snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class KNNImputer(BaseTransformer):
|
71
64
|
r"""Imputation for completing missing values using k-Nearest Neighbors
|
72
65
|
For more details on this class, see [sklearn.impute.KNNImputer]
|
@@ -250,12 +243,7 @@ class KNNImputer(BaseTransformer):
|
|
250
243
|
)
|
251
244
|
return selected_cols
|
252
245
|
|
253
|
-
|
254
|
-
project=_PROJECT,
|
255
|
-
subproject=_SUBPROJECT,
|
256
|
-
custom_tags=dict([("autogen", True)]),
|
257
|
-
)
|
258
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNNImputer":
|
246
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNNImputer":
|
259
247
|
"""Fit the imputer on X
|
260
248
|
For more details on this function, see [sklearn.impute.KNNImputer.fit]
|
261
249
|
(https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html#sklearn.impute.KNNImputer.fit)
|
@@ -282,12 +270,14 @@ class KNNImputer(BaseTransformer):
|
|
282
270
|
|
283
271
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
284
272
|
|
285
|
-
|
273
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
286
274
|
if SNOWML_SPROC_ENV in os.environ:
|
287
275
|
statement_params = telemetry.get_function_usage_statement_params(
|
288
276
|
project=_PROJECT,
|
289
277
|
subproject=_SUBPROJECT,
|
290
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
278
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
279
|
+
inspect.currentframe(), KNNImputer.__class__.__name__
|
280
|
+
),
|
291
281
|
api_calls=[Session.call],
|
292
282
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
293
283
|
)
|
@@ -308,27 +298,24 @@ class KNNImputer(BaseTransformer):
|
|
308
298
|
)
|
309
299
|
self._sklearn_object = model_trainer.train()
|
310
300
|
self._is_fitted = True
|
311
|
-
self.
|
301
|
+
self._generate_model_signatures(dataset)
|
312
302
|
return self
|
313
303
|
|
314
304
|
def _batch_inference_validate_snowpark(
|
315
305
|
self,
|
316
306
|
dataset: DataFrame,
|
317
307
|
inference_method: str,
|
318
|
-
) ->
|
319
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
320
|
-
return the available package that exists in the snowflake anaconda channel
|
308
|
+
) -> None:
|
309
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
321
310
|
|
322
311
|
Args:
|
323
312
|
dataset: snowpark dataframe
|
324
313
|
inference_method: the inference method such as predict, score...
|
325
|
-
|
314
|
+
|
326
315
|
Raises:
|
327
316
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
328
317
|
SnowflakeMLException: If the session is None, raise error
|
329
318
|
|
330
|
-
Returns:
|
331
|
-
A list of available package that exists in the snowflake anaconda channel
|
332
319
|
"""
|
333
320
|
if not self._is_fitted:
|
334
321
|
raise exceptions.SnowflakeMLException(
|
@@ -346,9 +333,7 @@ class KNNImputer(BaseTransformer):
|
|
346
333
|
"Session must not specified for snowpark dataset."
|
347
334
|
),
|
348
335
|
)
|
349
|
-
|
350
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
351
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
336
|
+
|
352
337
|
|
353
338
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
354
339
|
@telemetry.send_api_usage_telemetry(
|
@@ -382,7 +367,9 @@ class KNNImputer(BaseTransformer):
|
|
382
367
|
# when it is classifier, infer the datatype from label columns
|
383
368
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
384
369
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
385
|
-
label_cols_signatures = [
|
370
|
+
label_cols_signatures = [
|
371
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
372
|
+
]
|
386
373
|
if len(label_cols_signatures) == 0:
|
387
374
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
388
375
|
raise exceptions.SnowflakeMLException(
|
@@ -390,25 +377,23 @@ class KNNImputer(BaseTransformer):
|
|
390
377
|
original_exception=ValueError(error_str),
|
391
378
|
)
|
392
379
|
|
393
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
394
|
-
label_cols_signatures[0].as_snowpark_type()
|
395
|
-
)
|
380
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
396
381
|
|
397
|
-
self.
|
398
|
-
|
382
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
383
|
+
self._deps = self._get_dependencies()
|
384
|
+
assert isinstance(
|
385
|
+
dataset._session, Session
|
386
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
399
387
|
|
400
388
|
transform_kwargs = dict(
|
401
|
-
session
|
402
|
-
dependencies
|
403
|
-
drop_input_cols
|
404
|
-
expected_output_cols_type
|
389
|
+
session=dataset._session,
|
390
|
+
dependencies=self._deps,
|
391
|
+
drop_input_cols=self._drop_input_cols,
|
392
|
+
expected_output_cols_type=expected_type_inferred,
|
405
393
|
)
|
406
394
|
|
407
395
|
elif isinstance(dataset, pd.DataFrame):
|
408
|
-
transform_kwargs = dict(
|
409
|
-
snowpark_input_cols = self._snowpark_cols,
|
410
|
-
drop_input_cols = self._drop_input_cols
|
411
|
-
)
|
396
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
412
397
|
|
413
398
|
transform_handlers = ModelTransformerBuilder.build(
|
414
399
|
dataset=dataset,
|
@@ -450,7 +435,7 @@ class KNNImputer(BaseTransformer):
|
|
450
435
|
Transformed dataset.
|
451
436
|
"""
|
452
437
|
super()._check_dataset_type(dataset)
|
453
|
-
inference_method="transform"
|
438
|
+
inference_method = "transform"
|
454
439
|
|
455
440
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
456
441
|
# are specific to the type of dataset used.
|
@@ -480,24 +465,19 @@ class KNNImputer(BaseTransformer):
|
|
480
465
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
481
466
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
482
467
|
|
483
|
-
self.
|
484
|
-
|
485
|
-
inference_method=inference_method,
|
486
|
-
)
|
468
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
469
|
+
self._deps = self._get_dependencies()
|
487
470
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
488
471
|
|
489
472
|
transform_kwargs = dict(
|
490
|
-
session
|
491
|
-
dependencies
|
492
|
-
drop_input_cols
|
493
|
-
expected_output_cols_type
|
473
|
+
session=dataset._session,
|
474
|
+
dependencies=self._deps,
|
475
|
+
drop_input_cols=self._drop_input_cols,
|
476
|
+
expected_output_cols_type=expected_dtype,
|
494
477
|
)
|
495
478
|
|
496
479
|
elif isinstance(dataset, pd.DataFrame):
|
497
|
-
transform_kwargs = dict(
|
498
|
-
snowpark_input_cols = self._snowpark_cols,
|
499
|
-
drop_input_cols = self._drop_input_cols
|
500
|
-
)
|
480
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
501
481
|
|
502
482
|
transform_handlers = ModelTransformerBuilder.build(
|
503
483
|
dataset=dataset,
|
@@ -516,7 +496,11 @@ class KNNImputer(BaseTransformer):
|
|
516
496
|
return output_df
|
517
497
|
|
518
498
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
519
|
-
def fit_predict(
|
499
|
+
def fit_predict(
|
500
|
+
self,
|
501
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
502
|
+
output_cols_prefix: str = "fit_predict_",
|
503
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
520
504
|
""" Method not supported for this class.
|
521
505
|
|
522
506
|
|
@@ -541,22 +525,106 @@ class KNNImputer(BaseTransformer):
|
|
541
525
|
)
|
542
526
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
543
527
|
drop_input_cols=self._drop_input_cols,
|
544
|
-
expected_output_cols_list=
|
528
|
+
expected_output_cols_list=(
|
529
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
530
|
+
),
|
545
531
|
)
|
546
532
|
self._sklearn_object = fitted_estimator
|
547
533
|
self._is_fitted = True
|
548
534
|
return output_result
|
549
535
|
|
536
|
+
|
537
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
538
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
539
|
+
""" Fit to data, then transform it
|
540
|
+
For more details on this function, see [sklearn.impute.KNNImputer.fit_transform]
|
541
|
+
(https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html#sklearn.impute.KNNImputer.fit_transform)
|
542
|
+
|
543
|
+
|
544
|
+
Raises:
|
545
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
550
546
|
|
551
|
-
|
552
|
-
|
553
|
-
|
547
|
+
Args:
|
548
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
549
|
+
Snowpark or Pandas DataFrame.
|
550
|
+
output_cols_prefix: Prefix for the response columns
|
554
551
|
Returns:
|
555
552
|
Transformed dataset.
|
556
553
|
"""
|
557
|
-
self.
|
558
|
-
|
559
|
-
|
554
|
+
self._infer_input_output_cols(dataset)
|
555
|
+
super()._check_dataset_type(dataset)
|
556
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
557
|
+
estimator=self._sklearn_object,
|
558
|
+
dataset=dataset,
|
559
|
+
input_cols=self.input_cols,
|
560
|
+
label_cols=self.label_cols,
|
561
|
+
sample_weight_col=self.sample_weight_col,
|
562
|
+
autogenerated=self._autogenerated,
|
563
|
+
subproject=_SUBPROJECT,
|
564
|
+
)
|
565
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
566
|
+
drop_input_cols=self._drop_input_cols,
|
567
|
+
expected_output_cols_list=self.output_cols,
|
568
|
+
)
|
569
|
+
self._sklearn_object = fitted_estimator
|
570
|
+
self._is_fitted = True
|
571
|
+
return output_result
|
572
|
+
|
573
|
+
|
574
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
575
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
576
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
577
|
+
"""
|
578
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
579
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
580
|
+
if output_cols:
|
581
|
+
output_cols = [
|
582
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
583
|
+
for c in output_cols
|
584
|
+
]
|
585
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
586
|
+
output_cols = [output_cols_prefix]
|
587
|
+
elif self._sklearn_object is not None:
|
588
|
+
classes = self._sklearn_object.classes_
|
589
|
+
if isinstance(classes, numpy.ndarray):
|
590
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
591
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
592
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
593
|
+
output_cols = []
|
594
|
+
for i, cl in enumerate(classes):
|
595
|
+
# For binary classification, there is only one output column for each class
|
596
|
+
# ndarray as the two classes are complementary.
|
597
|
+
if len(cl) == 2:
|
598
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
599
|
+
else:
|
600
|
+
output_cols.extend([
|
601
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
602
|
+
])
|
603
|
+
else:
|
604
|
+
output_cols = []
|
605
|
+
|
606
|
+
# Make sure column names are valid snowflake identifiers.
|
607
|
+
assert output_cols is not None # Make MyPy happy
|
608
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
609
|
+
|
610
|
+
return rv
|
611
|
+
|
612
|
+
def _align_expected_output_names(
|
613
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
614
|
+
) -> List[str]:
|
615
|
+
# in case the inferred output column names dimension is different
|
616
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
617
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
618
|
+
output_df_columns = list(output_df_pd.columns)
|
619
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
620
|
+
if self.sample_weight_col:
|
621
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
622
|
+
# if the dimension of inferred output column names is correct; use it
|
623
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
624
|
+
return expected_output_cols_list
|
625
|
+
# otherwise, use the sklearn estimator's output
|
626
|
+
else:
|
627
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
560
628
|
|
561
629
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
562
630
|
@telemetry.send_api_usage_telemetry(
|
@@ -588,24 +656,26 @@ class KNNImputer(BaseTransformer):
|
|
588
656
|
# are specific to the type of dataset used.
|
589
657
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
590
658
|
|
659
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
660
|
+
|
591
661
|
if isinstance(dataset, DataFrame):
|
592
|
-
self.
|
593
|
-
|
594
|
-
|
595
|
-
|
596
|
-
|
662
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
663
|
+
self._deps = self._get_dependencies()
|
664
|
+
assert isinstance(
|
665
|
+
dataset._session, Session
|
666
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
597
667
|
transform_kwargs = dict(
|
598
668
|
session=dataset._session,
|
599
669
|
dependencies=self._deps,
|
600
|
-
drop_input_cols
|
670
|
+
drop_input_cols=self._drop_input_cols,
|
601
671
|
expected_output_cols_type="float",
|
602
672
|
)
|
673
|
+
expected_output_cols = self._align_expected_output_names(
|
674
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
675
|
+
)
|
603
676
|
|
604
677
|
elif isinstance(dataset, pd.DataFrame):
|
605
|
-
transform_kwargs = dict(
|
606
|
-
snowpark_input_cols = self._snowpark_cols,
|
607
|
-
drop_input_cols = self._drop_input_cols
|
608
|
-
)
|
678
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
609
679
|
|
610
680
|
transform_handlers = ModelTransformerBuilder.build(
|
611
681
|
dataset=dataset,
|
@@ -617,7 +687,7 @@ class KNNImputer(BaseTransformer):
|
|
617
687
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
618
688
|
inference_method=inference_method,
|
619
689
|
input_cols=self.input_cols,
|
620
|
-
expected_output_cols=
|
690
|
+
expected_output_cols=expected_output_cols,
|
621
691
|
**transform_kwargs
|
622
692
|
)
|
623
693
|
return output_df
|
@@ -647,29 +717,30 @@ class KNNImputer(BaseTransformer):
|
|
647
717
|
Output dataset with log probability of the sample for each class in the model.
|
648
718
|
"""
|
649
719
|
super()._check_dataset_type(dataset)
|
650
|
-
inference_method="predict_log_proba"
|
720
|
+
inference_method = "predict_log_proba"
|
721
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
651
722
|
|
652
723
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
653
724
|
# are specific to the type of dataset used.
|
654
725
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
655
726
|
|
656
727
|
if isinstance(dataset, DataFrame):
|
657
|
-
self.
|
658
|
-
|
659
|
-
|
660
|
-
|
661
|
-
|
728
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
729
|
+
self._deps = self._get_dependencies()
|
730
|
+
assert isinstance(
|
731
|
+
dataset._session, Session
|
732
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
662
733
|
transform_kwargs = dict(
|
663
734
|
session=dataset._session,
|
664
735
|
dependencies=self._deps,
|
665
|
-
drop_input_cols
|
736
|
+
drop_input_cols=self._drop_input_cols,
|
666
737
|
expected_output_cols_type="float",
|
667
738
|
)
|
739
|
+
expected_output_cols = self._align_expected_output_names(
|
740
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
741
|
+
)
|
668
742
|
elif isinstance(dataset, pd.DataFrame):
|
669
|
-
transform_kwargs = dict(
|
670
|
-
snowpark_input_cols = self._snowpark_cols,
|
671
|
-
drop_input_cols = self._drop_input_cols
|
672
|
-
)
|
743
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
673
744
|
|
674
745
|
transform_handlers = ModelTransformerBuilder.build(
|
675
746
|
dataset=dataset,
|
@@ -682,7 +753,7 @@ class KNNImputer(BaseTransformer):
|
|
682
753
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
683
754
|
inference_method=inference_method,
|
684
755
|
input_cols=self.input_cols,
|
685
|
-
expected_output_cols=
|
756
|
+
expected_output_cols=expected_output_cols,
|
686
757
|
**transform_kwargs
|
687
758
|
)
|
688
759
|
return output_df
|
@@ -708,30 +779,32 @@ class KNNImputer(BaseTransformer):
|
|
708
779
|
Output dataset with results of the decision function for the samples in input dataset.
|
709
780
|
"""
|
710
781
|
super()._check_dataset_type(dataset)
|
711
|
-
inference_method="decision_function"
|
782
|
+
inference_method = "decision_function"
|
712
783
|
|
713
784
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
714
785
|
# are specific to the type of dataset used.
|
715
786
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
716
787
|
|
788
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
789
|
+
|
717
790
|
if isinstance(dataset, DataFrame):
|
718
|
-
self.
|
719
|
-
|
720
|
-
|
721
|
-
|
722
|
-
|
791
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
792
|
+
self._deps = self._get_dependencies()
|
793
|
+
assert isinstance(
|
794
|
+
dataset._session, Session
|
795
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
723
796
|
transform_kwargs = dict(
|
724
797
|
session=dataset._session,
|
725
798
|
dependencies=self._deps,
|
726
|
-
drop_input_cols
|
799
|
+
drop_input_cols=self._drop_input_cols,
|
727
800
|
expected_output_cols_type="float",
|
728
801
|
)
|
802
|
+
expected_output_cols = self._align_expected_output_names(
|
803
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
804
|
+
)
|
729
805
|
|
730
806
|
elif isinstance(dataset, pd.DataFrame):
|
731
|
-
transform_kwargs = dict(
|
732
|
-
snowpark_input_cols = self._snowpark_cols,
|
733
|
-
drop_input_cols = self._drop_input_cols
|
734
|
-
)
|
807
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
735
808
|
|
736
809
|
transform_handlers = ModelTransformerBuilder.build(
|
737
810
|
dataset=dataset,
|
@@ -744,7 +817,7 @@ class KNNImputer(BaseTransformer):
|
|
744
817
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
745
818
|
inference_method=inference_method,
|
746
819
|
input_cols=self.input_cols,
|
747
|
-
expected_output_cols=
|
820
|
+
expected_output_cols=expected_output_cols,
|
748
821
|
**transform_kwargs
|
749
822
|
)
|
750
823
|
return output_df
|
@@ -773,17 +846,17 @@ class KNNImputer(BaseTransformer):
|
|
773
846
|
Output dataset with probability of the sample for each class in the model.
|
774
847
|
"""
|
775
848
|
super()._check_dataset_type(dataset)
|
776
|
-
inference_method="score_samples"
|
849
|
+
inference_method = "score_samples"
|
777
850
|
|
778
851
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
779
852
|
# are specific to the type of dataset used.
|
780
853
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
781
854
|
|
855
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
856
|
+
|
782
857
|
if isinstance(dataset, DataFrame):
|
783
|
-
self.
|
784
|
-
|
785
|
-
inference_method=inference_method,
|
786
|
-
)
|
858
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
859
|
+
self._deps = self._get_dependencies()
|
787
860
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
788
861
|
transform_kwargs = dict(
|
789
862
|
session=dataset._session,
|
@@ -791,6 +864,9 @@ class KNNImputer(BaseTransformer):
|
|
791
864
|
drop_input_cols = self._drop_input_cols,
|
792
865
|
expected_output_cols_type="float",
|
793
866
|
)
|
867
|
+
expected_output_cols = self._align_expected_output_names(
|
868
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
869
|
+
)
|
794
870
|
|
795
871
|
elif isinstance(dataset, pd.DataFrame):
|
796
872
|
transform_kwargs = dict(
|
@@ -809,7 +885,7 @@ class KNNImputer(BaseTransformer):
|
|
809
885
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
810
886
|
inference_method=inference_method,
|
811
887
|
input_cols=self.input_cols,
|
812
|
-
expected_output_cols=
|
888
|
+
expected_output_cols=expected_output_cols,
|
813
889
|
**transform_kwargs
|
814
890
|
)
|
815
891
|
return output_df
|
@@ -842,17 +918,15 @@ class KNNImputer(BaseTransformer):
|
|
842
918
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
843
919
|
|
844
920
|
if isinstance(dataset, DataFrame):
|
845
|
-
self.
|
846
|
-
|
847
|
-
inference_method="score",
|
848
|
-
)
|
921
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
922
|
+
self._deps = self._get_dependencies()
|
849
923
|
selected_cols = self._get_active_columns()
|
850
924
|
if len(selected_cols) > 0:
|
851
925
|
dataset = dataset.select(selected_cols)
|
852
926
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
853
927
|
transform_kwargs = dict(
|
854
928
|
session=dataset._session,
|
855
|
-
dependencies=
|
929
|
+
dependencies=self._deps,
|
856
930
|
score_sproc_imports=['sklearn'],
|
857
931
|
)
|
858
932
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -917,11 +991,8 @@ class KNNImputer(BaseTransformer):
|
|
917
991
|
|
918
992
|
if isinstance(dataset, DataFrame):
|
919
993
|
|
920
|
-
self.
|
921
|
-
|
922
|
-
inference_method=inference_method,
|
923
|
-
|
924
|
-
)
|
994
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
995
|
+
self._deps = self._get_dependencies()
|
925
996
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
926
997
|
transform_kwargs = dict(
|
927
998
|
session = dataset._session,
|
@@ -954,50 +1025,84 @@ class KNNImputer(BaseTransformer):
|
|
954
1025
|
)
|
955
1026
|
return output_df
|
956
1027
|
|
1028
|
+
|
1029
|
+
|
1030
|
+
def to_sklearn(self) -> Any:
|
1031
|
+
"""Get sklearn.impute.KNNImputer object.
|
1032
|
+
"""
|
1033
|
+
if self._sklearn_object is None:
|
1034
|
+
self._sklearn_object = self._create_sklearn_object()
|
1035
|
+
return self._sklearn_object
|
1036
|
+
|
1037
|
+
def to_xgboost(self) -> Any:
|
1038
|
+
raise exceptions.SnowflakeMLException(
|
1039
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1040
|
+
original_exception=AttributeError(
|
1041
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1042
|
+
"to_xgboost()",
|
1043
|
+
"to_sklearn()"
|
1044
|
+
)
|
1045
|
+
),
|
1046
|
+
)
|
957
1047
|
|
958
|
-
def
|
1048
|
+
def to_lightgbm(self) -> Any:
|
1049
|
+
raise exceptions.SnowflakeMLException(
|
1050
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1051
|
+
original_exception=AttributeError(
|
1052
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1053
|
+
"to_lightgbm()",
|
1054
|
+
"to_sklearn()"
|
1055
|
+
)
|
1056
|
+
),
|
1057
|
+
)
|
1058
|
+
|
1059
|
+
def _get_dependencies(self) -> List[str]:
|
1060
|
+
return self._deps
|
1061
|
+
|
1062
|
+
|
1063
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
959
1064
|
self._model_signature_dict = dict()
|
960
1065
|
|
961
1066
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
962
1067
|
|
963
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1068
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
964
1069
|
outputs: List[BaseFeatureSpec] = []
|
965
1070
|
if hasattr(self, "predict"):
|
966
1071
|
# keep mypy happy
|
967
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1072
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
968
1073
|
# For classifier, the type of predict is the same as the type of label
|
969
|
-
if self._sklearn_object._estimator_type ==
|
970
|
-
|
1074
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1075
|
+
# label columns is the desired type for output
|
971
1076
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
972
1077
|
# rename the output columns
|
973
1078
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
974
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
975
|
-
|
976
|
-
|
1079
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1080
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1081
|
+
)
|
977
1082
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
978
1083
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
979
|
-
# Clusterer returns int64 cluster labels.
|
1084
|
+
# Clusterer returns int64 cluster labels.
|
980
1085
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
981
1086
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
985
|
-
|
1087
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1088
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1089
|
+
)
|
1090
|
+
|
986
1091
|
# For regressor, the type of predict is float64
|
987
|
-
elif self._sklearn_object._estimator_type ==
|
1092
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
988
1093
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
989
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
990
|
-
|
991
|
-
|
992
|
-
|
1094
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
1097
|
+
|
993
1098
|
for prob_func in PROB_FUNCTIONS:
|
994
1099
|
if hasattr(self, prob_func):
|
995
1100
|
output_cols_prefix: str = f"{prob_func}_"
|
996
1101
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
997
1102
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
998
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
999
|
-
|
1000
|
-
|
1103
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1104
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1105
|
+
)
|
1001
1106
|
|
1002
1107
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1003
1108
|
items = list(self._model_signature_dict.items())
|
@@ -1010,10 +1115,10 @@ class KNNImputer(BaseTransformer):
|
|
1010
1115
|
"""Returns model signature of current class.
|
1011
1116
|
|
1012
1117
|
Raises:
|
1013
|
-
|
1118
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1014
1119
|
|
1015
1120
|
Returns:
|
1016
|
-
Dict
|
1121
|
+
Dict with each method and its input output signature
|
1017
1122
|
"""
|
1018
1123
|
if self._model_signature_dict is None:
|
1019
1124
|
raise exceptions.SnowflakeMLException(
|
@@ -1021,35 +1126,3 @@ class KNNImputer(BaseTransformer):
|
|
1021
1126
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1022
1127
|
)
|
1023
1128
|
return self._model_signature_dict
|
1024
|
-
|
1025
|
-
def to_sklearn(self) -> Any:
|
1026
|
-
"""Get sklearn.impute.KNNImputer object.
|
1027
|
-
"""
|
1028
|
-
if self._sklearn_object is None:
|
1029
|
-
self._sklearn_object = self._create_sklearn_object()
|
1030
|
-
return self._sklearn_object
|
1031
|
-
|
1032
|
-
def to_xgboost(self) -> Any:
|
1033
|
-
raise exceptions.SnowflakeMLException(
|
1034
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1035
|
-
original_exception=AttributeError(
|
1036
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1037
|
-
"to_xgboost()",
|
1038
|
-
"to_sklearn()"
|
1039
|
-
)
|
1040
|
-
),
|
1041
|
-
)
|
1042
|
-
|
1043
|
-
def to_lightgbm(self) -> Any:
|
1044
|
-
raise exceptions.SnowflakeMLException(
|
1045
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1046
|
-
original_exception=AttributeError(
|
1047
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1048
|
-
"to_lightgbm()",
|
1049
|
-
"to_sklearn()"
|
1050
|
-
)
|
1051
|
-
),
|
1052
|
-
)
|
1053
|
-
|
1054
|
-
def _get_dependencies(self) -> List[str]:
|
1055
|
-
return self._deps
|