snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class BaggingClassifier(BaseTransformer):
71
64
  r"""A Bagging classifier
72
65
  For more details on this class, see [sklearn.ensemble.BaggingClassifier]
@@ -276,12 +269,7 @@ class BaggingClassifier(BaseTransformer):
276
269
  )
277
270
  return selected_cols
278
271
 
279
- @telemetry.send_api_usage_telemetry(
280
- project=_PROJECT,
281
- subproject=_SUBPROJECT,
282
- custom_tags=dict([("autogen", True)]),
283
- )
284
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingClassifier":
272
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingClassifier":
285
273
  """Build a Bagging ensemble of estimators from the training set (X, y)
286
274
  For more details on this function, see [sklearn.ensemble.BaggingClassifier.fit]
287
275
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensemble.BaggingClassifier.fit)
@@ -308,12 +296,14 @@ class BaggingClassifier(BaseTransformer):
308
296
 
309
297
  self._snowpark_cols = dataset.select(self.input_cols).columns
310
298
 
311
- # If we are already in a stored procedure, no need to kick off another one.
299
+ # If we are already in a stored procedure, no need to kick off another one.
312
300
  if SNOWML_SPROC_ENV in os.environ:
313
301
  statement_params = telemetry.get_function_usage_statement_params(
314
302
  project=_PROJECT,
315
303
  subproject=_SUBPROJECT,
316
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), BaggingClassifier.__class__.__name__),
304
+ function_name=telemetry.get_statement_params_full_func_name(
305
+ inspect.currentframe(), BaggingClassifier.__class__.__name__
306
+ ),
317
307
  api_calls=[Session.call],
318
308
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
319
309
  )
@@ -334,27 +324,24 @@ class BaggingClassifier(BaseTransformer):
334
324
  )
335
325
  self._sklearn_object = model_trainer.train()
336
326
  self._is_fitted = True
337
- self._get_model_signatures(dataset)
327
+ self._generate_model_signatures(dataset)
338
328
  return self
339
329
 
340
330
  def _batch_inference_validate_snowpark(
341
331
  self,
342
332
  dataset: DataFrame,
343
333
  inference_method: str,
344
- ) -> List[str]:
345
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
346
- return the available package that exists in the snowflake anaconda channel
334
+ ) -> None:
335
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
347
336
 
348
337
  Args:
349
338
  dataset: snowpark dataframe
350
339
  inference_method: the inference method such as predict, score...
351
-
340
+
352
341
  Raises:
353
342
  SnowflakeMLException: If the estimator is not fitted, raise error
354
343
  SnowflakeMLException: If the session is None, raise error
355
344
 
356
- Returns:
357
- A list of available package that exists in the snowflake anaconda channel
358
345
  """
359
346
  if not self._is_fitted:
360
347
  raise exceptions.SnowflakeMLException(
@@ -372,9 +359,7 @@ class BaggingClassifier(BaseTransformer):
372
359
  "Session must not specified for snowpark dataset."
373
360
  ),
374
361
  )
375
- # Validate that key package version in user workspace are supported in snowflake conda channel
376
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
377
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
362
+
378
363
 
379
364
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
380
365
  @telemetry.send_api_usage_telemetry(
@@ -410,7 +395,9 @@ class BaggingClassifier(BaseTransformer):
410
395
  # when it is classifier, infer the datatype from label columns
411
396
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
412
397
  # Batch inference takes a single expected output column type. Use the first columns type for now.
413
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
398
+ label_cols_signatures = [
399
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
400
+ ]
414
401
  if len(label_cols_signatures) == 0:
415
402
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
416
403
  raise exceptions.SnowflakeMLException(
@@ -418,25 +405,23 @@ class BaggingClassifier(BaseTransformer):
418
405
  original_exception=ValueError(error_str),
419
406
  )
420
407
 
421
- expected_type_inferred = convert_sp_to_sf_type(
422
- label_cols_signatures[0].as_snowpark_type()
423
- )
408
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
424
409
 
425
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
426
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
410
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
411
+ self._deps = self._get_dependencies()
412
+ assert isinstance(
413
+ dataset._session, Session
414
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
427
415
 
428
416
  transform_kwargs = dict(
429
- session = dataset._session,
430
- dependencies = self._deps,
431
- drop_input_cols = self._drop_input_cols,
432
- expected_output_cols_type = expected_type_inferred,
417
+ session=dataset._session,
418
+ dependencies=self._deps,
419
+ drop_input_cols=self._drop_input_cols,
420
+ expected_output_cols_type=expected_type_inferred,
433
421
  )
434
422
 
435
423
  elif isinstance(dataset, pd.DataFrame):
436
- transform_kwargs = dict(
437
- snowpark_input_cols = self._snowpark_cols,
438
- drop_input_cols = self._drop_input_cols
439
- )
424
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
440
425
 
441
426
  transform_handlers = ModelTransformerBuilder.build(
442
427
  dataset=dataset,
@@ -476,7 +461,7 @@ class BaggingClassifier(BaseTransformer):
476
461
  Transformed dataset.
477
462
  """
478
463
  super()._check_dataset_type(dataset)
479
- inference_method="transform"
464
+ inference_method = "transform"
480
465
 
481
466
  # This dictionary contains optional kwargs for batch inference. These kwargs
482
467
  # are specific to the type of dataset used.
@@ -506,24 +491,19 @@ class BaggingClassifier(BaseTransformer):
506
491
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
507
492
  expected_dtype = convert_sp_to_sf_type(output_types[0])
508
493
 
509
- self._deps = self._batch_inference_validate_snowpark(
510
- dataset=dataset,
511
- inference_method=inference_method,
512
- )
494
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
495
+ self._deps = self._get_dependencies()
513
496
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
514
497
 
515
498
  transform_kwargs = dict(
516
- session = dataset._session,
517
- dependencies = self._deps,
518
- drop_input_cols = self._drop_input_cols,
519
- expected_output_cols_type = expected_dtype,
499
+ session=dataset._session,
500
+ dependencies=self._deps,
501
+ drop_input_cols=self._drop_input_cols,
502
+ expected_output_cols_type=expected_dtype,
520
503
  )
521
504
 
522
505
  elif isinstance(dataset, pd.DataFrame):
523
- transform_kwargs = dict(
524
- snowpark_input_cols = self._snowpark_cols,
525
- drop_input_cols = self._drop_input_cols
526
- )
506
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
527
507
 
528
508
  transform_handlers = ModelTransformerBuilder.build(
529
509
  dataset=dataset,
@@ -542,7 +522,11 @@ class BaggingClassifier(BaseTransformer):
542
522
  return output_df
543
523
 
544
524
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
545
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
525
+ def fit_predict(
526
+ self,
527
+ dataset: Union[DataFrame, pd.DataFrame],
528
+ output_cols_prefix: str = "fit_predict_",
529
+ ) -> Union[DataFrame, pd.DataFrame]:
546
530
  """ Method not supported for this class.
547
531
 
548
532
 
@@ -567,22 +551,104 @@ class BaggingClassifier(BaseTransformer):
567
551
  )
568
552
  output_result, fitted_estimator = model_trainer.train_fit_predict(
569
553
  drop_input_cols=self._drop_input_cols,
570
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
554
+ expected_output_cols_list=(
555
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
556
+ ),
571
557
  )
572
558
  self._sklearn_object = fitted_estimator
573
559
  self._is_fitted = True
574
560
  return output_result
575
561
 
562
+
563
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
564
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
565
+ """ Method not supported for this class.
566
+
576
567
 
577
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
578
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
579
- """
568
+ Raises:
569
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
570
+
571
+ Args:
572
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
573
+ Snowpark or Pandas DataFrame.
574
+ output_cols_prefix: Prefix for the response columns
580
575
  Returns:
581
576
  Transformed dataset.
582
577
  """
583
- self.fit(dataset)
584
- assert self._sklearn_object is not None
585
- return self._sklearn_object.embedding_
578
+ self._infer_input_output_cols(dataset)
579
+ super()._check_dataset_type(dataset)
580
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
581
+ estimator=self._sklearn_object,
582
+ dataset=dataset,
583
+ input_cols=self.input_cols,
584
+ label_cols=self.label_cols,
585
+ sample_weight_col=self.sample_weight_col,
586
+ autogenerated=self._autogenerated,
587
+ subproject=_SUBPROJECT,
588
+ )
589
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
590
+ drop_input_cols=self._drop_input_cols,
591
+ expected_output_cols_list=self.output_cols,
592
+ )
593
+ self._sklearn_object = fitted_estimator
594
+ self._is_fitted = True
595
+ return output_result
596
+
597
+
598
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
599
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
600
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
601
+ """
602
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
603
+ # The following condition is introduced for kneighbors methods, and not used in other methods
604
+ if output_cols:
605
+ output_cols = [
606
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
607
+ for c in output_cols
608
+ ]
609
+ elif getattr(self._sklearn_object, "classes_", None) is None:
610
+ output_cols = [output_cols_prefix]
611
+ elif self._sklearn_object is not None:
612
+ classes = self._sklearn_object.classes_
613
+ if isinstance(classes, numpy.ndarray):
614
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
615
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
616
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
617
+ output_cols = []
618
+ for i, cl in enumerate(classes):
619
+ # For binary classification, there is only one output column for each class
620
+ # ndarray as the two classes are complementary.
621
+ if len(cl) == 2:
622
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
623
+ else:
624
+ output_cols.extend([
625
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
626
+ ])
627
+ else:
628
+ output_cols = []
629
+
630
+ # Make sure column names are valid snowflake identifiers.
631
+ assert output_cols is not None # Make MyPy happy
632
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
633
+
634
+ return rv
635
+
636
+ def _align_expected_output_names(
637
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
638
+ ) -> List[str]:
639
+ # in case the inferred output column names dimension is different
640
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
641
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
642
+ output_df_columns = list(output_df_pd.columns)
643
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
644
+ if self.sample_weight_col:
645
+ output_df_columns_set -= set(self.sample_weight_col)
646
+ # if the dimension of inferred output column names is correct; use it
647
+ if len(expected_output_cols_list) == len(output_df_columns_set):
648
+ return expected_output_cols_list
649
+ # otherwise, use the sklearn estimator's output
650
+ else:
651
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
586
652
 
587
653
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
588
654
  @telemetry.send_api_usage_telemetry(
@@ -616,24 +682,26 @@ class BaggingClassifier(BaseTransformer):
616
682
  # are specific to the type of dataset used.
617
683
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
618
684
 
685
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
686
+
619
687
  if isinstance(dataset, DataFrame):
620
- self._deps = self._batch_inference_validate_snowpark(
621
- dataset=dataset,
622
- inference_method=inference_method,
623
- )
624
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
688
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
689
+ self._deps = self._get_dependencies()
690
+ assert isinstance(
691
+ dataset._session, Session
692
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
625
693
  transform_kwargs = dict(
626
694
  session=dataset._session,
627
695
  dependencies=self._deps,
628
- drop_input_cols = self._drop_input_cols,
696
+ drop_input_cols=self._drop_input_cols,
629
697
  expected_output_cols_type="float",
630
698
  )
699
+ expected_output_cols = self._align_expected_output_names(
700
+ inference_method, dataset, expected_output_cols, output_cols_prefix
701
+ )
631
702
 
632
703
  elif isinstance(dataset, pd.DataFrame):
633
- transform_kwargs = dict(
634
- snowpark_input_cols = self._snowpark_cols,
635
- drop_input_cols = self._drop_input_cols
636
- )
704
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
637
705
 
638
706
  transform_handlers = ModelTransformerBuilder.build(
639
707
  dataset=dataset,
@@ -645,7 +713,7 @@ class BaggingClassifier(BaseTransformer):
645
713
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
646
714
  inference_method=inference_method,
647
715
  input_cols=self.input_cols,
648
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
716
+ expected_output_cols=expected_output_cols,
649
717
  **transform_kwargs
650
718
  )
651
719
  return output_df
@@ -677,29 +745,30 @@ class BaggingClassifier(BaseTransformer):
677
745
  Output dataset with log probability of the sample for each class in the model.
678
746
  """
679
747
  super()._check_dataset_type(dataset)
680
- inference_method="predict_log_proba"
748
+ inference_method = "predict_log_proba"
749
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
681
750
 
682
751
  # This dictionary contains optional kwargs for batch inference. These kwargs
683
752
  # are specific to the type of dataset used.
684
753
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
685
754
 
686
755
  if isinstance(dataset, DataFrame):
687
- self._deps = self._batch_inference_validate_snowpark(
688
- dataset=dataset,
689
- inference_method=inference_method,
690
- )
691
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
756
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
757
+ self._deps = self._get_dependencies()
758
+ assert isinstance(
759
+ dataset._session, Session
760
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
761
  transform_kwargs = dict(
693
762
  session=dataset._session,
694
763
  dependencies=self._deps,
695
- drop_input_cols = self._drop_input_cols,
764
+ drop_input_cols=self._drop_input_cols,
696
765
  expected_output_cols_type="float",
697
766
  )
767
+ expected_output_cols = self._align_expected_output_names(
768
+ inference_method, dataset, expected_output_cols, output_cols_prefix
769
+ )
698
770
  elif isinstance(dataset, pd.DataFrame):
699
- transform_kwargs = dict(
700
- snowpark_input_cols = self._snowpark_cols,
701
- drop_input_cols = self._drop_input_cols
702
- )
771
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
703
772
 
704
773
  transform_handlers = ModelTransformerBuilder.build(
705
774
  dataset=dataset,
@@ -712,7 +781,7 @@ class BaggingClassifier(BaseTransformer):
712
781
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
713
782
  inference_method=inference_method,
714
783
  input_cols=self.input_cols,
715
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
784
+ expected_output_cols=expected_output_cols,
716
785
  **transform_kwargs
717
786
  )
718
787
  return output_df
@@ -740,30 +809,32 @@ class BaggingClassifier(BaseTransformer):
740
809
  Output dataset with results of the decision function for the samples in input dataset.
741
810
  """
742
811
  super()._check_dataset_type(dataset)
743
- inference_method="decision_function"
812
+ inference_method = "decision_function"
744
813
 
745
814
  # This dictionary contains optional kwargs for batch inference. These kwargs
746
815
  # are specific to the type of dataset used.
747
816
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
748
817
 
818
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
819
+
749
820
  if isinstance(dataset, DataFrame):
750
- self._deps = self._batch_inference_validate_snowpark(
751
- dataset=dataset,
752
- inference_method=inference_method,
753
- )
754
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
821
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
822
+ self._deps = self._get_dependencies()
823
+ assert isinstance(
824
+ dataset._session, Session
825
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
755
826
  transform_kwargs = dict(
756
827
  session=dataset._session,
757
828
  dependencies=self._deps,
758
- drop_input_cols = self._drop_input_cols,
829
+ drop_input_cols=self._drop_input_cols,
759
830
  expected_output_cols_type="float",
760
831
  )
832
+ expected_output_cols = self._align_expected_output_names(
833
+ inference_method, dataset, expected_output_cols, output_cols_prefix
834
+ )
761
835
 
762
836
  elif isinstance(dataset, pd.DataFrame):
763
- transform_kwargs = dict(
764
- snowpark_input_cols = self._snowpark_cols,
765
- drop_input_cols = self._drop_input_cols
766
- )
837
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
767
838
 
768
839
  transform_handlers = ModelTransformerBuilder.build(
769
840
  dataset=dataset,
@@ -776,7 +847,7 @@ class BaggingClassifier(BaseTransformer):
776
847
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
777
848
  inference_method=inference_method,
778
849
  input_cols=self.input_cols,
779
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
850
+ expected_output_cols=expected_output_cols,
780
851
  **transform_kwargs
781
852
  )
782
853
  return output_df
@@ -805,17 +876,17 @@ class BaggingClassifier(BaseTransformer):
805
876
  Output dataset with probability of the sample for each class in the model.
806
877
  """
807
878
  super()._check_dataset_type(dataset)
808
- inference_method="score_samples"
879
+ inference_method = "score_samples"
809
880
 
810
881
  # This dictionary contains optional kwargs for batch inference. These kwargs
811
882
  # are specific to the type of dataset used.
812
883
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
813
884
 
885
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
886
+
814
887
  if isinstance(dataset, DataFrame):
815
- self._deps = self._batch_inference_validate_snowpark(
816
- dataset=dataset,
817
- inference_method=inference_method,
818
- )
888
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
889
+ self._deps = self._get_dependencies()
819
890
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
820
891
  transform_kwargs = dict(
821
892
  session=dataset._session,
@@ -823,6 +894,9 @@ class BaggingClassifier(BaseTransformer):
823
894
  drop_input_cols = self._drop_input_cols,
824
895
  expected_output_cols_type="float",
825
896
  )
897
+ expected_output_cols = self._align_expected_output_names(
898
+ inference_method, dataset, expected_output_cols, output_cols_prefix
899
+ )
826
900
 
827
901
  elif isinstance(dataset, pd.DataFrame):
828
902
  transform_kwargs = dict(
@@ -841,7 +915,7 @@ class BaggingClassifier(BaseTransformer):
841
915
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
842
916
  inference_method=inference_method,
843
917
  input_cols=self.input_cols,
844
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
918
+ expected_output_cols=expected_output_cols,
845
919
  **transform_kwargs
846
920
  )
847
921
  return output_df
@@ -876,17 +950,15 @@ class BaggingClassifier(BaseTransformer):
876
950
  transform_kwargs: ScoreKwargsTypedDict = dict()
877
951
 
878
952
  if isinstance(dataset, DataFrame):
879
- self._deps = self._batch_inference_validate_snowpark(
880
- dataset=dataset,
881
- inference_method="score",
882
- )
953
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
954
+ self._deps = self._get_dependencies()
883
955
  selected_cols = self._get_active_columns()
884
956
  if len(selected_cols) > 0:
885
957
  dataset = dataset.select(selected_cols)
886
958
  assert isinstance(dataset._session, Session) # keep mypy happy
887
959
  transform_kwargs = dict(
888
960
  session=dataset._session,
889
- dependencies=["snowflake-snowpark-python"] + self._deps,
961
+ dependencies=self._deps,
890
962
  score_sproc_imports=['sklearn'],
891
963
  )
892
964
  elif isinstance(dataset, pd.DataFrame):
@@ -951,11 +1023,8 @@ class BaggingClassifier(BaseTransformer):
951
1023
 
952
1024
  if isinstance(dataset, DataFrame):
953
1025
 
954
- self._deps = self._batch_inference_validate_snowpark(
955
- dataset=dataset,
956
- inference_method=inference_method,
957
-
958
- )
1026
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1027
+ self._deps = self._get_dependencies()
959
1028
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
960
1029
  transform_kwargs = dict(
961
1030
  session = dataset._session,
@@ -988,50 +1057,84 @@ class BaggingClassifier(BaseTransformer):
988
1057
  )
989
1058
  return output_df
990
1059
 
1060
+
1061
+
1062
+ def to_sklearn(self) -> Any:
1063
+ """Get sklearn.ensemble.BaggingClassifier object.
1064
+ """
1065
+ if self._sklearn_object is None:
1066
+ self._sklearn_object = self._create_sklearn_object()
1067
+ return self._sklearn_object
1068
+
1069
+ def to_xgboost(self) -> Any:
1070
+ raise exceptions.SnowflakeMLException(
1071
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1072
+ original_exception=AttributeError(
1073
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1074
+ "to_xgboost()",
1075
+ "to_sklearn()"
1076
+ )
1077
+ ),
1078
+ )
1079
+
1080
+ def to_lightgbm(self) -> Any:
1081
+ raise exceptions.SnowflakeMLException(
1082
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1083
+ original_exception=AttributeError(
1084
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1085
+ "to_lightgbm()",
1086
+ "to_sklearn()"
1087
+ )
1088
+ ),
1089
+ )
1090
+
1091
+ def _get_dependencies(self) -> List[str]:
1092
+ return self._deps
1093
+
991
1094
 
992
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1095
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
993
1096
  self._model_signature_dict = dict()
994
1097
 
995
1098
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
996
1099
 
997
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1100
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
998
1101
  outputs: List[BaseFeatureSpec] = []
999
1102
  if hasattr(self, "predict"):
1000
1103
  # keep mypy happy
1001
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1104
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1002
1105
  # For classifier, the type of predict is the same as the type of label
1003
- if self._sklearn_object._estimator_type == 'classifier':
1004
- # label columns is the desired type for output
1106
+ if self._sklearn_object._estimator_type == "classifier":
1107
+ # label columns is the desired type for output
1005
1108
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1006
1109
  # rename the output columns
1007
1110
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1011
1114
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1012
1115
  # For outlier models, returns -1 for outliers and 1 for inliers.
1013
- # Clusterer returns int64 cluster labels.
1116
+ # Clusterer returns int64 cluster labels.
1014
1117
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1015
1118
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1016
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1017
- ([] if self._drop_input_cols else inputs)
1018
- + outputs)
1019
-
1119
+ self._model_signature_dict["predict"] = ModelSignature(
1120
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1121
+ )
1122
+
1020
1123
  # For regressor, the type of predict is float64
1021
- elif self._sklearn_object._estimator_type == 'regressor':
1124
+ elif self._sklearn_object._estimator_type == "regressor":
1022
1125
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1126
+ self._model_signature_dict["predict"] = ModelSignature(
1127
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1128
+ )
1129
+
1027
1130
  for prob_func in PROB_FUNCTIONS:
1028
1131
  if hasattr(self, prob_func):
1029
1132
  output_cols_prefix: str = f"{prob_func}_"
1030
1133
  output_column_names = self._get_output_column_names(output_cols_prefix)
1031
1134
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1032
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1033
- ([] if self._drop_input_cols else inputs)
1034
- + outputs)
1135
+ self._model_signature_dict[prob_func] = ModelSignature(
1136
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1137
+ )
1035
1138
 
1036
1139
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1037
1140
  items = list(self._model_signature_dict.items())
@@ -1044,10 +1147,10 @@ class BaggingClassifier(BaseTransformer):
1044
1147
  """Returns model signature of current class.
1045
1148
 
1046
1149
  Raises:
1047
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1150
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1048
1151
 
1049
1152
  Returns:
1050
- Dict[str, ModelSignature]: each method and its input output signature
1153
+ Dict with each method and its input output signature
1051
1154
  """
1052
1155
  if self._model_signature_dict is None:
1053
1156
  raise exceptions.SnowflakeMLException(
@@ -1055,35 +1158,3 @@ class BaggingClassifier(BaseTransformer):
1055
1158
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1056
1159
  )
1057
1160
  return self._model_signature_dict
1058
-
1059
- def to_sklearn(self) -> Any:
1060
- """Get sklearn.ensemble.BaggingClassifier object.
1061
- """
1062
- if self._sklearn_object is None:
1063
- self._sklearn_object = self._create_sklearn_object()
1064
- return self._sklearn_object
1065
-
1066
- def to_xgboost(self) -> Any:
1067
- raise exceptions.SnowflakeMLException(
1068
- error_code=error_codes.METHOD_NOT_ALLOWED,
1069
- original_exception=AttributeError(
1070
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
- "to_xgboost()",
1072
- "to_sklearn()"
1073
- )
1074
- ),
1075
- )
1076
-
1077
- def to_lightgbm(self) -> Any:
1078
- raise exceptions.SnowflakeMLException(
1079
- error_code=error_codes.METHOD_NOT_ALLOWED,
1080
- original_exception=AttributeError(
1081
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1082
- "to_lightgbm()",
1083
- "to_sklearn()"
1084
- )
1085
- ),
1086
- )
1087
-
1088
- def _get_dependencies(self) -> List[str]:
1089
- return self._deps