snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class KernelDensity(BaseTransformer):
|
71
64
|
r"""Kernel Density Estimation
|
72
65
|
For more details on this class, see [sklearn.neighbors.KernelDensity]
|
@@ -252,12 +245,7 @@ class KernelDensity(BaseTransformer):
|
|
252
245
|
)
|
253
246
|
return selected_cols
|
254
247
|
|
255
|
-
|
256
|
-
project=_PROJECT,
|
257
|
-
subproject=_SUBPROJECT,
|
258
|
-
custom_tags=dict([("autogen", True)]),
|
259
|
-
)
|
260
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
|
248
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
|
261
249
|
"""Fit the Kernel Density model on the data
|
262
250
|
For more details on this function, see [sklearn.neighbors.KernelDensity.fit]
|
263
251
|
(https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity.fit)
|
@@ -284,12 +272,14 @@ class KernelDensity(BaseTransformer):
|
|
284
272
|
|
285
273
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
286
274
|
|
287
|
-
|
275
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
288
276
|
if SNOWML_SPROC_ENV in os.environ:
|
289
277
|
statement_params = telemetry.get_function_usage_statement_params(
|
290
278
|
project=_PROJECT,
|
291
279
|
subproject=_SUBPROJECT,
|
292
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
280
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
281
|
+
inspect.currentframe(), KernelDensity.__class__.__name__
|
282
|
+
),
|
293
283
|
api_calls=[Session.call],
|
294
284
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
295
285
|
)
|
@@ -310,27 +300,24 @@ class KernelDensity(BaseTransformer):
|
|
310
300
|
)
|
311
301
|
self._sklearn_object = model_trainer.train()
|
312
302
|
self._is_fitted = True
|
313
|
-
self.
|
303
|
+
self._generate_model_signatures(dataset)
|
314
304
|
return self
|
315
305
|
|
316
306
|
def _batch_inference_validate_snowpark(
|
317
307
|
self,
|
318
308
|
dataset: DataFrame,
|
319
309
|
inference_method: str,
|
320
|
-
) ->
|
321
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
322
|
-
return the available package that exists in the snowflake anaconda channel
|
310
|
+
) -> None:
|
311
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
323
312
|
|
324
313
|
Args:
|
325
314
|
dataset: snowpark dataframe
|
326
315
|
inference_method: the inference method such as predict, score...
|
327
|
-
|
316
|
+
|
328
317
|
Raises:
|
329
318
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
330
319
|
SnowflakeMLException: If the session is None, raise error
|
331
320
|
|
332
|
-
Returns:
|
333
|
-
A list of available package that exists in the snowflake anaconda channel
|
334
321
|
"""
|
335
322
|
if not self._is_fitted:
|
336
323
|
raise exceptions.SnowflakeMLException(
|
@@ -348,9 +335,7 @@ class KernelDensity(BaseTransformer):
|
|
348
335
|
"Session must not specified for snowpark dataset."
|
349
336
|
),
|
350
337
|
)
|
351
|
-
|
352
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
353
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
338
|
+
|
354
339
|
|
355
340
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
356
341
|
@telemetry.send_api_usage_telemetry(
|
@@ -384,7 +369,9 @@ class KernelDensity(BaseTransformer):
|
|
384
369
|
# when it is classifier, infer the datatype from label columns
|
385
370
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
386
371
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
387
|
-
label_cols_signatures = [
|
372
|
+
label_cols_signatures = [
|
373
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
374
|
+
]
|
388
375
|
if len(label_cols_signatures) == 0:
|
389
376
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
390
377
|
raise exceptions.SnowflakeMLException(
|
@@ -392,25 +379,23 @@ class KernelDensity(BaseTransformer):
|
|
392
379
|
original_exception=ValueError(error_str),
|
393
380
|
)
|
394
381
|
|
395
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
396
|
-
label_cols_signatures[0].as_snowpark_type()
|
397
|
-
)
|
382
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
398
383
|
|
399
|
-
self.
|
400
|
-
|
384
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
385
|
+
self._deps = self._get_dependencies()
|
386
|
+
assert isinstance(
|
387
|
+
dataset._session, Session
|
388
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
401
389
|
|
402
390
|
transform_kwargs = dict(
|
403
|
-
session
|
404
|
-
dependencies
|
405
|
-
drop_input_cols
|
406
|
-
expected_output_cols_type
|
391
|
+
session=dataset._session,
|
392
|
+
dependencies=self._deps,
|
393
|
+
drop_input_cols=self._drop_input_cols,
|
394
|
+
expected_output_cols_type=expected_type_inferred,
|
407
395
|
)
|
408
396
|
|
409
397
|
elif isinstance(dataset, pd.DataFrame):
|
410
|
-
transform_kwargs = dict(
|
411
|
-
snowpark_input_cols = self._snowpark_cols,
|
412
|
-
drop_input_cols = self._drop_input_cols
|
413
|
-
)
|
398
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
414
399
|
|
415
400
|
transform_handlers = ModelTransformerBuilder.build(
|
416
401
|
dataset=dataset,
|
@@ -450,7 +435,7 @@ class KernelDensity(BaseTransformer):
|
|
450
435
|
Transformed dataset.
|
451
436
|
"""
|
452
437
|
super()._check_dataset_type(dataset)
|
453
|
-
inference_method="transform"
|
438
|
+
inference_method = "transform"
|
454
439
|
|
455
440
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
456
441
|
# are specific to the type of dataset used.
|
@@ -480,24 +465,19 @@ class KernelDensity(BaseTransformer):
|
|
480
465
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
481
466
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
482
467
|
|
483
|
-
self.
|
484
|
-
|
485
|
-
inference_method=inference_method,
|
486
|
-
)
|
468
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
469
|
+
self._deps = self._get_dependencies()
|
487
470
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
488
471
|
|
489
472
|
transform_kwargs = dict(
|
490
|
-
session
|
491
|
-
dependencies
|
492
|
-
drop_input_cols
|
493
|
-
expected_output_cols_type
|
473
|
+
session=dataset._session,
|
474
|
+
dependencies=self._deps,
|
475
|
+
drop_input_cols=self._drop_input_cols,
|
476
|
+
expected_output_cols_type=expected_dtype,
|
494
477
|
)
|
495
478
|
|
496
479
|
elif isinstance(dataset, pd.DataFrame):
|
497
|
-
transform_kwargs = dict(
|
498
|
-
snowpark_input_cols = self._snowpark_cols,
|
499
|
-
drop_input_cols = self._drop_input_cols
|
500
|
-
)
|
480
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
501
481
|
|
502
482
|
transform_handlers = ModelTransformerBuilder.build(
|
503
483
|
dataset=dataset,
|
@@ -516,7 +496,11 @@ class KernelDensity(BaseTransformer):
|
|
516
496
|
return output_df
|
517
497
|
|
518
498
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
519
|
-
def fit_predict(
|
499
|
+
def fit_predict(
|
500
|
+
self,
|
501
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
502
|
+
output_cols_prefix: str = "fit_predict_",
|
503
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
520
504
|
""" Method not supported for this class.
|
521
505
|
|
522
506
|
|
@@ -541,22 +525,104 @@ class KernelDensity(BaseTransformer):
|
|
541
525
|
)
|
542
526
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
543
527
|
drop_input_cols=self._drop_input_cols,
|
544
|
-
expected_output_cols_list=
|
528
|
+
expected_output_cols_list=(
|
529
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
530
|
+
),
|
545
531
|
)
|
546
532
|
self._sklearn_object = fitted_estimator
|
547
533
|
self._is_fitted = True
|
548
534
|
return output_result
|
549
535
|
|
536
|
+
|
537
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
538
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
539
|
+
""" Method not supported for this class.
|
540
|
+
|
550
541
|
|
551
|
-
|
552
|
-
|
553
|
-
|
542
|
+
Raises:
|
543
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
544
|
+
|
545
|
+
Args:
|
546
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
547
|
+
Snowpark or Pandas DataFrame.
|
548
|
+
output_cols_prefix: Prefix for the response columns
|
554
549
|
Returns:
|
555
550
|
Transformed dataset.
|
556
551
|
"""
|
557
|
-
self.
|
558
|
-
|
559
|
-
|
552
|
+
self._infer_input_output_cols(dataset)
|
553
|
+
super()._check_dataset_type(dataset)
|
554
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
555
|
+
estimator=self._sklearn_object,
|
556
|
+
dataset=dataset,
|
557
|
+
input_cols=self.input_cols,
|
558
|
+
label_cols=self.label_cols,
|
559
|
+
sample_weight_col=self.sample_weight_col,
|
560
|
+
autogenerated=self._autogenerated,
|
561
|
+
subproject=_SUBPROJECT,
|
562
|
+
)
|
563
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
564
|
+
drop_input_cols=self._drop_input_cols,
|
565
|
+
expected_output_cols_list=self.output_cols,
|
566
|
+
)
|
567
|
+
self._sklearn_object = fitted_estimator
|
568
|
+
self._is_fitted = True
|
569
|
+
return output_result
|
570
|
+
|
571
|
+
|
572
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
573
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
574
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
575
|
+
"""
|
576
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
577
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
578
|
+
if output_cols:
|
579
|
+
output_cols = [
|
580
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
581
|
+
for c in output_cols
|
582
|
+
]
|
583
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
584
|
+
output_cols = [output_cols_prefix]
|
585
|
+
elif self._sklearn_object is not None:
|
586
|
+
classes = self._sklearn_object.classes_
|
587
|
+
if isinstance(classes, numpy.ndarray):
|
588
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
589
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
590
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
591
|
+
output_cols = []
|
592
|
+
for i, cl in enumerate(classes):
|
593
|
+
# For binary classification, there is only one output column for each class
|
594
|
+
# ndarray as the two classes are complementary.
|
595
|
+
if len(cl) == 2:
|
596
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
597
|
+
else:
|
598
|
+
output_cols.extend([
|
599
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
600
|
+
])
|
601
|
+
else:
|
602
|
+
output_cols = []
|
603
|
+
|
604
|
+
# Make sure column names are valid snowflake identifiers.
|
605
|
+
assert output_cols is not None # Make MyPy happy
|
606
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
607
|
+
|
608
|
+
return rv
|
609
|
+
|
610
|
+
def _align_expected_output_names(
|
611
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
612
|
+
) -> List[str]:
|
613
|
+
# in case the inferred output column names dimension is different
|
614
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
615
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
616
|
+
output_df_columns = list(output_df_pd.columns)
|
617
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
618
|
+
if self.sample_weight_col:
|
619
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
620
|
+
# if the dimension of inferred output column names is correct; use it
|
621
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
622
|
+
return expected_output_cols_list
|
623
|
+
# otherwise, use the sklearn estimator's output
|
624
|
+
else:
|
625
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
560
626
|
|
561
627
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
562
628
|
@telemetry.send_api_usage_telemetry(
|
@@ -588,24 +654,26 @@ class KernelDensity(BaseTransformer):
|
|
588
654
|
# are specific to the type of dataset used.
|
589
655
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
590
656
|
|
657
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
658
|
+
|
591
659
|
if isinstance(dataset, DataFrame):
|
592
|
-
self.
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
660
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
661
|
+
self._deps = self._get_dependencies()
|
662
|
+
assert isinstance(
|
663
|
+
dataset._session, Session
|
664
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
597
665
|
transform_kwargs = dict(
|
598
666
|
session=dataset._session,
|
599
667
|
dependencies=self._deps,
|
600
|
-
drop_input_cols
|
668
|
+
drop_input_cols=self._drop_input_cols,
|
601
669
|
expected_output_cols_type="float",
|
602
670
|
)
|
671
|
+
expected_output_cols = self._align_expected_output_names(
|
672
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
673
|
+
)
|
603
674
|
|
604
675
|
elif isinstance(dataset, pd.DataFrame):
|
605
|
-
transform_kwargs = dict(
|
606
|
-
snowpark_input_cols = self._snowpark_cols,
|
607
|
-
drop_input_cols = self._drop_input_cols
|
608
|
-
)
|
676
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
609
677
|
|
610
678
|
transform_handlers = ModelTransformerBuilder.build(
|
611
679
|
dataset=dataset,
|
@@ -617,7 +685,7 @@ class KernelDensity(BaseTransformer):
|
|
617
685
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
618
686
|
inference_method=inference_method,
|
619
687
|
input_cols=self.input_cols,
|
620
|
-
expected_output_cols=
|
688
|
+
expected_output_cols=expected_output_cols,
|
621
689
|
**transform_kwargs
|
622
690
|
)
|
623
691
|
return output_df
|
@@ -647,29 +715,30 @@ class KernelDensity(BaseTransformer):
|
|
647
715
|
Output dataset with log probability of the sample for each class in the model.
|
648
716
|
"""
|
649
717
|
super()._check_dataset_type(dataset)
|
650
|
-
inference_method="predict_log_proba"
|
718
|
+
inference_method = "predict_log_proba"
|
719
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
651
720
|
|
652
721
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
653
722
|
# are specific to the type of dataset used.
|
654
723
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
655
724
|
|
656
725
|
if isinstance(dataset, DataFrame):
|
657
|
-
self.
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
726
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
727
|
+
self._deps = self._get_dependencies()
|
728
|
+
assert isinstance(
|
729
|
+
dataset._session, Session
|
730
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
662
731
|
transform_kwargs = dict(
|
663
732
|
session=dataset._session,
|
664
733
|
dependencies=self._deps,
|
665
|
-
drop_input_cols
|
734
|
+
drop_input_cols=self._drop_input_cols,
|
666
735
|
expected_output_cols_type="float",
|
667
736
|
)
|
737
|
+
expected_output_cols = self._align_expected_output_names(
|
738
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
739
|
+
)
|
668
740
|
elif isinstance(dataset, pd.DataFrame):
|
669
|
-
transform_kwargs = dict(
|
670
|
-
snowpark_input_cols = self._snowpark_cols,
|
671
|
-
drop_input_cols = self._drop_input_cols
|
672
|
-
)
|
741
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
673
742
|
|
674
743
|
transform_handlers = ModelTransformerBuilder.build(
|
675
744
|
dataset=dataset,
|
@@ -682,7 +751,7 @@ class KernelDensity(BaseTransformer):
|
|
682
751
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
683
752
|
inference_method=inference_method,
|
684
753
|
input_cols=self.input_cols,
|
685
|
-
expected_output_cols=
|
754
|
+
expected_output_cols=expected_output_cols,
|
686
755
|
**transform_kwargs
|
687
756
|
)
|
688
757
|
return output_df
|
@@ -708,30 +777,32 @@ class KernelDensity(BaseTransformer):
|
|
708
777
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
778
|
"""
|
710
779
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
780
|
+
inference_method = "decision_function"
|
712
781
|
|
713
782
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
783
|
# are specific to the type of dataset used.
|
715
784
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
785
|
|
786
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
787
|
+
|
717
788
|
if isinstance(dataset, DataFrame):
|
718
|
-
self.
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
789
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
790
|
+
self._deps = self._get_dependencies()
|
791
|
+
assert isinstance(
|
792
|
+
dataset._session, Session
|
793
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
794
|
transform_kwargs = dict(
|
724
795
|
session=dataset._session,
|
725
796
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
797
|
+
drop_input_cols=self._drop_input_cols,
|
727
798
|
expected_output_cols_type="float",
|
728
799
|
)
|
800
|
+
expected_output_cols = self._align_expected_output_names(
|
801
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
802
|
+
)
|
729
803
|
|
730
804
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
805
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
806
|
|
736
807
|
transform_handlers = ModelTransformerBuilder.build(
|
737
808
|
dataset=dataset,
|
@@ -744,7 +815,7 @@ class KernelDensity(BaseTransformer):
|
|
744
815
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
816
|
inference_method=inference_method,
|
746
817
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
818
|
+
expected_output_cols=expected_output_cols,
|
748
819
|
**transform_kwargs
|
749
820
|
)
|
750
821
|
return output_df
|
@@ -775,17 +846,17 @@ class KernelDensity(BaseTransformer):
|
|
775
846
|
Output dataset with probability of the sample for each class in the model.
|
776
847
|
"""
|
777
848
|
super()._check_dataset_type(dataset)
|
778
|
-
inference_method="score_samples"
|
849
|
+
inference_method = "score_samples"
|
779
850
|
|
780
851
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
781
852
|
# are specific to the type of dataset used.
|
782
853
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
783
854
|
|
855
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
856
|
+
|
784
857
|
if isinstance(dataset, DataFrame):
|
785
|
-
self.
|
786
|
-
|
787
|
-
inference_method=inference_method,
|
788
|
-
)
|
858
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
859
|
+
self._deps = self._get_dependencies()
|
789
860
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
790
861
|
transform_kwargs = dict(
|
791
862
|
session=dataset._session,
|
@@ -793,6 +864,9 @@ class KernelDensity(BaseTransformer):
|
|
793
864
|
drop_input_cols = self._drop_input_cols,
|
794
865
|
expected_output_cols_type="float",
|
795
866
|
)
|
867
|
+
expected_output_cols = self._align_expected_output_names(
|
868
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
869
|
+
)
|
796
870
|
|
797
871
|
elif isinstance(dataset, pd.DataFrame):
|
798
872
|
transform_kwargs = dict(
|
@@ -811,7 +885,7 @@ class KernelDensity(BaseTransformer):
|
|
811
885
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
812
886
|
inference_method=inference_method,
|
813
887
|
input_cols=self.input_cols,
|
814
|
-
expected_output_cols=
|
888
|
+
expected_output_cols=expected_output_cols,
|
815
889
|
**transform_kwargs
|
816
890
|
)
|
817
891
|
return output_df
|
@@ -846,17 +920,15 @@ class KernelDensity(BaseTransformer):
|
|
846
920
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
847
921
|
|
848
922
|
if isinstance(dataset, DataFrame):
|
849
|
-
self.
|
850
|
-
|
851
|
-
inference_method="score",
|
852
|
-
)
|
923
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
924
|
+
self._deps = self._get_dependencies()
|
853
925
|
selected_cols = self._get_active_columns()
|
854
926
|
if len(selected_cols) > 0:
|
855
927
|
dataset = dataset.select(selected_cols)
|
856
928
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
857
929
|
transform_kwargs = dict(
|
858
930
|
session=dataset._session,
|
859
|
-
dependencies=
|
931
|
+
dependencies=self._deps,
|
860
932
|
score_sproc_imports=['sklearn'],
|
861
933
|
)
|
862
934
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -921,11 +993,8 @@ class KernelDensity(BaseTransformer):
|
|
921
993
|
|
922
994
|
if isinstance(dataset, DataFrame):
|
923
995
|
|
924
|
-
self.
|
925
|
-
|
926
|
-
inference_method=inference_method,
|
927
|
-
|
928
|
-
)
|
996
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
997
|
+
self._deps = self._get_dependencies()
|
929
998
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
930
999
|
transform_kwargs = dict(
|
931
1000
|
session = dataset._session,
|
@@ -958,50 +1027,84 @@ class KernelDensity(BaseTransformer):
|
|
958
1027
|
)
|
959
1028
|
return output_df
|
960
1029
|
|
1030
|
+
|
1031
|
+
|
1032
|
+
def to_sklearn(self) -> Any:
|
1033
|
+
"""Get sklearn.neighbors.KernelDensity object.
|
1034
|
+
"""
|
1035
|
+
if self._sklearn_object is None:
|
1036
|
+
self._sklearn_object = self._create_sklearn_object()
|
1037
|
+
return self._sklearn_object
|
1038
|
+
|
1039
|
+
def to_xgboost(self) -> Any:
|
1040
|
+
raise exceptions.SnowflakeMLException(
|
1041
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1042
|
+
original_exception=AttributeError(
|
1043
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1044
|
+
"to_xgboost()",
|
1045
|
+
"to_sklearn()"
|
1046
|
+
)
|
1047
|
+
),
|
1048
|
+
)
|
1049
|
+
|
1050
|
+
def to_lightgbm(self) -> Any:
|
1051
|
+
raise exceptions.SnowflakeMLException(
|
1052
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1053
|
+
original_exception=AttributeError(
|
1054
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1055
|
+
"to_lightgbm()",
|
1056
|
+
"to_sklearn()"
|
1057
|
+
)
|
1058
|
+
),
|
1059
|
+
)
|
1060
|
+
|
1061
|
+
def _get_dependencies(self) -> List[str]:
|
1062
|
+
return self._deps
|
1063
|
+
|
961
1064
|
|
962
|
-
def
|
1065
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
963
1066
|
self._model_signature_dict = dict()
|
964
1067
|
|
965
1068
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
966
1069
|
|
967
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1070
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
968
1071
|
outputs: List[BaseFeatureSpec] = []
|
969
1072
|
if hasattr(self, "predict"):
|
970
1073
|
# keep mypy happy
|
971
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1074
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
972
1075
|
# For classifier, the type of predict is the same as the type of label
|
973
|
-
if self._sklearn_object._estimator_type ==
|
974
|
-
|
1076
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1077
|
+
# label columns is the desired type for output
|
975
1078
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
976
1079
|
# rename the output columns
|
977
1080
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
978
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
979
|
-
|
980
|
-
|
1081
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1082
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1083
|
+
)
|
981
1084
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
982
1085
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
983
|
-
# Clusterer returns int64 cluster labels.
|
1086
|
+
# Clusterer returns int64 cluster labels.
|
984
1087
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
985
1088
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
986
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
987
|
-
|
988
|
-
|
989
|
-
|
1089
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1090
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1091
|
+
)
|
1092
|
+
|
990
1093
|
# For regressor, the type of predict is float64
|
991
|
-
elif self._sklearn_object._estimator_type ==
|
1094
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
992
1095
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
993
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
994
|
-
|
995
|
-
|
996
|
-
|
1096
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1097
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1098
|
+
)
|
1099
|
+
|
997
1100
|
for prob_func in PROB_FUNCTIONS:
|
998
1101
|
if hasattr(self, prob_func):
|
999
1102
|
output_cols_prefix: str = f"{prob_func}_"
|
1000
1103
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1001
1104
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1002
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1003
|
-
|
1004
|
-
|
1105
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1106
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1107
|
+
)
|
1005
1108
|
|
1006
1109
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1007
1110
|
items = list(self._model_signature_dict.items())
|
@@ -1014,10 +1117,10 @@ class KernelDensity(BaseTransformer):
|
|
1014
1117
|
"""Returns model signature of current class.
|
1015
1118
|
|
1016
1119
|
Raises:
|
1017
|
-
|
1120
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1018
1121
|
|
1019
1122
|
Returns:
|
1020
|
-
Dict
|
1123
|
+
Dict with each method and its input output signature
|
1021
1124
|
"""
|
1022
1125
|
if self._model_signature_dict is None:
|
1023
1126
|
raise exceptions.SnowflakeMLException(
|
@@ -1025,35 +1128,3 @@ class KernelDensity(BaseTransformer):
|
|
1025
1128
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1026
1129
|
)
|
1027
1130
|
return self._model_signature_dict
|
1028
|
-
|
1029
|
-
def to_sklearn(self) -> Any:
|
1030
|
-
"""Get sklearn.neighbors.KernelDensity object.
|
1031
|
-
"""
|
1032
|
-
if self._sklearn_object is None:
|
1033
|
-
self._sklearn_object = self._create_sklearn_object()
|
1034
|
-
return self._sklearn_object
|
1035
|
-
|
1036
|
-
def to_xgboost(self) -> Any:
|
1037
|
-
raise exceptions.SnowflakeMLException(
|
1038
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
-
original_exception=AttributeError(
|
1040
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
-
"to_xgboost()",
|
1042
|
-
"to_sklearn()"
|
1043
|
-
)
|
1044
|
-
),
|
1045
|
-
)
|
1046
|
-
|
1047
|
-
def to_lightgbm(self) -> Any:
|
1048
|
-
raise exceptions.SnowflakeMLException(
|
1049
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1050
|
-
original_exception=AttributeError(
|
1051
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1052
|
-
"to_lightgbm()",
|
1053
|
-
"to_sklearn()"
|
1054
|
-
)
|
1055
|
-
),
|
1056
|
-
)
|
1057
|
-
|
1058
|
-
def _get_dependencies(self) -> List[str]:
|
1059
|
-
return self._deps
|