snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.impute".replace("sklearn
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class KNNImputer(BaseTransformer):
71
64
  r"""Imputation for completing missing values using k-Nearest Neighbors
72
65
  For more details on this class, see [sklearn.impute.KNNImputer]
@@ -250,12 +243,7 @@ class KNNImputer(BaseTransformer):
250
243
  )
251
244
  return selected_cols
252
245
 
253
- @telemetry.send_api_usage_telemetry(
254
- project=_PROJECT,
255
- subproject=_SUBPROJECT,
256
- custom_tags=dict([("autogen", True)]),
257
- )
258
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNNImputer":
246
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "KNNImputer":
259
247
  """Fit the imputer on X
260
248
  For more details on this function, see [sklearn.impute.KNNImputer.fit]
261
249
  (https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html#sklearn.impute.KNNImputer.fit)
@@ -282,12 +270,14 @@ class KNNImputer(BaseTransformer):
282
270
 
283
271
  self._snowpark_cols = dataset.select(self.input_cols).columns
284
272
 
285
- # If we are already in a stored procedure, no need to kick off another one.
273
+ # If we are already in a stored procedure, no need to kick off another one.
286
274
  if SNOWML_SPROC_ENV in os.environ:
287
275
  statement_params = telemetry.get_function_usage_statement_params(
288
276
  project=_PROJECT,
289
277
  subproject=_SUBPROJECT,
290
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), KNNImputer.__class__.__name__),
278
+ function_name=telemetry.get_statement_params_full_func_name(
279
+ inspect.currentframe(), KNNImputer.__class__.__name__
280
+ ),
291
281
  api_calls=[Session.call],
292
282
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
293
283
  )
@@ -308,27 +298,24 @@ class KNNImputer(BaseTransformer):
308
298
  )
309
299
  self._sklearn_object = model_trainer.train()
310
300
  self._is_fitted = True
311
- self._get_model_signatures(dataset)
301
+ self._generate_model_signatures(dataset)
312
302
  return self
313
303
 
314
304
  def _batch_inference_validate_snowpark(
315
305
  self,
316
306
  dataset: DataFrame,
317
307
  inference_method: str,
318
- ) -> List[str]:
319
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
320
- return the available package that exists in the snowflake anaconda channel
308
+ ) -> None:
309
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
321
310
 
322
311
  Args:
323
312
  dataset: snowpark dataframe
324
313
  inference_method: the inference method such as predict, score...
325
-
314
+
326
315
  Raises:
327
316
  SnowflakeMLException: If the estimator is not fitted, raise error
328
317
  SnowflakeMLException: If the session is None, raise error
329
318
 
330
- Returns:
331
- A list of available package that exists in the snowflake anaconda channel
332
319
  """
333
320
  if not self._is_fitted:
334
321
  raise exceptions.SnowflakeMLException(
@@ -346,9 +333,7 @@ class KNNImputer(BaseTransformer):
346
333
  "Session must not specified for snowpark dataset."
347
334
  ),
348
335
  )
349
- # Validate that key package version in user workspace are supported in snowflake conda channel
350
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
351
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
336
+
352
337
 
353
338
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
354
339
  @telemetry.send_api_usage_telemetry(
@@ -382,7 +367,9 @@ class KNNImputer(BaseTransformer):
382
367
  # when it is classifier, infer the datatype from label columns
383
368
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
384
369
  # Batch inference takes a single expected output column type. Use the first columns type for now.
385
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
370
+ label_cols_signatures = [
371
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
372
+ ]
386
373
  if len(label_cols_signatures) == 0:
387
374
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
388
375
  raise exceptions.SnowflakeMLException(
@@ -390,25 +377,23 @@ class KNNImputer(BaseTransformer):
390
377
  original_exception=ValueError(error_str),
391
378
  )
392
379
 
393
- expected_type_inferred = convert_sp_to_sf_type(
394
- label_cols_signatures[0].as_snowpark_type()
395
- )
380
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
396
381
 
397
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
382
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
+ self._deps = self._get_dependencies()
384
+ assert isinstance(
385
+ dataset._session, Session
386
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
399
387
 
400
388
  transform_kwargs = dict(
401
- session = dataset._session,
402
- dependencies = self._deps,
403
- drop_input_cols = self._drop_input_cols,
404
- expected_output_cols_type = expected_type_inferred,
389
+ session=dataset._session,
390
+ dependencies=self._deps,
391
+ drop_input_cols=self._drop_input_cols,
392
+ expected_output_cols_type=expected_type_inferred,
405
393
  )
406
394
 
407
395
  elif isinstance(dataset, pd.DataFrame):
408
- transform_kwargs = dict(
409
- snowpark_input_cols = self._snowpark_cols,
410
- drop_input_cols = self._drop_input_cols
411
- )
396
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
412
397
 
413
398
  transform_handlers = ModelTransformerBuilder.build(
414
399
  dataset=dataset,
@@ -450,7 +435,7 @@ class KNNImputer(BaseTransformer):
450
435
  Transformed dataset.
451
436
  """
452
437
  super()._check_dataset_type(dataset)
453
- inference_method="transform"
438
+ inference_method = "transform"
454
439
 
455
440
  # This dictionary contains optional kwargs for batch inference. These kwargs
456
441
  # are specific to the type of dataset used.
@@ -480,24 +465,19 @@ class KNNImputer(BaseTransformer):
480
465
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
481
466
  expected_dtype = convert_sp_to_sf_type(output_types[0])
482
467
 
483
- self._deps = self._batch_inference_validate_snowpark(
484
- dataset=dataset,
485
- inference_method=inference_method,
486
- )
468
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
469
+ self._deps = self._get_dependencies()
487
470
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
488
471
 
489
472
  transform_kwargs = dict(
490
- session = dataset._session,
491
- dependencies = self._deps,
492
- drop_input_cols = self._drop_input_cols,
493
- expected_output_cols_type = expected_dtype,
473
+ session=dataset._session,
474
+ dependencies=self._deps,
475
+ drop_input_cols=self._drop_input_cols,
476
+ expected_output_cols_type=expected_dtype,
494
477
  )
495
478
 
496
479
  elif isinstance(dataset, pd.DataFrame):
497
- transform_kwargs = dict(
498
- snowpark_input_cols = self._snowpark_cols,
499
- drop_input_cols = self._drop_input_cols
500
- )
480
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
501
481
 
502
482
  transform_handlers = ModelTransformerBuilder.build(
503
483
  dataset=dataset,
@@ -516,7 +496,11 @@ class KNNImputer(BaseTransformer):
516
496
  return output_df
517
497
 
518
498
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
519
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
499
+ def fit_predict(
500
+ self,
501
+ dataset: Union[DataFrame, pd.DataFrame],
502
+ output_cols_prefix: str = "fit_predict_",
503
+ ) -> Union[DataFrame, pd.DataFrame]:
520
504
  """ Method not supported for this class.
521
505
 
522
506
 
@@ -541,22 +525,106 @@ class KNNImputer(BaseTransformer):
541
525
  )
542
526
  output_result, fitted_estimator = model_trainer.train_fit_predict(
543
527
  drop_input_cols=self._drop_input_cols,
544
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
528
+ expected_output_cols_list=(
529
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
530
+ ),
545
531
  )
546
532
  self._sklearn_object = fitted_estimator
547
533
  self._is_fitted = True
548
534
  return output_result
549
535
 
536
+
537
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
538
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
539
+ """ Fit to data, then transform it
540
+ For more details on this function, see [sklearn.impute.KNNImputer.fit_transform]
541
+ (https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html#sklearn.impute.KNNImputer.fit_transform)
542
+
543
+
544
+ Raises:
545
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
550
546
 
551
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
552
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
553
- """
547
+ Args:
548
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
549
+ Snowpark or Pandas DataFrame.
550
+ output_cols_prefix: Prefix for the response columns
554
551
  Returns:
555
552
  Transformed dataset.
556
553
  """
557
- self.fit(dataset)
558
- assert self._sklearn_object is not None
559
- return self._sklearn_object.embedding_
554
+ self._infer_input_output_cols(dataset)
555
+ super()._check_dataset_type(dataset)
556
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
557
+ estimator=self._sklearn_object,
558
+ dataset=dataset,
559
+ input_cols=self.input_cols,
560
+ label_cols=self.label_cols,
561
+ sample_weight_col=self.sample_weight_col,
562
+ autogenerated=self._autogenerated,
563
+ subproject=_SUBPROJECT,
564
+ )
565
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
566
+ drop_input_cols=self._drop_input_cols,
567
+ expected_output_cols_list=self.output_cols,
568
+ )
569
+ self._sklearn_object = fitted_estimator
570
+ self._is_fitted = True
571
+ return output_result
572
+
573
+
574
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
575
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
576
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
577
+ """
578
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
579
+ # The following condition is introduced for kneighbors methods, and not used in other methods
580
+ if output_cols:
581
+ output_cols = [
582
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
583
+ for c in output_cols
584
+ ]
585
+ elif getattr(self._sklearn_object, "classes_", None) is None:
586
+ output_cols = [output_cols_prefix]
587
+ elif self._sklearn_object is not None:
588
+ classes = self._sklearn_object.classes_
589
+ if isinstance(classes, numpy.ndarray):
590
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
591
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
592
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
593
+ output_cols = []
594
+ for i, cl in enumerate(classes):
595
+ # For binary classification, there is only one output column for each class
596
+ # ndarray as the two classes are complementary.
597
+ if len(cl) == 2:
598
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
599
+ else:
600
+ output_cols.extend([
601
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
602
+ ])
603
+ else:
604
+ output_cols = []
605
+
606
+ # Make sure column names are valid snowflake identifiers.
607
+ assert output_cols is not None # Make MyPy happy
608
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
609
+
610
+ return rv
611
+
612
+ def _align_expected_output_names(
613
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
614
+ ) -> List[str]:
615
+ # in case the inferred output column names dimension is different
616
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
617
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
618
+ output_df_columns = list(output_df_pd.columns)
619
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
620
+ if self.sample_weight_col:
621
+ output_df_columns_set -= set(self.sample_weight_col)
622
+ # if the dimension of inferred output column names is correct; use it
623
+ if len(expected_output_cols_list) == len(output_df_columns_set):
624
+ return expected_output_cols_list
625
+ # otherwise, use the sklearn estimator's output
626
+ else:
627
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
560
628
 
561
629
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
562
630
  @telemetry.send_api_usage_telemetry(
@@ -588,24 +656,26 @@ class KNNImputer(BaseTransformer):
588
656
  # are specific to the type of dataset used.
589
657
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
590
658
 
659
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
660
+
591
661
  if isinstance(dataset, DataFrame):
592
- self._deps = self._batch_inference_validate_snowpark(
593
- dataset=dataset,
594
- inference_method=inference_method,
595
- )
596
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
663
+ self._deps = self._get_dependencies()
664
+ assert isinstance(
665
+ dataset._session, Session
666
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
597
667
  transform_kwargs = dict(
598
668
  session=dataset._session,
599
669
  dependencies=self._deps,
600
- drop_input_cols = self._drop_input_cols,
670
+ drop_input_cols=self._drop_input_cols,
601
671
  expected_output_cols_type="float",
602
672
  )
673
+ expected_output_cols = self._align_expected_output_names(
674
+ inference_method, dataset, expected_output_cols, output_cols_prefix
675
+ )
603
676
 
604
677
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
678
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
679
 
610
680
  transform_handlers = ModelTransformerBuilder.build(
611
681
  dataset=dataset,
@@ -617,7 +687,7 @@ class KNNImputer(BaseTransformer):
617
687
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
618
688
  inference_method=inference_method,
619
689
  input_cols=self.input_cols,
620
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
690
+ expected_output_cols=expected_output_cols,
621
691
  **transform_kwargs
622
692
  )
623
693
  return output_df
@@ -647,29 +717,30 @@ class KNNImputer(BaseTransformer):
647
717
  Output dataset with log probability of the sample for each class in the model.
648
718
  """
649
719
  super()._check_dataset_type(dataset)
650
- inference_method="predict_log_proba"
720
+ inference_method = "predict_log_proba"
721
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
722
 
652
723
  # This dictionary contains optional kwargs for batch inference. These kwargs
653
724
  # are specific to the type of dataset used.
654
725
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
655
726
 
656
727
  if isinstance(dataset, DataFrame):
657
- self._deps = self._batch_inference_validate_snowpark(
658
- dataset=dataset,
659
- inference_method=inference_method,
660
- )
661
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
728
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
729
+ self._deps = self._get_dependencies()
730
+ assert isinstance(
731
+ dataset._session, Session
732
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
662
733
  transform_kwargs = dict(
663
734
  session=dataset._session,
664
735
  dependencies=self._deps,
665
- drop_input_cols = self._drop_input_cols,
736
+ drop_input_cols=self._drop_input_cols,
666
737
  expected_output_cols_type="float",
667
738
  )
739
+ expected_output_cols = self._align_expected_output_names(
740
+ inference_method, dataset, expected_output_cols, output_cols_prefix
741
+ )
668
742
  elif isinstance(dataset, pd.DataFrame):
669
- transform_kwargs = dict(
670
- snowpark_input_cols = self._snowpark_cols,
671
- drop_input_cols = self._drop_input_cols
672
- )
743
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
673
744
 
674
745
  transform_handlers = ModelTransformerBuilder.build(
675
746
  dataset=dataset,
@@ -682,7 +753,7 @@ class KNNImputer(BaseTransformer):
682
753
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
683
754
  inference_method=inference_method,
684
755
  input_cols=self.input_cols,
685
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
756
+ expected_output_cols=expected_output_cols,
686
757
  **transform_kwargs
687
758
  )
688
759
  return output_df
@@ -708,30 +779,32 @@ class KNNImputer(BaseTransformer):
708
779
  Output dataset with results of the decision function for the samples in input dataset.
709
780
  """
710
781
  super()._check_dataset_type(dataset)
711
- inference_method="decision_function"
782
+ inference_method = "decision_function"
712
783
 
713
784
  # This dictionary contains optional kwargs for batch inference. These kwargs
714
785
  # are specific to the type of dataset used.
715
786
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
716
787
 
788
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
789
+
717
790
  if isinstance(dataset, DataFrame):
718
- self._deps = self._batch_inference_validate_snowpark(
719
- dataset=dataset,
720
- inference_method=inference_method,
721
- )
722
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
791
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
792
+ self._deps = self._get_dependencies()
793
+ assert isinstance(
794
+ dataset._session, Session
795
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
723
796
  transform_kwargs = dict(
724
797
  session=dataset._session,
725
798
  dependencies=self._deps,
726
- drop_input_cols = self._drop_input_cols,
799
+ drop_input_cols=self._drop_input_cols,
727
800
  expected_output_cols_type="float",
728
801
  )
802
+ expected_output_cols = self._align_expected_output_names(
803
+ inference_method, dataset, expected_output_cols, output_cols_prefix
804
+ )
729
805
 
730
806
  elif isinstance(dataset, pd.DataFrame):
731
- transform_kwargs = dict(
732
- snowpark_input_cols = self._snowpark_cols,
733
- drop_input_cols = self._drop_input_cols
734
- )
807
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
735
808
 
736
809
  transform_handlers = ModelTransformerBuilder.build(
737
810
  dataset=dataset,
@@ -744,7 +817,7 @@ class KNNImputer(BaseTransformer):
744
817
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
745
818
  inference_method=inference_method,
746
819
  input_cols=self.input_cols,
747
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
820
+ expected_output_cols=expected_output_cols,
748
821
  **transform_kwargs
749
822
  )
750
823
  return output_df
@@ -773,17 +846,17 @@ class KNNImputer(BaseTransformer):
773
846
  Output dataset with probability of the sample for each class in the model.
774
847
  """
775
848
  super()._check_dataset_type(dataset)
776
- inference_method="score_samples"
849
+ inference_method = "score_samples"
777
850
 
778
851
  # This dictionary contains optional kwargs for batch inference. These kwargs
779
852
  # are specific to the type of dataset used.
780
853
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
781
854
 
855
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
856
+
782
857
  if isinstance(dataset, DataFrame):
783
- self._deps = self._batch_inference_validate_snowpark(
784
- dataset=dataset,
785
- inference_method=inference_method,
786
- )
858
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
859
+ self._deps = self._get_dependencies()
787
860
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
788
861
  transform_kwargs = dict(
789
862
  session=dataset._session,
@@ -791,6 +864,9 @@ class KNNImputer(BaseTransformer):
791
864
  drop_input_cols = self._drop_input_cols,
792
865
  expected_output_cols_type="float",
793
866
  )
867
+ expected_output_cols = self._align_expected_output_names(
868
+ inference_method, dataset, expected_output_cols, output_cols_prefix
869
+ )
794
870
 
795
871
  elif isinstance(dataset, pd.DataFrame):
796
872
  transform_kwargs = dict(
@@ -809,7 +885,7 @@ class KNNImputer(BaseTransformer):
809
885
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
810
886
  inference_method=inference_method,
811
887
  input_cols=self.input_cols,
812
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
888
+ expected_output_cols=expected_output_cols,
813
889
  **transform_kwargs
814
890
  )
815
891
  return output_df
@@ -842,17 +918,15 @@ class KNNImputer(BaseTransformer):
842
918
  transform_kwargs: ScoreKwargsTypedDict = dict()
843
919
 
844
920
  if isinstance(dataset, DataFrame):
845
- self._deps = self._batch_inference_validate_snowpark(
846
- dataset=dataset,
847
- inference_method="score",
848
- )
921
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
922
+ self._deps = self._get_dependencies()
849
923
  selected_cols = self._get_active_columns()
850
924
  if len(selected_cols) > 0:
851
925
  dataset = dataset.select(selected_cols)
852
926
  assert isinstance(dataset._session, Session) # keep mypy happy
853
927
  transform_kwargs = dict(
854
928
  session=dataset._session,
855
- dependencies=["snowflake-snowpark-python"] + self._deps,
929
+ dependencies=self._deps,
856
930
  score_sproc_imports=['sklearn'],
857
931
  )
858
932
  elif isinstance(dataset, pd.DataFrame):
@@ -917,11 +991,8 @@ class KNNImputer(BaseTransformer):
917
991
 
918
992
  if isinstance(dataset, DataFrame):
919
993
 
920
- self._deps = self._batch_inference_validate_snowpark(
921
- dataset=dataset,
922
- inference_method=inference_method,
923
-
924
- )
994
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
995
+ self._deps = self._get_dependencies()
925
996
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
926
997
  transform_kwargs = dict(
927
998
  session = dataset._session,
@@ -954,50 +1025,84 @@ class KNNImputer(BaseTransformer):
954
1025
  )
955
1026
  return output_df
956
1027
 
1028
+
1029
+
1030
+ def to_sklearn(self) -> Any:
1031
+ """Get sklearn.impute.KNNImputer object.
1032
+ """
1033
+ if self._sklearn_object is None:
1034
+ self._sklearn_object = self._create_sklearn_object()
1035
+ return self._sklearn_object
1036
+
1037
+ def to_xgboost(self) -> Any:
1038
+ raise exceptions.SnowflakeMLException(
1039
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1040
+ original_exception=AttributeError(
1041
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1042
+ "to_xgboost()",
1043
+ "to_sklearn()"
1044
+ )
1045
+ ),
1046
+ )
957
1047
 
958
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1048
+ def to_lightgbm(self) -> Any:
1049
+ raise exceptions.SnowflakeMLException(
1050
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1051
+ original_exception=AttributeError(
1052
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1053
+ "to_lightgbm()",
1054
+ "to_sklearn()"
1055
+ )
1056
+ ),
1057
+ )
1058
+
1059
+ def _get_dependencies(self) -> List[str]:
1060
+ return self._deps
1061
+
1062
+
1063
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
959
1064
  self._model_signature_dict = dict()
960
1065
 
961
1066
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
962
1067
 
963
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1068
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
964
1069
  outputs: List[BaseFeatureSpec] = []
965
1070
  if hasattr(self, "predict"):
966
1071
  # keep mypy happy
967
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1072
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
968
1073
  # For classifier, the type of predict is the same as the type of label
969
- if self._sklearn_object._estimator_type == 'classifier':
970
- # label columns is the desired type for output
1074
+ if self._sklearn_object._estimator_type == "classifier":
1075
+ # label columns is the desired type for output
971
1076
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
972
1077
  # rename the output columns
973
1078
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
974
- self._model_signature_dict["predict"] = ModelSignature(inputs,
975
- ([] if self._drop_input_cols else inputs)
976
- + outputs)
1079
+ self._model_signature_dict["predict"] = ModelSignature(
1080
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1081
+ )
977
1082
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
978
1083
  # For outlier models, returns -1 for outliers and 1 for inliers.
979
- # Clusterer returns int64 cluster labels.
1084
+ # Clusterer returns int64 cluster labels.
980
1085
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
981
1086
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
982
- self._model_signature_dict["predict"] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
985
-
1087
+ self._model_signature_dict["predict"] = ModelSignature(
1088
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1089
+ )
1090
+
986
1091
  # For regressor, the type of predict is float64
987
- elif self._sklearn_object._estimator_type == 'regressor':
1092
+ elif self._sklearn_object._estimator_type == "regressor":
988
1093
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
989
- self._model_signature_dict["predict"] = ModelSignature(inputs,
990
- ([] if self._drop_input_cols else inputs)
991
- + outputs)
992
-
1094
+ self._model_signature_dict["predict"] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
1097
+
993
1098
  for prob_func in PROB_FUNCTIONS:
994
1099
  if hasattr(self, prob_func):
995
1100
  output_cols_prefix: str = f"{prob_func}_"
996
1101
  output_column_names = self._get_output_column_names(output_cols_prefix)
997
1102
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
998
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
999
- ([] if self._drop_input_cols else inputs)
1000
- + outputs)
1103
+ self._model_signature_dict[prob_func] = ModelSignature(
1104
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1105
+ )
1001
1106
 
1002
1107
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1003
1108
  items = list(self._model_signature_dict.items())
@@ -1010,10 +1115,10 @@ class KNNImputer(BaseTransformer):
1010
1115
  """Returns model signature of current class.
1011
1116
 
1012
1117
  Raises:
1013
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1118
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1014
1119
 
1015
1120
  Returns:
1016
- Dict[str, ModelSignature]: each method and its input output signature
1121
+ Dict with each method and its input output signature
1017
1122
  """
1018
1123
  if self._model_signature_dict is None:
1019
1124
  raise exceptions.SnowflakeMLException(
@@ -1021,35 +1126,3 @@ class KNNImputer(BaseTransformer):
1021
1126
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1022
1127
  )
1023
1128
  return self._model_signature_dict
1024
-
1025
- def to_sklearn(self) -> Any:
1026
- """Get sklearn.impute.KNNImputer object.
1027
- """
1028
- if self._sklearn_object is None:
1029
- self._sklearn_object = self._create_sklearn_object()
1030
- return self._sklearn_object
1031
-
1032
- def to_xgboost(self) -> Any:
1033
- raise exceptions.SnowflakeMLException(
1034
- error_code=error_codes.METHOD_NOT_ALLOWED,
1035
- original_exception=AttributeError(
1036
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
- "to_xgboost()",
1038
- "to_sklearn()"
1039
- )
1040
- ),
1041
- )
1042
-
1043
- def to_lightgbm(self) -> Any:
1044
- raise exceptions.SnowflakeMLException(
1045
- error_code=error_codes.METHOD_NOT_ALLOWED,
1046
- original_exception=AttributeError(
1047
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
- "to_lightgbm()",
1049
- "to_sklearn()"
1050
- )
1051
- ),
1052
- )
1053
-
1054
- def _get_dependencies(self) -> List[str]:
1055
- return self._deps