snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class KernelDensity(BaseTransformer):
71
64
  r"""Kernel Density Estimation
72
65
  For more details on this class, see [sklearn.neighbors.KernelDensity]
@@ -252,12 +245,7 @@ class KernelDensity(BaseTransformer):
252
245
  )
253
246
  return selected_cols
254
247
 
255
- @telemetry.send_api_usage_telemetry(
256
- project=_PROJECT,
257
- subproject=_SUBPROJECT,
258
- custom_tags=dict([("autogen", True)]),
259
- )
260
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
248
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KernelDensity":
261
249
  """Fit the Kernel Density model on the data
262
250
  For more details on this function, see [sklearn.neighbors.KernelDensity.fit]
263
251
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KernelDensity.html#sklearn.neighbors.KernelDensity.fit)
@@ -284,12 +272,14 @@ class KernelDensity(BaseTransformer):
284
272
 
285
273
  self._snowpark_cols = dataset.select(self.input_cols).columns
286
274
 
287
- # If we are already in a stored procedure, no need to kick off another one.
275
+ # If we are already in a stored procedure, no need to kick off another one.
288
276
  if SNOWML_SPROC_ENV in os.environ:
289
277
  statement_params = telemetry.get_function_usage_statement_params(
290
278
  project=_PROJECT,
291
279
  subproject=_SUBPROJECT,
292
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KernelDensity.__class__.__name__),
280
+ function_name=telemetry.get_statement_params_full_func_name(
281
+ inspect.currentframe(), KernelDensity.__class__.__name__
282
+ ),
293
283
  api_calls=[Session.call],
294
284
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
295
285
  )
@@ -310,27 +300,24 @@ class KernelDensity(BaseTransformer):
310
300
  )
311
301
  self._sklearn_object = model_trainer.train()
312
302
  self._is_fitted = True
313
- self._get_model_signatures(dataset)
303
+ self._generate_model_signatures(dataset)
314
304
  return self
315
305
 
316
306
  def _batch_inference_validate_snowpark(
317
307
  self,
318
308
  dataset: DataFrame,
319
309
  inference_method: str,
320
- ) -> List[str]:
321
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
322
- return the available package that exists in the snowflake anaconda channel
310
+ ) -> None:
311
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
323
312
 
324
313
  Args:
325
314
  dataset: snowpark dataframe
326
315
  inference_method: the inference method such as predict, score...
327
-
316
+
328
317
  Raises:
329
318
  SnowflakeMLException: If the estimator is not fitted, raise error
330
319
  SnowflakeMLException: If the session is None, raise error
331
320
 
332
- Returns:
333
- A list of available package that exists in the snowflake anaconda channel
334
321
  """
335
322
  if not self._is_fitted:
336
323
  raise exceptions.SnowflakeMLException(
@@ -348,9 +335,7 @@ class KernelDensity(BaseTransformer):
348
335
  "Session must not specified for snowpark dataset."
349
336
  ),
350
337
  )
351
- # Validate that key package version in user workspace are supported in snowflake conda channel
352
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
353
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
338
+
354
339
 
355
340
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
356
341
  @telemetry.send_api_usage_telemetry(
@@ -384,7 +369,9 @@ class KernelDensity(BaseTransformer):
384
369
  # when it is classifier, infer the datatype from label columns
385
370
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
386
371
  # Batch inference takes a single expected output column type. Use the first columns type for now.
387
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
372
+ label_cols_signatures = [
373
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
374
+ ]
388
375
  if len(label_cols_signatures) == 0:
389
376
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
390
377
  raise exceptions.SnowflakeMLException(
@@ -392,25 +379,23 @@ class KernelDensity(BaseTransformer):
392
379
  original_exception=ValueError(error_str),
393
380
  )
394
381
 
395
- expected_type_inferred = convert_sp_to_sf_type(
396
- label_cols_signatures[0].as_snowpark_type()
397
- )
382
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
398
383
 
399
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
400
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
385
+ self._deps = self._get_dependencies()
386
+ assert isinstance(
387
+ dataset._session, Session
388
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
401
389
 
402
390
  transform_kwargs = dict(
403
- session = dataset._session,
404
- dependencies = self._deps,
405
- drop_input_cols = self._drop_input_cols,
406
- expected_output_cols_type = expected_type_inferred,
391
+ session=dataset._session,
392
+ dependencies=self._deps,
393
+ drop_input_cols=self._drop_input_cols,
394
+ expected_output_cols_type=expected_type_inferred,
407
395
  )
408
396
 
409
397
  elif isinstance(dataset, pd.DataFrame):
410
- transform_kwargs = dict(
411
- snowpark_input_cols = self._snowpark_cols,
412
- drop_input_cols = self._drop_input_cols
413
- )
398
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
414
399
 
415
400
  transform_handlers = ModelTransformerBuilder.build(
416
401
  dataset=dataset,
@@ -450,7 +435,7 @@ class KernelDensity(BaseTransformer):
450
435
  Transformed dataset.
451
436
  """
452
437
  super()._check_dataset_type(dataset)
453
- inference_method="transform"
438
+ inference_method = "transform"
454
439
 
455
440
  # This dictionary contains optional kwargs for batch inference. These kwargs
456
441
  # are specific to the type of dataset used.
@@ -480,24 +465,19 @@ class KernelDensity(BaseTransformer):
480
465
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
481
466
  expected_dtype = convert_sp_to_sf_type(output_types[0])
482
467
 
483
- self._deps = self._batch_inference_validate_snowpark(
484
- dataset=dataset,
485
- inference_method=inference_method,
486
- )
468
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
469
+ self._deps = self._get_dependencies()
487
470
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
488
471
 
489
472
  transform_kwargs = dict(
490
- session = dataset._session,
491
- dependencies = self._deps,
492
- drop_input_cols = self._drop_input_cols,
493
- expected_output_cols_type = expected_dtype,
473
+ session=dataset._session,
474
+ dependencies=self._deps,
475
+ drop_input_cols=self._drop_input_cols,
476
+ expected_output_cols_type=expected_dtype,
494
477
  )
495
478
 
496
479
  elif isinstance(dataset, pd.DataFrame):
497
- transform_kwargs = dict(
498
- snowpark_input_cols = self._snowpark_cols,
499
- drop_input_cols = self._drop_input_cols
500
- )
480
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
501
481
 
502
482
  transform_handlers = ModelTransformerBuilder.build(
503
483
  dataset=dataset,
@@ -516,7 +496,11 @@ class KernelDensity(BaseTransformer):
516
496
  return output_df
517
497
 
518
498
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
519
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
499
+ def fit_predict(
500
+ self,
501
+ dataset: Union[DataFrame, pd.DataFrame],
502
+ output_cols_prefix: str = "fit_predict_",
503
+ ) -> Union[DataFrame, pd.DataFrame]:
520
504
  """ Method not supported for this class.
521
505
 
522
506
 
@@ -541,22 +525,104 @@ class KernelDensity(BaseTransformer):
541
525
  )
542
526
  output_result, fitted_estimator = model_trainer.train_fit_predict(
543
527
  drop_input_cols=self._drop_input_cols,
544
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
528
+ expected_output_cols_list=(
529
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
530
+ ),
545
531
  )
546
532
  self._sklearn_object = fitted_estimator
547
533
  self._is_fitted = True
548
534
  return output_result
549
535
 
536
+
537
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
538
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
539
+ """ Method not supported for this class.
540
+
550
541
 
551
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
552
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
553
- """
542
+ Raises:
543
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
544
+
545
+ Args:
546
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
547
+ Snowpark or Pandas DataFrame.
548
+ output_cols_prefix: Prefix for the response columns
554
549
  Returns:
555
550
  Transformed dataset.
556
551
  """
557
- self.fit(dataset)
558
- assert self._sklearn_object is not None
559
- return self._sklearn_object.embedding_
552
+ self._infer_input_output_cols(dataset)
553
+ super()._check_dataset_type(dataset)
554
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
555
+ estimator=self._sklearn_object,
556
+ dataset=dataset,
557
+ input_cols=self.input_cols,
558
+ label_cols=self.label_cols,
559
+ sample_weight_col=self.sample_weight_col,
560
+ autogenerated=self._autogenerated,
561
+ subproject=_SUBPROJECT,
562
+ )
563
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
564
+ drop_input_cols=self._drop_input_cols,
565
+ expected_output_cols_list=self.output_cols,
566
+ )
567
+ self._sklearn_object = fitted_estimator
568
+ self._is_fitted = True
569
+ return output_result
570
+
571
+
572
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
573
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
574
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
575
+ """
576
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
577
+ # The following condition is introduced for kneighbors methods, and not used in other methods
578
+ if output_cols:
579
+ output_cols = [
580
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
581
+ for c in output_cols
582
+ ]
583
+ elif getattr(self._sklearn_object, "classes_", None) is None:
584
+ output_cols = [output_cols_prefix]
585
+ elif self._sklearn_object is not None:
586
+ classes = self._sklearn_object.classes_
587
+ if isinstance(classes, numpy.ndarray):
588
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
589
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
590
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
591
+ output_cols = []
592
+ for i, cl in enumerate(classes):
593
+ # For binary classification, there is only one output column for each class
594
+ # ndarray as the two classes are complementary.
595
+ if len(cl) == 2:
596
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
597
+ else:
598
+ output_cols.extend([
599
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
600
+ ])
601
+ else:
602
+ output_cols = []
603
+
604
+ # Make sure column names are valid snowflake identifiers.
605
+ assert output_cols is not None # Make MyPy happy
606
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
607
+
608
+ return rv
609
+
610
+ def _align_expected_output_names(
611
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
612
+ ) -> List[str]:
613
+ # in case the inferred output column names dimension is different
614
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
615
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
616
+ output_df_columns = list(output_df_pd.columns)
617
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
618
+ if self.sample_weight_col:
619
+ output_df_columns_set -= set(self.sample_weight_col)
620
+ # if the dimension of inferred output column names is correct; use it
621
+ if len(expected_output_cols_list) == len(output_df_columns_set):
622
+ return expected_output_cols_list
623
+ # otherwise, use the sklearn estimator's output
624
+ else:
625
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
560
626
 
561
627
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
562
628
  @telemetry.send_api_usage_telemetry(
@@ -588,24 +654,26 @@ class KernelDensity(BaseTransformer):
588
654
  # are specific to the type of dataset used.
589
655
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
590
656
 
657
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
658
+
591
659
  if isinstance(dataset, DataFrame):
592
- self._deps = self._batch_inference_validate_snowpark(
593
- dataset=dataset,
594
- inference_method=inference_method,
595
- )
596
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
660
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
661
+ self._deps = self._get_dependencies()
662
+ assert isinstance(
663
+ dataset._session, Session
664
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
597
665
  transform_kwargs = dict(
598
666
  session=dataset._session,
599
667
  dependencies=self._deps,
600
- drop_input_cols = self._drop_input_cols,
668
+ drop_input_cols=self._drop_input_cols,
601
669
  expected_output_cols_type="float",
602
670
  )
671
+ expected_output_cols = self._align_expected_output_names(
672
+ inference_method, dataset, expected_output_cols, output_cols_prefix
673
+ )
603
674
 
604
675
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
676
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
677
 
610
678
  transform_handlers = ModelTransformerBuilder.build(
611
679
  dataset=dataset,
@@ -617,7 +685,7 @@ class KernelDensity(BaseTransformer):
617
685
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
618
686
  inference_method=inference_method,
619
687
  input_cols=self.input_cols,
620
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
688
+ expected_output_cols=expected_output_cols,
621
689
  **transform_kwargs
622
690
  )
623
691
  return output_df
@@ -647,29 +715,30 @@ class KernelDensity(BaseTransformer):
647
715
  Output dataset with log probability of the sample for each class in the model.
648
716
  """
649
717
  super()._check_dataset_type(dataset)
650
- inference_method="predict_log_proba"
718
+ inference_method = "predict_log_proba"
719
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
720
 
652
721
  # This dictionary contains optional kwargs for batch inference. These kwargs
653
722
  # are specific to the type of dataset used.
654
723
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
655
724
 
656
725
  if isinstance(dataset, DataFrame):
657
- self._deps = self._batch_inference_validate_snowpark(
658
- dataset=dataset,
659
- inference_method=inference_method,
660
- )
661
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
726
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
727
+ self._deps = self._get_dependencies()
728
+ assert isinstance(
729
+ dataset._session, Session
730
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
731
  transform_kwargs = dict(
663
732
  session=dataset._session,
664
733
  dependencies=self._deps,
665
- drop_input_cols = self._drop_input_cols,
734
+ drop_input_cols=self._drop_input_cols,
666
735
  expected_output_cols_type="float",
667
736
  )
737
+ expected_output_cols = self._align_expected_output_names(
738
+ inference_method, dataset, expected_output_cols, output_cols_prefix
739
+ )
668
740
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
741
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
742
 
674
743
  transform_handlers = ModelTransformerBuilder.build(
675
744
  dataset=dataset,
@@ -682,7 +751,7 @@ class KernelDensity(BaseTransformer):
682
751
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
683
752
  inference_method=inference_method,
684
753
  input_cols=self.input_cols,
685
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
754
+ expected_output_cols=expected_output_cols,
686
755
  **transform_kwargs
687
756
  )
688
757
  return output_df
@@ -708,30 +777,32 @@ class KernelDensity(BaseTransformer):
708
777
  Output dataset with results of the decision function for the samples in input dataset.
709
778
  """
710
779
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
780
+ inference_method = "decision_function"
712
781
 
713
782
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
783
  # are specific to the type of dataset used.
715
784
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
785
 
786
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
787
+
717
788
  if isinstance(dataset, DataFrame):
718
- self._deps = self._batch_inference_validate_snowpark(
719
- dataset=dataset,
720
- inference_method=inference_method,
721
- )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
789
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
790
+ self._deps = self._get_dependencies()
791
+ assert isinstance(
792
+ dataset._session, Session
793
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
794
  transform_kwargs = dict(
724
795
  session=dataset._session,
725
796
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
797
+ drop_input_cols=self._drop_input_cols,
727
798
  expected_output_cols_type="float",
728
799
  )
800
+ expected_output_cols = self._align_expected_output_names(
801
+ inference_method, dataset, expected_output_cols, output_cols_prefix
802
+ )
729
803
 
730
804
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
805
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
806
 
736
807
  transform_handlers = ModelTransformerBuilder.build(
737
808
  dataset=dataset,
@@ -744,7 +815,7 @@ class KernelDensity(BaseTransformer):
744
815
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
816
  inference_method=inference_method,
746
817
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
818
+ expected_output_cols=expected_output_cols,
748
819
  **transform_kwargs
749
820
  )
750
821
  return output_df
@@ -775,17 +846,17 @@ class KernelDensity(BaseTransformer):
775
846
  Output dataset with probability of the sample for each class in the model.
776
847
  """
777
848
  super()._check_dataset_type(dataset)
778
- inference_method="score_samples"
849
+ inference_method = "score_samples"
779
850
 
780
851
  # This dictionary contains optional kwargs for batch inference. These kwargs
781
852
  # are specific to the type of dataset used.
782
853
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
783
854
 
855
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
856
+
784
857
  if isinstance(dataset, DataFrame):
785
- self._deps = self._batch_inference_validate_snowpark(
786
- dataset=dataset,
787
- inference_method=inference_method,
788
- )
858
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
859
+ self._deps = self._get_dependencies()
789
860
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
790
861
  transform_kwargs = dict(
791
862
  session=dataset._session,
@@ -793,6 +864,9 @@ class KernelDensity(BaseTransformer):
793
864
  drop_input_cols = self._drop_input_cols,
794
865
  expected_output_cols_type="float",
795
866
  )
867
+ expected_output_cols = self._align_expected_output_names(
868
+ inference_method, dataset, expected_output_cols, output_cols_prefix
869
+ )
796
870
 
797
871
  elif isinstance(dataset, pd.DataFrame):
798
872
  transform_kwargs = dict(
@@ -811,7 +885,7 @@ class KernelDensity(BaseTransformer):
811
885
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
812
886
  inference_method=inference_method,
813
887
  input_cols=self.input_cols,
814
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
888
+ expected_output_cols=expected_output_cols,
815
889
  **transform_kwargs
816
890
  )
817
891
  return output_df
@@ -846,17 +920,15 @@ class KernelDensity(BaseTransformer):
846
920
  transform_kwargs: ScoreKwargsTypedDict = dict()
847
921
 
848
922
  if isinstance(dataset, DataFrame):
849
- self._deps = self._batch_inference_validate_snowpark(
850
- dataset=dataset,
851
- inference_method="score",
852
- )
923
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
924
+ self._deps = self._get_dependencies()
853
925
  selected_cols = self._get_active_columns()
854
926
  if len(selected_cols) > 0:
855
927
  dataset = dataset.select(selected_cols)
856
928
  assert isinstance(dataset._session, Session) # keep mypy happy
857
929
  transform_kwargs = dict(
858
930
  session=dataset._session,
859
- dependencies=["snowflake-snowpark-python"] + self._deps,
931
+ dependencies=self._deps,
860
932
  score_sproc_imports=['sklearn'],
861
933
  )
862
934
  elif isinstance(dataset, pd.DataFrame):
@@ -921,11 +993,8 @@ class KernelDensity(BaseTransformer):
921
993
 
922
994
  if isinstance(dataset, DataFrame):
923
995
 
924
- self._deps = self._batch_inference_validate_snowpark(
925
- dataset=dataset,
926
- inference_method=inference_method,
927
-
928
- )
996
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
997
+ self._deps = self._get_dependencies()
929
998
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
930
999
  transform_kwargs = dict(
931
1000
  session = dataset._session,
@@ -958,50 +1027,84 @@ class KernelDensity(BaseTransformer):
958
1027
  )
959
1028
  return output_df
960
1029
 
1030
+
1031
+
1032
+ def to_sklearn(self) -> Any:
1033
+ """Get sklearn.neighbors.KernelDensity object.
1034
+ """
1035
+ if self._sklearn_object is None:
1036
+ self._sklearn_object = self._create_sklearn_object()
1037
+ return self._sklearn_object
1038
+
1039
+ def to_xgboost(self) -> Any:
1040
+ raise exceptions.SnowflakeMLException(
1041
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1042
+ original_exception=AttributeError(
1043
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1044
+ "to_xgboost()",
1045
+ "to_sklearn()"
1046
+ )
1047
+ ),
1048
+ )
1049
+
1050
+ def to_lightgbm(self) -> Any:
1051
+ raise exceptions.SnowflakeMLException(
1052
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1053
+ original_exception=AttributeError(
1054
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1055
+ "to_lightgbm()",
1056
+ "to_sklearn()"
1057
+ )
1058
+ ),
1059
+ )
1060
+
1061
+ def _get_dependencies(self) -> List[str]:
1062
+ return self._deps
1063
+
961
1064
 
962
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1065
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
963
1066
  self._model_signature_dict = dict()
964
1067
 
965
1068
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
966
1069
 
967
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1070
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
968
1071
  outputs: List[BaseFeatureSpec] = []
969
1072
  if hasattr(self, "predict"):
970
1073
  # keep mypy happy
971
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1074
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
972
1075
  # For classifier, the type of predict is the same as the type of label
973
- if self._sklearn_object._estimator_type == 'classifier':
974
- # label columns is the desired type for output
1076
+ if self._sklearn_object._estimator_type == "classifier":
1077
+ # label columns is the desired type for output
975
1078
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
976
1079
  # rename the output columns
977
1080
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
978
- self._model_signature_dict["predict"] = ModelSignature(inputs,
979
- ([] if self._drop_input_cols else inputs)
980
- + outputs)
1081
+ self._model_signature_dict["predict"] = ModelSignature(
1082
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1083
+ )
981
1084
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
982
1085
  # For outlier models, returns -1 for outliers and 1 for inliers.
983
- # Clusterer returns int64 cluster labels.
1086
+ # Clusterer returns int64 cluster labels.
984
1087
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
985
1088
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
986
- self._model_signature_dict["predict"] = ModelSignature(inputs,
987
- ([] if self._drop_input_cols else inputs)
988
- + outputs)
989
-
1089
+ self._model_signature_dict["predict"] = ModelSignature(
1090
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1091
+ )
1092
+
990
1093
  # For regressor, the type of predict is float64
991
- elif self._sklearn_object._estimator_type == 'regressor':
1094
+ elif self._sklearn_object._estimator_type == "regressor":
992
1095
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
993
- self._model_signature_dict["predict"] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
996
-
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
1099
+
997
1100
  for prob_func in PROB_FUNCTIONS:
998
1101
  if hasattr(self, prob_func):
999
1102
  output_cols_prefix: str = f"{prob_func}_"
1000
1103
  output_column_names = self._get_output_column_names(output_cols_prefix)
1001
1104
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1002
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1105
+ self._model_signature_dict[prob_func] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1005
1108
 
1006
1109
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1007
1110
  items = list(self._model_signature_dict.items())
@@ -1014,10 +1117,10 @@ class KernelDensity(BaseTransformer):
1014
1117
  """Returns model signature of current class.
1015
1118
 
1016
1119
  Raises:
1017
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1120
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1018
1121
 
1019
1122
  Returns:
1020
- Dict[str, ModelSignature]: each method and its input output signature
1123
+ Dict with each method and its input output signature
1021
1124
  """
1022
1125
  if self._model_signature_dict is None:
1023
1126
  raise exceptions.SnowflakeMLException(
@@ -1025,35 +1128,3 @@ class KernelDensity(BaseTransformer):
1025
1128
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1026
1129
  )
1027
1130
  return self._model_signature_dict
1028
-
1029
- def to_sklearn(self) -> Any:
1030
- """Get sklearn.neighbors.KernelDensity object.
1031
- """
1032
- if self._sklearn_object is None:
1033
- self._sklearn_object = self._create_sklearn_object()
1034
- return self._sklearn_object
1035
-
1036
- def to_xgboost(self) -> Any:
1037
- raise exceptions.SnowflakeMLException(
1038
- error_code=error_codes.METHOD_NOT_ALLOWED,
1039
- original_exception=AttributeError(
1040
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
- "to_xgboost()",
1042
- "to_sklearn()"
1043
- )
1044
- ),
1045
- )
1046
-
1047
- def to_lightgbm(self) -> Any:
1048
- raise exceptions.SnowflakeMLException(
1049
- error_code=error_codes.METHOD_NOT_ALLOWED,
1050
- original_exception=AttributeError(
1051
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1052
- "to_lightgbm()",
1053
- "to_sklearn()"
1054
- )
1055
- ),
1056
- )
1057
-
1058
- def _get_dependencies(self) -> List[str]:
1059
- return self._deps