subproject=_SUBPROJECT,
|
370
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
358
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
359
|
+
inspect.currentframe(), DecisionTreeClassifier.__class__.__name__
|
360
|
+
),
|
371
361
|
api_calls=[Session.call],
|
372
362
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
373
363
|
)
|
@@ -388,27 +378,24 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
388
378
|
)
|
389
379
|
self._sklearn_object = model_trainer.train()
|
390
380
|
self._is_fitted = True
|
391
|
-
self.
|
381
|
+
self._generate_model_signatures(dataset)
|
392
382
|
return self
|
393
383
|
|
394
384
|
def _batch_inference_validate_snowpark(
|
395
385
|
self,
|
396
386
|
dataset: DataFrame,
|
397
387
|
inference_method: str,
|
398
|
-
) ->
|
399
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
400
|
-
return the available package that exists in the snowflake anaconda channel
|
388
|
+
) -> None:
|
389
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
401
390
|
|
402
391
|
Args:
|
403
392
|
dataset: snowpark dataframe
|
404
393
|
inference_method: the inference method such as predict, score...
|
405
|
-
|
394
|
+
|
406
395
|
Raises:
|
407
396
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
408
397
|
SnowflakeMLException: If the session is None, raise error
|
409
398
|
|
410
|
-
Returns:
|
411
|
-
A list of available package that exists in the snowflake anaconda channel
|
412
399
|
"""
|
413
400
|
if not self._is_fitted:
|
414
401
|
raise exceptions.SnowflakeMLException(
|
@@ -426,9 +413,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
426
413
|
"Session must not specified for snowpark dataset."
|
427
414
|
),
|
428
415
|
)
|
429
|
-
|
430
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
431
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
416
|
+
|
432
417
|
|
433
418
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
434
419
|
@telemetry.send_api_usage_telemetry(
|
@@ -464,7 +449,9 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
464
449
|
# when it is classifier, infer the datatype from label columns
|
465
450
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
466
451
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
467
|
-
label_cols_signatures = [
|
452
|
+
label_cols_signatures = [
|
453
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
454
|
+
]
|
468
455
|
if len(label_cols_signatures) == 0:
|
469
456
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
470
457
|
raise exceptions.SnowflakeMLException(
|
@@ -472,25 +459,23 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
472
459
|
original_exception=ValueError(error_str),
|
473
460
|
)
|
474
461
|
|
475
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
476
|
-
label_cols_signatures[0].as_snowpark_type()
|
477
|
-
)
|
462
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
478
463
|
|
479
|
-
self.
|
480
|
-
|
464
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
465
|
+
self._deps = self._get_dependencies()
|
466
|
+
assert isinstance(
|
467
|
+
dataset._session, Session
|
468
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
481
469
|
|
482
470
|
transform_kwargs = dict(
|
483
|
-
session
|
484
|
-
dependencies
|
485
|
-
drop_input_cols
|
486
|
-
expected_output_cols_type
|
471
|
+
session=dataset._session,
|
472
|
+
dependencies=self._deps,
|
473
|
+
drop_input_cols=self._drop_input_cols,
|
474
|
+
expected_output_cols_type=expected_type_inferred,
|
487
475
|
)
|
488
476
|
|
489
477
|
elif isinstance(dataset, pd.DataFrame):
|
490
|
-
transform_kwargs = dict(
|
491
|
-
snowpark_input_cols = self._snowpark_cols,
|
492
|
-
drop_input_cols = self._drop_input_cols
|
493
|
-
)
|
478
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
494
479
|
|
495
480
|
transform_handlers = ModelTransformerBuilder.build(
|
496
481
|
dataset=dataset,
|
@@ -530,7 +515,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
530
515
|
Transformed dataset.
|
531
516
|
"""
|
532
517
|
super()._check_dataset_type(dataset)
|
533
|
-
inference_method="transform"
|
518
|
+
inference_method = "transform"
|
534
519
|
|
535
520
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
536
521
|
# are specific to the type of dataset used.
|
@@ -560,24 +545,19 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
560
545
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
561
546
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
562
547
|
|
563
|
-
self.
|
564
|
-
|
565
|
-
inference_method=inference_method,
|
566
|
-
)
|
548
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
549
|
+
self._deps = self._get_dependencies()
|
567
550
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
568
551
|
|
569
552
|
transform_kwargs = dict(
|
570
|
-
session
|
571
|
-
dependencies
|
572
|
-
drop_input_cols
|
573
|
-
expected_output_cols_type
|
553
|
+
session=dataset._session,
|
554
|
+
dependencies=self._deps,
|
555
|
+
drop_input_cols=self._drop_input_cols,
|
556
|
+
expected_output_cols_type=expected_dtype,
|
574
557
|
)
|
575
558
|
|
576
559
|
elif isinstance(dataset, pd.DataFrame):
|
577
|
-
transform_kwargs = dict(
|
578
|
-
snowpark_input_cols = self._snowpark_cols,
|
579
|
-
drop_input_cols = self._drop_input_cols
|
580
|
-
)
|
560
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
581
561
|
|
582
562
|
transform_handlers = ModelTransformerBuilder.build(
|
583
563
|
dataset=dataset,
|
@@ -596,7 +576,11 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
596
576
|
return output_df
|
597
577
|
|
598
578
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
599
|
-
def fit_predict(
|
579
|
+
def fit_predict(
|
580
|
+
self,
|
581
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
582
|
+
output_cols_prefix: str = "fit_predict_",
|
583
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
600
584
|
""" Method not supported for this class.
|
601
585
|
|
602
586
|
|
@@ -621,22 +605,104 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
621
605
|
)
|
622
606
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
623
607
|
drop_input_cols=self._drop_input_cols,
|
624
|
-
expected_output_cols_list=
|
608
|
+
expected_output_cols_list=(
|
609
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
610
|
+
),
|
625
611
|
)
|
626
612
|
self._sklearn_object = fitted_estimator
|
627
613
|
self._is_fitted = True
|
628
614
|
return output_result
|
629
615
|
|
616
|
+
|
617
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
618
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
619
|
+
""" Method not supported for this class.
|
620
|
+
|
630
621
|
|
631
|
-
|
632
|
-
|
633
|
-
|
622
|
+
Raises:
|
623
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
624
|
+
|
625
|
+
Args:
|
626
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
627
|
+
Snowpark or Pandas DataFrame.
|
628
|
+
output_cols_prefix: Prefix for the response columns
|
634
629
|
Returns:
|
635
630
|
Transformed dataset.
|
636
631
|
"""
|
637
|
-
self.
|
638
|
-
|
639
|
-
|
632
|
+
self._infer_input_output_cols(dataset)
|
633
|
+
super()._check_dataset_type(dataset)
|
634
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
635
|
+
estimator=self._sklearn_object,
|
636
|
+
dataset=dataset,
|
637
|
+
input_cols=self.input_cols,
|
638
|
+
label_cols=self.label_cols,
|
639
|
+
sample_weight_col=self.sample_weight_col,
|
640
|
+
autogenerated=self._autogenerated,
|
641
|
+
subproject=_SUBPROJECT,
|
642
|
+
)
|
643
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
644
|
+
drop_input_cols=self._drop_input_cols,
|
645
|
+
expected_output_cols_list=self.output_cols,
|
646
|
+
)
|
647
|
+
self._sklearn_object = fitted_estimator
|
648
|
+
self._is_fitted = True
|
649
|
+
return output_result
|
650
|
+
|
651
|
+
|
652
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
653
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
654
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
655
|
+
"""
|
656
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
657
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
658
|
+
if output_cols:
|
659
|
+
output_cols = [
|
660
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
661
|
+
for c in output_cols
|
662
|
+
]
|
663
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
664
|
+
output_cols = [output_cols_prefix]
|
665
|
+
elif self._sklearn_object is not None:
|
666
|
+
classes = self._sklearn_object.classes_
|
667
|
+
if isinstance(classes, numpy.ndarray):
|
668
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
669
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
670
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
671
|
+
output_cols = []
|
672
|
+
for i, cl in enumerate(classes):
|
673
|
+
# For binary classification, there is only one output column for each class
|
674
|
+
# ndarray as the two classes are complementary.
|
675
|
+
if len(cl) == 2:
|
676
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
677
|
+
else:
|
678
|
+
output_cols.extend([
|
679
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
680
|
+
])
|
681
|
+
else:
|
682
|
+
output_cols = []
|
683
|
+
|
684
|
+
# Make sure column names are valid snowflake identifiers.
|
685
|
+
assert output_cols is not None # Make MyPy happy
|
686
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
687
|
+
|
688
|
+
return rv
|
689
|
+
|
690
|
+
def _align_expected_output_names(
|
691
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
692
|
+
) -> List[str]:
|
693
|
+
# in case the inferred output column names dimension is different
|
694
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
695
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
696
|
+
output_df_columns = list(output_df_pd.columns)
|
697
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
698
|
+
if self.sample_weight_col:
|
699
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
700
|
+
# if the dimension of inferred output column names is correct; use it
|
701
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
702
|
+
return expected_output_cols_list
|
703
|
+
# otherwise, use the sklearn estimator's output
|
704
|
+
else:
|
705
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
640
706
|
|
641
707
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
642
708
|
@telemetry.send_api_usage_telemetry(
|
@@ -670,24 +736,26 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
670
736
|
# are specific to the type of dataset used.
|
671
737
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
672
738
|
|
739
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
740
|
+
|
673
741
|
if isinstance(dataset, DataFrame):
|
674
|
-
self.
|
675
|
-
|
676
|
-
|
677
|
-
|
678
|
-
|
742
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
743
|
+
self._deps = self._get_dependencies()
|
744
|
+
assert isinstance(
|
745
|
+
dataset._session, Session
|
746
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
679
747
|
transform_kwargs = dict(
|
680
748
|
session=dataset._session,
|
681
749
|
dependencies=self._deps,
|
682
|
-
drop_input_cols
|
750
|
+
drop_input_cols=self._drop_input_cols,
|
683
751
|
expected_output_cols_type="float",
|
684
752
|
)
|
753
|
+
expected_output_cols = self._align_expected_output_names(
|
754
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
755
|
+
)
|
685
756
|
|
686
757
|
elif isinstance(dataset, pd.DataFrame):
|
687
|
-
transform_kwargs = dict(
|
688
|
-
snowpark_input_cols = self._snowpark_cols,
|
689
|
-
drop_input_cols = self._drop_input_cols
|
690
|
-
)
|
758
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
691
759
|
|
692
760
|
transform_handlers = ModelTransformerBuilder.build(
|
693
761
|
dataset=dataset,
|
@@ -699,7 +767,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
699
767
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
700
768
|
inference_method=inference_method,
|
701
769
|
input_cols=self.input_cols,
|
702
|
-
expected_output_cols=
|
770
|
+
expected_output_cols=expected_output_cols,
|
703
771
|
**transform_kwargs
|
704
772
|
)
|
705
773
|
return output_df
|
@@ -731,29 +799,30 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
731
799
|
Output dataset with log probability of the sample for each class in the model.
|
732
800
|
"""
|
733
801
|
super()._check_dataset_type(dataset)
|
734
|
-
inference_method="predict_log_proba"
|
802
|
+
inference_method = "predict_log_proba"
|
803
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
735
804
|
|
736
805
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
737
806
|
# are specific to the type of dataset used.
|
738
807
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
739
808
|
|
740
809
|
if isinstance(dataset, DataFrame):
|
741
|
-
self.
|
742
|
-
|
743
|
-
|
744
|
-
|
745
|
-
|
810
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
811
|
+
self._deps = self._get_dependencies()
|
812
|
+
assert isinstance(
|
813
|
+
dataset._session, Session
|
814
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
746
815
|
transform_kwargs = dict(
|
747
816
|
session=dataset._session,
|
748
817
|
dependencies=self._deps,
|
749
|
-
drop_input_cols
|
818
|
+
drop_input_cols=self._drop_input_cols,
|
750
819
|
expected_output_cols_type="float",
|
751
820
|
)
|
821
|
+
expected_output_cols = self._align_expected_output_names(
|
822
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
823
|
+
)
|
752
824
|
elif isinstance(dataset, pd.DataFrame):
|
753
|
-
transform_kwargs = dict(
|
754
|
-
snowpark_input_cols = self._snowpark_cols,
|
755
|
-
drop_input_cols = self._drop_input_cols
|
756
|
-
)
|
825
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
757
826
|
|
758
827
|
transform_handlers = ModelTransformerBuilder.build(
|
759
828
|
dataset=dataset,
|
@@ -766,7 +835,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
766
835
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
767
836
|
inference_method=inference_method,
|
768
837
|
input_cols=self.input_cols,
|
769
|
-
expected_output_cols=
|
838
|
+
expected_output_cols=expected_output_cols,
|
770
839
|
**transform_kwargs
|
771
840
|
)
|
772
841
|
return output_df
|
@@ -792,30 +861,32 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
792
861
|
Output dataset with results of the decision function for the samples in input dataset.
|
793
862
|
"""
|
794
863
|
super()._check_dataset_type(dataset)
|
795
|
-
inference_method="decision_function"
|
864
|
+
inference_method = "decision_function"
|
796
865
|
|
797
866
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
798
867
|
# are specific to the type of dataset used.
|
799
868
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
800
869
|
|
870
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
871
|
+
|
801
872
|
if isinstance(dataset, DataFrame):
|
802
|
-
self.
|
803
|
-
|
804
|
-
|
805
|
-
|
806
|
-
|
873
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
874
|
+
self._deps = self._get_dependencies()
|
875
|
+
assert isinstance(
|
876
|
+
dataset._session, Session
|
877
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
807
878
|
transform_kwargs = dict(
|
808
879
|
session=dataset._session,
|
809
880
|
dependencies=self._deps,
|
810
|
-
drop_input_cols
|
881
|
+
drop_input_cols=self._drop_input_cols,
|
811
882
|
expected_output_cols_type="float",
|
812
883
|
)
|
884
|
+
expected_output_cols = self._align_expected_output_names(
|
885
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
886
|
+
)
|
813
887
|
|
814
888
|
elif isinstance(dataset, pd.DataFrame):
|
815
|
-
transform_kwargs = dict(
|
816
|
-
snowpark_input_cols = self._snowpark_cols,
|
817
|
-
drop_input_cols = self._drop_input_cols
|
818
|
-
)
|
889
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
819
890
|
|
820
891
|
transform_handlers = ModelTransformerBuilder.build(
|
821
892
|
dataset=dataset,
|
@@ -828,7 +899,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
828
899
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
829
900
|
inference_method=inference_method,
|
830
901
|
input_cols=self.input_cols,
|
831
|
-
expected_output_cols=
|
902
|
+
expected_output_cols=expected_output_cols,
|
832
903
|
**transform_kwargs
|
833
904
|
)
|
834
905
|
return output_df
|
@@ -857,17 +928,17 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
857
928
|
Output dataset with probability of the sample for each class in the model.
|
858
929
|
"""
|
859
930
|
super()._check_dataset_type(dataset)
|
860
|
-
inference_method="score_samples"
|
931
|
+
inference_method = "score_samples"
|
861
932
|
|
862
933
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
863
934
|
# are specific to the type of dataset used.
|
864
935
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
865
936
|
|
937
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
938
|
+
|
866
939
|
if isinstance(dataset, DataFrame):
|
867
|
-
self.
|
868
|
-
|
869
|
-
inference_method=inference_method,
|
870
|
-
)
|
940
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
941
|
+
self._deps = self._get_dependencies()
|
871
942
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
872
943
|
transform_kwargs = dict(
|
873
944
|
session=dataset._session,
|
@@ -875,6 +946,9 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
875
946
|
drop_input_cols = self._drop_input_cols,
|
876
947
|
expected_output_cols_type="float",
|
877
948
|
)
|
949
|
+
expected_output_cols = self._align_expected_output_names(
|
950
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
951
|
+
)
|
878
952
|
|
879
953
|
elif isinstance(dataset, pd.DataFrame):
|
880
954
|
transform_kwargs = dict(
|
@@ -893,7 +967,7 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
893
967
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
894
968
|
inference_method=inference_method,
|
895
969
|
input_cols=self.input_cols,
|
896
|
-
expected_output_cols=
|
970
|
+
expected_output_cols=expected_output_cols,
|
897
971
|
**transform_kwargs
|
898
972
|
)
|
899
973
|
return output_df
|
@@ -928,17 +1002,15 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
928
1002
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
929
1003
|
|
930
1004
|
if isinstance(dataset, DataFrame):
|
931
|
-
self.
|
932
|
-
|
933
|
-
inference_method="score",
|
934
|
-
)
|
1005
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
1006
|
+
self._deps = self._get_dependencies()
|
935
1007
|
selected_cols = self._get_active_columns()
|
936
1008
|
if len(selected_cols) > 0:
|
937
1009
|
dataset = dataset.select(selected_cols)
|
938
1010
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
939
1011
|
transform_kwargs = dict(
|
940
1012
|
session=dataset._session,
|
941
|
-
dependencies=
|
1013
|
+
dependencies=self._deps,
|
942
1014
|
score_sproc_imports=['sklearn'],
|
943
1015
|
)
|
944
1016
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -1003,11 +1075,8 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
1003
1075
|
|
1004
1076
|
if isinstance(dataset, DataFrame):
|
1005
1077
|
|
1006
|
-
self.
|
1007
|
-
|
1008
|
-
inference_method=inference_method,
|
1009
|
-
|
1010
|
-
)
|
1078
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1079
|
+
self._deps = self._get_dependencies()
|
1011
1080
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
1012
1081
|
transform_kwargs = dict(
|
1013
1082
|
session = dataset._session,
|
@@ -1040,50 +1109,84 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
1040
1109
|
)
|
1041
1110
|
return output_df
|
1042
1111
|
|
1112
|
+
|
1113
|
+
|
1114
|
+
def to_sklearn(self) -> Any:
|
1115
|
+
"""Get sklearn.tree.DecisionTreeClassifier object.
|
1116
|
+
"""
|
1117
|
+
if self._sklearn_object is None:
|
1118
|
+
self._sklearn_object = self._create_sklearn_object()
|
1119
|
+
return self._sklearn_object
|
1120
|
+
|
1121
|
+
def to_xgboost(self) -> Any:
|
1122
|
+
raise exceptions.SnowflakeMLException(
|
1123
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1124
|
+
original_exception=AttributeError(
|
1125
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1126
|
+
"to_xgboost()",
|
1127
|
+
"to_sklearn()"
|
1128
|
+
)
|
1129
|
+
),
|
1130
|
+
)
|
1131
|
+
|
1132
|
+
def to_lightgbm(self) -> Any:
|
1133
|
+
raise exceptions.SnowflakeMLException(
|
1134
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1135
|
+
original_exception=AttributeError(
|
1136
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1137
|
+
"to_lightgbm()",
|
1138
|
+
"to_sklearn()"
|
1139
|
+
)
|
1140
|
+
),
|
1141
|
+
)
|
1142
|
+
|
1143
|
+
def _get_dependencies(self) -> List[str]:
|
1144
|
+
return self._deps
|
1145
|
+
|
1043
1146
|
|
1044
|
-
def
|
1147
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
1045
1148
|
self._model_signature_dict = dict()
|
1046
1149
|
|
1047
1150
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
1048
1151
|
|
1049
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1152
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
1050
1153
|
outputs: List[BaseFeatureSpec] = []
|
1051
1154
|
if hasattr(self, "predict"):
|
1052
1155
|
# keep mypy happy
|
1053
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1156
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1054
1157
|
# For classifier, the type of predict is the same as the type of label
|
1055
|
-
if self._sklearn_object._estimator_type ==
|
1056
|
-
|
1158
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1159
|
+
# label columns is the desired type for output
|
1057
1160
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1058
1161
|
# rename the output columns
|
1059
1162
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1060
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1061
|
-
|
1062
|
-
|
1163
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1164
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1165
|
+
)
|
1063
1166
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1064
1167
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1065
|
-
# Clusterer returns int64 cluster labels.
|
1168
|
+
# Clusterer returns int64 cluster labels.
|
1066
1169
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1067
1170
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1068
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1069
|
-
|
1070
|
-
|
1071
|
-
|
1171
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1172
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1173
|
+
)
|
1174
|
+
|
1072
1175
|
# For regressor, the type of predict is float64
|
1073
|
-
elif self._sklearn_object._estimator_type ==
|
1176
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1074
1177
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1075
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1076
|
-
|
1077
|
-
|
1078
|
-
|
1178
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1179
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1180
|
+
)
|
1181
|
+
|
1079
1182
|
for prob_func in PROB_FUNCTIONS:
|
1080
1183
|
if hasattr(self, prob_func):
|
1081
1184
|
output_cols_prefix: str = f"{prob_func}_"
|
1082
1185
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1083
1186
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1084
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1085
|
-
|
1086
|
-
|
1187
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1188
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1189
|
+
)
|
1087
1190
|
|
1088
1191
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1089
1192
|
items = list(self._model_signature_dict.items())
|
@@ -1096,10 +1199,10 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
1096
1199
|
"""Returns model signature of current class.
|
1097
1200
|
|
1098
1201
|
Raises:
|
1099
|
-
|
1202
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1100
1203
|
|
1101
1204
|
Returns:
|
1102
|
-
Dict
|
1205
|
+
Dict with each method and its input output signature
|
1103
1206
|
"""
|
1104
1207
|
if self._model_signature_dict is None:
|
1105
1208
|
raise exceptions.SnowflakeMLException(
|
@@ -1107,35 +1210,3 @@ class DecisionTreeClassifier(BaseTransformer):
|
|
1107
1210
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1108
1211
|
)
|
1109
1212
|
return self._model_signature_dict
|
1110
|
-
|
1111
|
-
def to_sklearn(self) -> Any:
|
1112
|
-
"""Get sklearn.tree.DecisionTreeClassifier object.
|
1113
|
-
"""
|
1114
|
-
if self._sklearn_object is None:
|
1115
|
-
self._sklearn_object = self._create_sklearn_object()
|
1116
|
-
return self._sklearn_object
|
1117
|
-
|
1118
|
-
def to_xgboost(self) -> Any:
|
1119
|
-
raise exceptions.SnowflakeMLException(
|
1120
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1121
|
-
original_exception=AttributeError(
|
1122
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1123
|
-
"to_xgboost()",
|
1124
|
-
"to_sklearn()"
|
1125
|
-
)
|
1126
|
-
),
|
1127
|
-
)
|
1128
|
-
|
1129
|
-
def to_lightgbm(self) -> Any:
|
1130
|
-
raise exceptions.SnowflakeMLException(
|
1131
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1132
|
-
original_exception=AttributeError(
|
1133
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1134
|
-
"to_lightgbm()",
|
1135
|
-
"to_sklearn()"
|
1136
|
-
)
|
1137
|
-
),
|
1138
|
-
)
|
1139
|
-
|
1140
|
-
def _get_dependencies(self) -> List[str]:
|
1141
|
-
return self._deps
|