snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.feature_selection".repla
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class SequentialFeatureSelector(BaseTransformer):
|
71
64
|
r"""Transformer that performs Sequential Feature Selection
|
72
65
|
For more details on this class, see [sklearn.feature_selection.SequentialFeatureSelector]
|
@@ -263,12 +256,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
263
256
|
)
|
264
257
|
return selected_cols
|
265
258
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SequentialFeatureSelector":
|
259
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SequentialFeatureSelector":
|
272
260
|
"""Learn the features to select from X
|
273
261
|
For more details on this function, see [sklearn.feature_selection.SequentialFeatureSelector.fit]
|
274
262
|
(https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html#sklearn.feature_selection.SequentialFeatureSelector.fit)
|
@@ -295,12 +283,14 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
295
283
|
|
296
284
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
285
|
|
298
|
-
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
287
|
if SNOWML_SPROC_ENV in os.environ:
|
300
288
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
289
|
project=_PROJECT,
|
302
290
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
292
|
+
inspect.currentframe(), SequentialFeatureSelector.__class__.__name__
|
293
|
+
),
|
304
294
|
api_calls=[Session.call],
|
305
295
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
296
|
)
|
@@ -321,27 +311,24 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
321
311
|
)
|
322
312
|
self._sklearn_object = model_trainer.train()
|
323
313
|
self._is_fitted = True
|
324
|
-
self.
|
314
|
+
self._generate_model_signatures(dataset)
|
325
315
|
return self
|
326
316
|
|
327
317
|
def _batch_inference_validate_snowpark(
|
328
318
|
self,
|
329
319
|
dataset: DataFrame,
|
330
320
|
inference_method: str,
|
331
|
-
) ->
|
332
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
333
|
-
return the available package that exists in the snowflake anaconda channel
|
321
|
+
) -> None:
|
322
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
334
323
|
|
335
324
|
Args:
|
336
325
|
dataset: snowpark dataframe
|
337
326
|
inference_method: the inference method such as predict, score...
|
338
|
-
|
327
|
+
|
339
328
|
Raises:
|
340
329
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
341
330
|
SnowflakeMLException: If the session is None, raise error
|
342
331
|
|
343
|
-
Returns:
|
344
|
-
A list of available package that exists in the snowflake anaconda channel
|
345
332
|
"""
|
346
333
|
if not self._is_fitted:
|
347
334
|
raise exceptions.SnowflakeMLException(
|
@@ -359,9 +346,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
359
346
|
"Session must not specified for snowpark dataset."
|
360
347
|
),
|
361
348
|
)
|
362
|
-
|
363
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
364
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
349
|
+
|
365
350
|
|
366
351
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
367
352
|
@telemetry.send_api_usage_telemetry(
|
@@ -395,7 +380,9 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
395
380
|
# when it is classifier, infer the datatype from label columns
|
396
381
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
397
382
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
398
|
-
label_cols_signatures = [
|
383
|
+
label_cols_signatures = [
|
384
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
385
|
+
]
|
399
386
|
if len(label_cols_signatures) == 0:
|
400
387
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
401
388
|
raise exceptions.SnowflakeMLException(
|
@@ -403,25 +390,23 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
403
390
|
original_exception=ValueError(error_str),
|
404
391
|
)
|
405
392
|
|
406
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
407
|
-
label_cols_signatures[0].as_snowpark_type()
|
408
|
-
)
|
393
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
409
394
|
|
410
|
-
self.
|
411
|
-
|
395
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
396
|
+
self._deps = self._get_dependencies()
|
397
|
+
assert isinstance(
|
398
|
+
dataset._session, Session
|
399
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
412
400
|
|
413
401
|
transform_kwargs = dict(
|
414
|
-
session
|
415
|
-
dependencies
|
416
|
-
drop_input_cols
|
417
|
-
expected_output_cols_type
|
402
|
+
session=dataset._session,
|
403
|
+
dependencies=self._deps,
|
404
|
+
drop_input_cols=self._drop_input_cols,
|
405
|
+
expected_output_cols_type=expected_type_inferred,
|
418
406
|
)
|
419
407
|
|
420
408
|
elif isinstance(dataset, pd.DataFrame):
|
421
|
-
transform_kwargs = dict(
|
422
|
-
snowpark_input_cols = self._snowpark_cols,
|
423
|
-
drop_input_cols = self._drop_input_cols
|
424
|
-
)
|
409
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
425
410
|
|
426
411
|
transform_handlers = ModelTransformerBuilder.build(
|
427
412
|
dataset=dataset,
|
@@ -463,7 +448,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
463
448
|
Transformed dataset.
|
464
449
|
"""
|
465
450
|
super()._check_dataset_type(dataset)
|
466
|
-
inference_method="transform"
|
451
|
+
inference_method = "transform"
|
467
452
|
|
468
453
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
469
454
|
# are specific to the type of dataset used.
|
@@ -493,24 +478,19 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
493
478
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
494
479
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
495
480
|
|
496
|
-
self.
|
497
|
-
|
498
|
-
inference_method=inference_method,
|
499
|
-
)
|
481
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
482
|
+
self._deps = self._get_dependencies()
|
500
483
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
501
484
|
|
502
485
|
transform_kwargs = dict(
|
503
|
-
session
|
504
|
-
dependencies
|
505
|
-
drop_input_cols
|
506
|
-
expected_output_cols_type
|
486
|
+
session=dataset._session,
|
487
|
+
dependencies=self._deps,
|
488
|
+
drop_input_cols=self._drop_input_cols,
|
489
|
+
expected_output_cols_type=expected_dtype,
|
507
490
|
)
|
508
491
|
|
509
492
|
elif isinstance(dataset, pd.DataFrame):
|
510
|
-
transform_kwargs = dict(
|
511
|
-
snowpark_input_cols = self._snowpark_cols,
|
512
|
-
drop_input_cols = self._drop_input_cols
|
513
|
-
)
|
493
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
514
494
|
|
515
495
|
transform_handlers = ModelTransformerBuilder.build(
|
516
496
|
dataset=dataset,
|
@@ -529,7 +509,11 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
529
509
|
return output_df
|
530
510
|
|
531
511
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
532
|
-
def fit_predict(
|
512
|
+
def fit_predict(
|
513
|
+
self,
|
514
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
515
|
+
output_cols_prefix: str = "fit_predict_",
|
516
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
533
517
|
""" Method not supported for this class.
|
534
518
|
|
535
519
|
|
@@ -554,22 +538,106 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
554
538
|
)
|
555
539
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
556
540
|
drop_input_cols=self._drop_input_cols,
|
557
|
-
expected_output_cols_list=
|
541
|
+
expected_output_cols_list=(
|
542
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
543
|
+
),
|
558
544
|
)
|
559
545
|
self._sklearn_object = fitted_estimator
|
560
546
|
self._is_fitted = True
|
561
547
|
return output_result
|
562
548
|
|
549
|
+
|
550
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
551
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
552
|
+
""" Fit to data, then transform it
|
553
|
+
For more details on this function, see [sklearn.feature_selection.SequentialFeatureSelector.fit_transform]
|
554
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SequentialFeatureSelector.html#sklearn.feature_selection.SequentialFeatureSelector.fit_transform)
|
555
|
+
|
556
|
+
|
557
|
+
Raises:
|
558
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
563
559
|
|
564
|
-
|
565
|
-
|
566
|
-
|
560
|
+
Args:
|
561
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
562
|
+
Snowpark or Pandas DataFrame.
|
563
|
+
output_cols_prefix: Prefix for the response columns
|
567
564
|
Returns:
|
568
565
|
Transformed dataset.
|
569
566
|
"""
|
570
|
-
self.
|
571
|
-
|
572
|
-
|
567
|
+
self._infer_input_output_cols(dataset)
|
568
|
+
super()._check_dataset_type(dataset)
|
569
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
570
|
+
estimator=self._sklearn_object,
|
571
|
+
dataset=dataset,
|
572
|
+
input_cols=self.input_cols,
|
573
|
+
label_cols=self.label_cols,
|
574
|
+
sample_weight_col=self.sample_weight_col,
|
575
|
+
autogenerated=self._autogenerated,
|
576
|
+
subproject=_SUBPROJECT,
|
577
|
+
)
|
578
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
579
|
+
drop_input_cols=self._drop_input_cols,
|
580
|
+
expected_output_cols_list=self.output_cols,
|
581
|
+
)
|
582
|
+
self._sklearn_object = fitted_estimator
|
583
|
+
self._is_fitted = True
|
584
|
+
return output_result
|
585
|
+
|
586
|
+
|
587
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
588
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
589
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
590
|
+
"""
|
591
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
592
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
593
|
+
if output_cols:
|
594
|
+
output_cols = [
|
595
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
596
|
+
for c in output_cols
|
597
|
+
]
|
598
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
599
|
+
output_cols = [output_cols_prefix]
|
600
|
+
elif self._sklearn_object is not None:
|
601
|
+
classes = self._sklearn_object.classes_
|
602
|
+
if isinstance(classes, numpy.ndarray):
|
603
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
604
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
605
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
606
|
+
output_cols = []
|
607
|
+
for i, cl in enumerate(classes):
|
608
|
+
# For binary classification, there is only one output column for each class
|
609
|
+
# ndarray as the two classes are complementary.
|
610
|
+
if len(cl) == 2:
|
611
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
612
|
+
else:
|
613
|
+
output_cols.extend([
|
614
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
615
|
+
])
|
616
|
+
else:
|
617
|
+
output_cols = []
|
618
|
+
|
619
|
+
# Make sure column names are valid snowflake identifiers.
|
620
|
+
assert output_cols is not None # Make MyPy happy
|
621
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
622
|
+
|
623
|
+
return rv
|
624
|
+
|
625
|
+
def _align_expected_output_names(
|
626
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
627
|
+
) -> List[str]:
|
628
|
+
# in case the inferred output column names dimension is different
|
629
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
630
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
631
|
+
output_df_columns = list(output_df_pd.columns)
|
632
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
633
|
+
if self.sample_weight_col:
|
634
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
635
|
+
# if the dimension of inferred output column names is correct; use it
|
636
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
637
|
+
return expected_output_cols_list
|
638
|
+
# otherwise, use the sklearn estimator's output
|
639
|
+
else:
|
640
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
573
641
|
|
574
642
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
575
643
|
@telemetry.send_api_usage_telemetry(
|
@@ -601,24 +669,26 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
601
669
|
# are specific to the type of dataset used.
|
602
670
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
603
671
|
|
672
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
673
|
+
|
604
674
|
if isinstance(dataset, DataFrame):
|
605
|
-
self.
|
606
|
-
|
607
|
-
|
608
|
-
|
609
|
-
|
675
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
676
|
+
self._deps = self._get_dependencies()
|
677
|
+
assert isinstance(
|
678
|
+
dataset._session, Session
|
679
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
610
680
|
transform_kwargs = dict(
|
611
681
|
session=dataset._session,
|
612
682
|
dependencies=self._deps,
|
613
|
-
drop_input_cols
|
683
|
+
drop_input_cols=self._drop_input_cols,
|
614
684
|
expected_output_cols_type="float",
|
615
685
|
)
|
686
|
+
expected_output_cols = self._align_expected_output_names(
|
687
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
688
|
+
)
|
616
689
|
|
617
690
|
elif isinstance(dataset, pd.DataFrame):
|
618
|
-
transform_kwargs = dict(
|
619
|
-
snowpark_input_cols = self._snowpark_cols,
|
620
|
-
drop_input_cols = self._drop_input_cols
|
621
|
-
)
|
691
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
622
692
|
|
623
693
|
transform_handlers = ModelTransformerBuilder.build(
|
624
694
|
dataset=dataset,
|
@@ -630,7 +700,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
630
700
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
631
701
|
inference_method=inference_method,
|
632
702
|
input_cols=self.input_cols,
|
633
|
-
expected_output_cols=
|
703
|
+
expected_output_cols=expected_output_cols,
|
634
704
|
**transform_kwargs
|
635
705
|
)
|
636
706
|
return output_df
|
@@ -660,29 +730,30 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
660
730
|
Output dataset with log probability of the sample for each class in the model.
|
661
731
|
"""
|
662
732
|
super()._check_dataset_type(dataset)
|
663
|
-
inference_method="predict_log_proba"
|
733
|
+
inference_method = "predict_log_proba"
|
734
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
664
735
|
|
665
736
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
666
737
|
# are specific to the type of dataset used.
|
667
738
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
668
739
|
|
669
740
|
if isinstance(dataset, DataFrame):
|
670
|
-
self.
|
671
|
-
|
672
|
-
|
673
|
-
|
674
|
-
|
741
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
742
|
+
self._deps = self._get_dependencies()
|
743
|
+
assert isinstance(
|
744
|
+
dataset._session, Session
|
745
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
675
746
|
transform_kwargs = dict(
|
676
747
|
session=dataset._session,
|
677
748
|
dependencies=self._deps,
|
678
|
-
drop_input_cols
|
749
|
+
drop_input_cols=self._drop_input_cols,
|
679
750
|
expected_output_cols_type="float",
|
680
751
|
)
|
752
|
+
expected_output_cols = self._align_expected_output_names(
|
753
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
754
|
+
)
|
681
755
|
elif isinstance(dataset, pd.DataFrame):
|
682
|
-
transform_kwargs = dict(
|
683
|
-
snowpark_input_cols = self._snowpark_cols,
|
684
|
-
drop_input_cols = self._drop_input_cols
|
685
|
-
)
|
756
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
686
757
|
|
687
758
|
transform_handlers = ModelTransformerBuilder.build(
|
688
759
|
dataset=dataset,
|
@@ -695,7 +766,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
695
766
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
696
767
|
inference_method=inference_method,
|
697
768
|
input_cols=self.input_cols,
|
698
|
-
expected_output_cols=
|
769
|
+
expected_output_cols=expected_output_cols,
|
699
770
|
**transform_kwargs
|
700
771
|
)
|
701
772
|
return output_df
|
@@ -721,30 +792,32 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
721
792
|
Output dataset with results of the decision function for the samples in input dataset.
|
722
793
|
"""
|
723
794
|
super()._check_dataset_type(dataset)
|
724
|
-
inference_method="decision_function"
|
795
|
+
inference_method = "decision_function"
|
725
796
|
|
726
797
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
727
798
|
# are specific to the type of dataset used.
|
728
799
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
729
800
|
|
801
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
802
|
+
|
730
803
|
if isinstance(dataset, DataFrame):
|
731
|
-
self.
|
732
|
-
|
733
|
-
|
734
|
-
|
735
|
-
|
804
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
805
|
+
self._deps = self._get_dependencies()
|
806
|
+
assert isinstance(
|
807
|
+
dataset._session, Session
|
808
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
736
809
|
transform_kwargs = dict(
|
737
810
|
session=dataset._session,
|
738
811
|
dependencies=self._deps,
|
739
|
-
drop_input_cols
|
812
|
+
drop_input_cols=self._drop_input_cols,
|
740
813
|
expected_output_cols_type="float",
|
741
814
|
)
|
815
|
+
expected_output_cols = self._align_expected_output_names(
|
816
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
817
|
+
)
|
742
818
|
|
743
819
|
elif isinstance(dataset, pd.DataFrame):
|
744
|
-
transform_kwargs = dict(
|
745
|
-
snowpark_input_cols = self._snowpark_cols,
|
746
|
-
drop_input_cols = self._drop_input_cols
|
747
|
-
)
|
820
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
748
821
|
|
749
822
|
transform_handlers = ModelTransformerBuilder.build(
|
750
823
|
dataset=dataset,
|
@@ -757,7 +830,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
757
830
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
758
831
|
inference_method=inference_method,
|
759
832
|
input_cols=self.input_cols,
|
760
|
-
expected_output_cols=
|
833
|
+
expected_output_cols=expected_output_cols,
|
761
834
|
**transform_kwargs
|
762
835
|
)
|
763
836
|
return output_df
|
@@ -786,17 +859,17 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
786
859
|
Output dataset with probability of the sample for each class in the model.
|
787
860
|
"""
|
788
861
|
super()._check_dataset_type(dataset)
|
789
|
-
inference_method="score_samples"
|
862
|
+
inference_method = "score_samples"
|
790
863
|
|
791
864
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
792
865
|
# are specific to the type of dataset used.
|
793
866
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
794
867
|
|
868
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
869
|
+
|
795
870
|
if isinstance(dataset, DataFrame):
|
796
|
-
self.
|
797
|
-
|
798
|
-
inference_method=inference_method,
|
799
|
-
)
|
871
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
872
|
+
self._deps = self._get_dependencies()
|
800
873
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
801
874
|
transform_kwargs = dict(
|
802
875
|
session=dataset._session,
|
@@ -804,6 +877,9 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
804
877
|
drop_input_cols = self._drop_input_cols,
|
805
878
|
expected_output_cols_type="float",
|
806
879
|
)
|
880
|
+
expected_output_cols = self._align_expected_output_names(
|
881
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
882
|
+
)
|
807
883
|
|
808
884
|
elif isinstance(dataset, pd.DataFrame):
|
809
885
|
transform_kwargs = dict(
|
@@ -822,7 +898,7 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
822
898
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
823
899
|
inference_method=inference_method,
|
824
900
|
input_cols=self.input_cols,
|
825
|
-
expected_output_cols=
|
901
|
+
expected_output_cols=expected_output_cols,
|
826
902
|
**transform_kwargs
|
827
903
|
)
|
828
904
|
return output_df
|
@@ -855,17 +931,15 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
855
931
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
856
932
|
|
857
933
|
if isinstance(dataset, DataFrame):
|
858
|
-
self.
|
859
|
-
|
860
|
-
inference_method="score",
|
861
|
-
)
|
934
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
935
|
+
self._deps = self._get_dependencies()
|
862
936
|
selected_cols = self._get_active_columns()
|
863
937
|
if len(selected_cols) > 0:
|
864
938
|
dataset = dataset.select(selected_cols)
|
865
939
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
866
940
|
transform_kwargs = dict(
|
867
941
|
session=dataset._session,
|
868
|
-
dependencies=
|
942
|
+
dependencies=self._deps,
|
869
943
|
score_sproc_imports=['sklearn'],
|
870
944
|
)
|
871
945
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -930,11 +1004,8 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
930
1004
|
|
931
1005
|
if isinstance(dataset, DataFrame):
|
932
1006
|
|
933
|
-
self.
|
934
|
-
|
935
|
-
inference_method=inference_method,
|
936
|
-
|
937
|
-
)
|
1007
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1008
|
+
self._deps = self._get_dependencies()
|
938
1009
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
939
1010
|
transform_kwargs = dict(
|
940
1011
|
session = dataset._session,
|
@@ -967,50 +1038,84 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
967
1038
|
)
|
968
1039
|
return output_df
|
969
1040
|
|
1041
|
+
|
1042
|
+
|
1043
|
+
def to_sklearn(self) -> Any:
|
1044
|
+
"""Get sklearn.feature_selection.SequentialFeatureSelector object.
|
1045
|
+
"""
|
1046
|
+
if self._sklearn_object is None:
|
1047
|
+
self._sklearn_object = self._create_sklearn_object()
|
1048
|
+
return self._sklearn_object
|
1049
|
+
|
1050
|
+
def to_xgboost(self) -> Any:
|
1051
|
+
raise exceptions.SnowflakeMLException(
|
1052
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1053
|
+
original_exception=AttributeError(
|
1054
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1055
|
+
"to_xgboost()",
|
1056
|
+
"to_sklearn()"
|
1057
|
+
)
|
1058
|
+
),
|
1059
|
+
)
|
970
1060
|
|
971
|
-
def
|
1061
|
+
def to_lightgbm(self) -> Any:
|
1062
|
+
raise exceptions.SnowflakeMLException(
|
1063
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1064
|
+
original_exception=AttributeError(
|
1065
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1066
|
+
"to_lightgbm()",
|
1067
|
+
"to_sklearn()"
|
1068
|
+
)
|
1069
|
+
),
|
1070
|
+
)
|
1071
|
+
|
1072
|
+
def _get_dependencies(self) -> List[str]:
|
1073
|
+
return self._deps
|
1074
|
+
|
1075
|
+
|
1076
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
972
1077
|
self._model_signature_dict = dict()
|
973
1078
|
|
974
1079
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
975
1080
|
|
976
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1081
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
977
1082
|
outputs: List[BaseFeatureSpec] = []
|
978
1083
|
if hasattr(self, "predict"):
|
979
1084
|
# keep mypy happy
|
980
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1085
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
981
1086
|
# For classifier, the type of predict is the same as the type of label
|
982
|
-
if self._sklearn_object._estimator_type ==
|
983
|
-
|
1087
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1088
|
+
# label columns is the desired type for output
|
984
1089
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
985
1090
|
# rename the output columns
|
986
1091
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
987
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
988
|
-
|
989
|
-
|
1092
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1093
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1094
|
+
)
|
990
1095
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
991
1096
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
992
|
-
# Clusterer returns int64 cluster labels.
|
1097
|
+
# Clusterer returns int64 cluster labels.
|
993
1098
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
994
1099
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
995
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
996
|
-
|
997
|
-
|
998
|
-
|
1100
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1101
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1102
|
+
)
|
1103
|
+
|
999
1104
|
# For regressor, the type of predict is float64
|
1000
|
-
elif self._sklearn_object._estimator_type ==
|
1105
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1001
1106
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1002
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1005
|
-
|
1107
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1108
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1109
|
+
)
|
1110
|
+
|
1006
1111
|
for prob_func in PROB_FUNCTIONS:
|
1007
1112
|
if hasattr(self, prob_func):
|
1008
1113
|
output_cols_prefix: str = f"{prob_func}_"
|
1009
1114
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1010
1115
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1011
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1012
|
-
|
1013
|
-
|
1116
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1117
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1118
|
+
)
|
1014
1119
|
|
1015
1120
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1016
1121
|
items = list(self._model_signature_dict.items())
|
@@ -1023,10 +1128,10 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
1023
1128
|
"""Returns model signature of current class.
|
1024
1129
|
|
1025
1130
|
Raises:
|
1026
|
-
|
1131
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1027
1132
|
|
1028
1133
|
Returns:
|
1029
|
-
Dict
|
1134
|
+
Dict with each method and its input output signature
|
1030
1135
|
"""
|
1031
1136
|
if self._model_signature_dict is None:
|
1032
1137
|
raise exceptions.SnowflakeMLException(
|
@@ -1034,35 +1139,3 @@ class SequentialFeatureSelector(BaseTransformer):
|
|
1034
1139
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1035
1140
|
)
|
1036
1141
|
return self._model_signature_dict
|
1037
|
-
|
1038
|
-
def to_sklearn(self) -> Any:
|
1039
|
-
"""Get sklearn.feature_selection.SequentialFeatureSelector object.
|
1040
|
-
"""
|
1041
|
-
if self._sklearn_object is None:
|
1042
|
-
self._sklearn_object = self._create_sklearn_object()
|
1043
|
-
return self._sklearn_object
|
1044
|
-
|
1045
|
-
def to_xgboost(self) -> Any:
|
1046
|
-
raise exceptions.SnowflakeMLException(
|
1047
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1048
|
-
original_exception=AttributeError(
|
1049
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1050
|
-
"to_xgboost()",
|
1051
|
-
"to_sklearn()"
|
1052
|
-
)
|
1053
|
-
),
|
1054
|
-
)
|
1055
|
-
|
1056
|
-
def to_lightgbm(self) -> Any:
|
1057
|
-
raise exceptions.SnowflakeMLException(
|
1058
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1059
|
-
original_exception=AttributeError(
|
1060
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1061
|
-
"to_lightgbm()",
|
1062
|
-
"to_sklearn()"
|
1063
|
-
)
|
1064
|
-
),
|
1065
|
-
)
|
1066
|
-
|
1067
|
-
def _get_dependencies(self) -> List[str]:
|
1068
|
-
return self._deps
|