snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class BaggingClassifier(BaseTransformer):
|
71
64
|
r"""A Bagging classifier
|
72
65
|
For more details on this class, see [sklearn.ensemble.BaggingClassifier]
|
@@ -276,12 +269,7 @@ class BaggingClassifier(BaseTransformer):
|
|
276
269
|
)
|
277
270
|
return selected_cols
|
278
271
|
|
279
|
-
|
280
|
-
project=_PROJECT,
|
281
|
-
subproject=_SUBPROJECT,
|
282
|
-
custom_tags=dict([("autogen", True)]),
|
283
|
-
)
|
284
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingClassifier":
|
272
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "BaggingClassifier":
|
285
273
|
"""Build a Bagging ensemble of estimators from the training set (X, y)
|
286
274
|
For more details on this function, see [sklearn.ensemble.BaggingClassifier.fit]
|
287
275
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.BaggingClassifier.html#sklearn.ensemble.BaggingClassifier.fit)
|
@@ -308,12 +296,14 @@ class BaggingClassifier(BaseTransformer):
|
|
308
296
|
|
309
297
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
310
298
|
|
311
|
-
|
299
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
312
300
|
if SNOWML_SPROC_ENV in os.environ:
|
313
301
|
statement_params = telemetry.get_function_usage_statement_params(
|
314
302
|
project=_PROJECT,
|
315
303
|
subproject=_SUBPROJECT,
|
316
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
304
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
305
|
+
inspect.currentframe(), BaggingClassifier.__class__.__name__
|
306
|
+
),
|
317
307
|
api_calls=[Session.call],
|
318
308
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
319
309
|
)
|
@@ -334,27 +324,24 @@ class BaggingClassifier(BaseTransformer):
|
|
334
324
|
)
|
335
325
|
self._sklearn_object = model_trainer.train()
|
336
326
|
self._is_fitted = True
|
337
|
-
self.
|
327
|
+
self._generate_model_signatures(dataset)
|
338
328
|
return self
|
339
329
|
|
340
330
|
def _batch_inference_validate_snowpark(
|
341
331
|
self,
|
342
332
|
dataset: DataFrame,
|
343
333
|
inference_method: str,
|
344
|
-
) ->
|
345
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
346
|
-
return the available package that exists in the snowflake anaconda channel
|
334
|
+
) -> None:
|
335
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
347
336
|
|
348
337
|
Args:
|
349
338
|
dataset: snowpark dataframe
|
350
339
|
inference_method: the inference method such as predict, score...
|
351
|
-
|
340
|
+
|
352
341
|
Raises:
|
353
342
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
354
343
|
SnowflakeMLException: If the session is None, raise error
|
355
344
|
|
356
|
-
Returns:
|
357
|
-
A list of available package that exists in the snowflake anaconda channel
|
358
345
|
"""
|
359
346
|
if not self._is_fitted:
|
360
347
|
raise exceptions.SnowflakeMLException(
|
@@ -372,9 +359,7 @@ class BaggingClassifier(BaseTransformer):
|
|
372
359
|
"Session must not specified for snowpark dataset."
|
373
360
|
),
|
374
361
|
)
|
375
|
-
|
376
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
377
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
362
|
+
|
378
363
|
|
379
364
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
380
365
|
@telemetry.send_api_usage_telemetry(
|
@@ -410,7 +395,9 @@ class BaggingClassifier(BaseTransformer):
|
|
410
395
|
# when it is classifier, infer the datatype from label columns
|
411
396
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
412
397
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
413
|
-
label_cols_signatures = [
|
398
|
+
label_cols_signatures = [
|
399
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
400
|
+
]
|
414
401
|
if len(label_cols_signatures) == 0:
|
415
402
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
416
403
|
raise exceptions.SnowflakeMLException(
|
@@ -418,25 +405,23 @@ class BaggingClassifier(BaseTransformer):
|
|
418
405
|
original_exception=ValueError(error_str),
|
419
406
|
)
|
420
407
|
|
421
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
422
|
-
label_cols_signatures[0].as_snowpark_type()
|
423
|
-
)
|
408
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
424
409
|
|
425
|
-
self.
|
426
|
-
|
410
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
411
|
+
self._deps = self._get_dependencies()
|
412
|
+
assert isinstance(
|
413
|
+
dataset._session, Session
|
414
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
427
415
|
|
428
416
|
transform_kwargs = dict(
|
429
|
-
session
|
430
|
-
dependencies
|
431
|
-
drop_input_cols
|
432
|
-
expected_output_cols_type
|
417
|
+
session=dataset._session,
|
418
|
+
dependencies=self._deps,
|
419
|
+
drop_input_cols=self._drop_input_cols,
|
420
|
+
expected_output_cols_type=expected_type_inferred,
|
433
421
|
)
|
434
422
|
|
435
423
|
elif isinstance(dataset, pd.DataFrame):
|
436
|
-
transform_kwargs = dict(
|
437
|
-
snowpark_input_cols = self._snowpark_cols,
|
438
|
-
drop_input_cols = self._drop_input_cols
|
439
|
-
)
|
424
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
440
425
|
|
441
426
|
transform_handlers = ModelTransformerBuilder.build(
|
442
427
|
dataset=dataset,
|
@@ -476,7 +461,7 @@ class BaggingClassifier(BaseTransformer):
|
|
476
461
|
Transformed dataset.
|
477
462
|
"""
|
478
463
|
super()._check_dataset_type(dataset)
|
479
|
-
inference_method="transform"
|
464
|
+
inference_method = "transform"
|
480
465
|
|
481
466
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
482
467
|
# are specific to the type of dataset used.
|
@@ -506,24 +491,19 @@ class BaggingClassifier(BaseTransformer):
|
|
506
491
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
507
492
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
508
493
|
|
509
|
-
self.
|
510
|
-
|
511
|
-
inference_method=inference_method,
|
512
|
-
)
|
494
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
495
|
+
self._deps = self._get_dependencies()
|
513
496
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
514
497
|
|
515
498
|
transform_kwargs = dict(
|
516
|
-
session
|
517
|
-
dependencies
|
518
|
-
drop_input_cols
|
519
|
-
expected_output_cols_type
|
499
|
+
session=dataset._session,
|
500
|
+
dependencies=self._deps,
|
501
|
+
drop_input_cols=self._drop_input_cols,
|
502
|
+
expected_output_cols_type=expected_dtype,
|
520
503
|
)
|
521
504
|
|
522
505
|
elif isinstance(dataset, pd.DataFrame):
|
523
|
-
transform_kwargs = dict(
|
524
|
-
snowpark_input_cols = self._snowpark_cols,
|
525
|
-
drop_input_cols = self._drop_input_cols
|
526
|
-
)
|
506
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
527
507
|
|
528
508
|
transform_handlers = ModelTransformerBuilder.build(
|
529
509
|
dataset=dataset,
|
@@ -542,7 +522,11 @@ class BaggingClassifier(BaseTransformer):
|
|
542
522
|
return output_df
|
543
523
|
|
544
524
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
545
|
-
def fit_predict(
|
525
|
+
def fit_predict(
|
526
|
+
self,
|
527
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
528
|
+
output_cols_prefix: str = "fit_predict_",
|
529
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
546
530
|
""" Method not supported for this class.
|
547
531
|
|
548
532
|
|
@@ -567,22 +551,104 @@ class BaggingClassifier(BaseTransformer):
|
|
567
551
|
)
|
568
552
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
569
553
|
drop_input_cols=self._drop_input_cols,
|
570
|
-
expected_output_cols_list=
|
554
|
+
expected_output_cols_list=(
|
555
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
556
|
+
),
|
571
557
|
)
|
572
558
|
self._sklearn_object = fitted_estimator
|
573
559
|
self._is_fitted = True
|
574
560
|
return output_result
|
575
561
|
|
562
|
+
|
563
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
564
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
565
|
+
""" Method not supported for this class.
|
566
|
+
|
576
567
|
|
577
|
-
|
578
|
-
|
579
|
-
|
568
|
+
Raises:
|
569
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
570
|
+
|
571
|
+
Args:
|
572
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
573
|
+
Snowpark or Pandas DataFrame.
|
574
|
+
output_cols_prefix: Prefix for the response columns
|
580
575
|
Returns:
|
581
576
|
Transformed dataset.
|
582
577
|
"""
|
583
|
-
self.
|
584
|
-
|
585
|
-
|
578
|
+
self._infer_input_output_cols(dataset)
|
579
|
+
super()._check_dataset_type(dataset)
|
580
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
581
|
+
estimator=self._sklearn_object,
|
582
|
+
dataset=dataset,
|
583
|
+
input_cols=self.input_cols,
|
584
|
+
label_cols=self.label_cols,
|
585
|
+
sample_weight_col=self.sample_weight_col,
|
586
|
+
autogenerated=self._autogenerated,
|
587
|
+
subproject=_SUBPROJECT,
|
588
|
+
)
|
589
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
590
|
+
drop_input_cols=self._drop_input_cols,
|
591
|
+
expected_output_cols_list=self.output_cols,
|
592
|
+
)
|
593
|
+
self._sklearn_object = fitted_estimator
|
594
|
+
self._is_fitted = True
|
595
|
+
return output_result
|
596
|
+
|
597
|
+
|
598
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
599
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
600
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
601
|
+
"""
|
602
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
603
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
604
|
+
if output_cols:
|
605
|
+
output_cols = [
|
606
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
607
|
+
for c in output_cols
|
608
|
+
]
|
609
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
610
|
+
output_cols = [output_cols_prefix]
|
611
|
+
elif self._sklearn_object is not None:
|
612
|
+
classes = self._sklearn_object.classes_
|
613
|
+
if isinstance(classes, numpy.ndarray):
|
614
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
615
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
616
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
617
|
+
output_cols = []
|
618
|
+
for i, cl in enumerate(classes):
|
619
|
+
# For binary classification, there is only one output column for each class
|
620
|
+
# ndarray as the two classes are complementary.
|
621
|
+
if len(cl) == 2:
|
622
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
623
|
+
else:
|
624
|
+
output_cols.extend([
|
625
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
626
|
+
])
|
627
|
+
else:
|
628
|
+
output_cols = []
|
629
|
+
|
630
|
+
# Make sure column names are valid snowflake identifiers.
|
631
|
+
assert output_cols is not None # Make MyPy happy
|
632
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
633
|
+
|
634
|
+
return rv
|
635
|
+
|
636
|
+
def _align_expected_output_names(
|
637
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
638
|
+
) -> List[str]:
|
639
|
+
# in case the inferred output column names dimension is different
|
640
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
641
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
642
|
+
output_df_columns = list(output_df_pd.columns)
|
643
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
644
|
+
if self.sample_weight_col:
|
645
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
646
|
+
# if the dimension of inferred output column names is correct; use it
|
647
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
648
|
+
return expected_output_cols_list
|
649
|
+
# otherwise, use the sklearn estimator's output
|
650
|
+
else:
|
651
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
586
652
|
|
587
653
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
588
654
|
@telemetry.send_api_usage_telemetry(
|
@@ -616,24 +682,26 @@ class BaggingClassifier(BaseTransformer):
|
|
616
682
|
# are specific to the type of dataset used.
|
617
683
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
618
684
|
|
685
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
686
|
+
|
619
687
|
if isinstance(dataset, DataFrame):
|
620
|
-
self.
|
621
|
-
|
622
|
-
|
623
|
-
|
624
|
-
|
688
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
689
|
+
self._deps = self._get_dependencies()
|
690
|
+
assert isinstance(
|
691
|
+
dataset._session, Session
|
692
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
625
693
|
transform_kwargs = dict(
|
626
694
|
session=dataset._session,
|
627
695
|
dependencies=self._deps,
|
628
|
-
drop_input_cols
|
696
|
+
drop_input_cols=self._drop_input_cols,
|
629
697
|
expected_output_cols_type="float",
|
630
698
|
)
|
699
|
+
expected_output_cols = self._align_expected_output_names(
|
700
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
701
|
+
)
|
631
702
|
|
632
703
|
elif isinstance(dataset, pd.DataFrame):
|
633
|
-
transform_kwargs = dict(
|
634
|
-
snowpark_input_cols = self._snowpark_cols,
|
635
|
-
drop_input_cols = self._drop_input_cols
|
636
|
-
)
|
704
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
637
705
|
|
638
706
|
transform_handlers = ModelTransformerBuilder.build(
|
639
707
|
dataset=dataset,
|
@@ -645,7 +713,7 @@ class BaggingClassifier(BaseTransformer):
|
|
645
713
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
646
714
|
inference_method=inference_method,
|
647
715
|
input_cols=self.input_cols,
|
648
|
-
expected_output_cols=
|
716
|
+
expected_output_cols=expected_output_cols,
|
649
717
|
**transform_kwargs
|
650
718
|
)
|
651
719
|
return output_df
|
@@ -677,29 +745,30 @@ class BaggingClassifier(BaseTransformer):
|
|
677
745
|
Output dataset with log probability of the sample for each class in the model.
|
678
746
|
"""
|
679
747
|
super()._check_dataset_type(dataset)
|
680
|
-
inference_method="predict_log_proba"
|
748
|
+
inference_method = "predict_log_proba"
|
749
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
681
750
|
|
682
751
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
683
752
|
# are specific to the type of dataset used.
|
684
753
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
685
754
|
|
686
755
|
if isinstance(dataset, DataFrame):
|
687
|
-
self.
|
688
|
-
|
689
|
-
|
690
|
-
|
691
|
-
|
756
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
757
|
+
self._deps = self._get_dependencies()
|
758
|
+
assert isinstance(
|
759
|
+
dataset._session, Session
|
760
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
692
761
|
transform_kwargs = dict(
|
693
762
|
session=dataset._session,
|
694
763
|
dependencies=self._deps,
|
695
|
-
drop_input_cols
|
764
|
+
drop_input_cols=self._drop_input_cols,
|
696
765
|
expected_output_cols_type="float",
|
697
766
|
)
|
767
|
+
expected_output_cols = self._align_expected_output_names(
|
768
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
769
|
+
)
|
698
770
|
elif isinstance(dataset, pd.DataFrame):
|
699
|
-
transform_kwargs = dict(
|
700
|
-
snowpark_input_cols = self._snowpark_cols,
|
701
|
-
drop_input_cols = self._drop_input_cols
|
702
|
-
)
|
771
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
703
772
|
|
704
773
|
transform_handlers = ModelTransformerBuilder.build(
|
705
774
|
dataset=dataset,
|
@@ -712,7 +781,7 @@ class BaggingClassifier(BaseTransformer):
|
|
712
781
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
713
782
|
inference_method=inference_method,
|
714
783
|
input_cols=self.input_cols,
|
715
|
-
expected_output_cols=
|
784
|
+
expected_output_cols=expected_output_cols,
|
716
785
|
**transform_kwargs
|
717
786
|
)
|
718
787
|
return output_df
|
@@ -740,30 +809,32 @@ class BaggingClassifier(BaseTransformer):
|
|
740
809
|
Output dataset with results of the decision function for the samples in input dataset.
|
741
810
|
"""
|
742
811
|
super()._check_dataset_type(dataset)
|
743
|
-
inference_method="decision_function"
|
812
|
+
inference_method = "decision_function"
|
744
813
|
|
745
814
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
746
815
|
# are specific to the type of dataset used.
|
747
816
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
748
817
|
|
818
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
819
|
+
|
749
820
|
if isinstance(dataset, DataFrame):
|
750
|
-
self.
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
821
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
822
|
+
self._deps = self._get_dependencies()
|
823
|
+
assert isinstance(
|
824
|
+
dataset._session, Session
|
825
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
755
826
|
transform_kwargs = dict(
|
756
827
|
session=dataset._session,
|
757
828
|
dependencies=self._deps,
|
758
|
-
drop_input_cols
|
829
|
+
drop_input_cols=self._drop_input_cols,
|
759
830
|
expected_output_cols_type="float",
|
760
831
|
)
|
832
|
+
expected_output_cols = self._align_expected_output_names(
|
833
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
834
|
+
)
|
761
835
|
|
762
836
|
elif isinstance(dataset, pd.DataFrame):
|
763
|
-
transform_kwargs = dict(
|
764
|
-
snowpark_input_cols = self._snowpark_cols,
|
765
|
-
drop_input_cols = self._drop_input_cols
|
766
|
-
)
|
837
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
767
838
|
|
768
839
|
transform_handlers = ModelTransformerBuilder.build(
|
769
840
|
dataset=dataset,
|
@@ -776,7 +847,7 @@ class BaggingClassifier(BaseTransformer):
|
|
776
847
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
777
848
|
inference_method=inference_method,
|
778
849
|
input_cols=self.input_cols,
|
779
|
-
expected_output_cols=
|
850
|
+
expected_output_cols=expected_output_cols,
|
780
851
|
**transform_kwargs
|
781
852
|
)
|
782
853
|
return output_df
|
@@ -805,17 +876,17 @@ class BaggingClassifier(BaseTransformer):
|
|
805
876
|
Output dataset with probability of the sample for each class in the model.
|
806
877
|
"""
|
807
878
|
super()._check_dataset_type(dataset)
|
808
|
-
inference_method="score_samples"
|
879
|
+
inference_method = "score_samples"
|
809
880
|
|
810
881
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
811
882
|
# are specific to the type of dataset used.
|
812
883
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
813
884
|
|
885
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
886
|
+
|
814
887
|
if isinstance(dataset, DataFrame):
|
815
|
-
self.
|
816
|
-
|
817
|
-
inference_method=inference_method,
|
818
|
-
)
|
888
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
889
|
+
self._deps = self._get_dependencies()
|
819
890
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
820
891
|
transform_kwargs = dict(
|
821
892
|
session=dataset._session,
|
@@ -823,6 +894,9 @@ class BaggingClassifier(BaseTransformer):
|
|
823
894
|
drop_input_cols = self._drop_input_cols,
|
824
895
|
expected_output_cols_type="float",
|
825
896
|
)
|
897
|
+
expected_output_cols = self._align_expected_output_names(
|
898
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
899
|
+
)
|
826
900
|
|
827
901
|
elif isinstance(dataset, pd.DataFrame):
|
828
902
|
transform_kwargs = dict(
|
@@ -841,7 +915,7 @@ class BaggingClassifier(BaseTransformer):
|
|
841
915
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
842
916
|
inference_method=inference_method,
|
843
917
|
input_cols=self.input_cols,
|
844
|
-
expected_output_cols=
|
918
|
+
expected_output_cols=expected_output_cols,
|
845
919
|
**transform_kwargs
|
846
920
|
)
|
847
921
|
return output_df
|
@@ -876,17 +950,15 @@ class BaggingClassifier(BaseTransformer):
|
|
876
950
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
877
951
|
|
878
952
|
if isinstance(dataset, DataFrame):
|
879
|
-
self.
|
880
|
-
|
881
|
-
inference_method="score",
|
882
|
-
)
|
953
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
954
|
+
self._deps = self._get_dependencies()
|
883
955
|
selected_cols = self._get_active_columns()
|
884
956
|
if len(selected_cols) > 0:
|
885
957
|
dataset = dataset.select(selected_cols)
|
886
958
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
887
959
|
transform_kwargs = dict(
|
888
960
|
session=dataset._session,
|
889
|
-
dependencies=
|
961
|
+
dependencies=self._deps,
|
890
962
|
score_sproc_imports=['sklearn'],
|
891
963
|
)
|
892
964
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -951,11 +1023,8 @@ class BaggingClassifier(BaseTransformer):
|
|
951
1023
|
|
952
1024
|
if isinstance(dataset, DataFrame):
|
953
1025
|
|
954
|
-
self.
|
955
|
-
|
956
|
-
inference_method=inference_method,
|
957
|
-
|
958
|
-
)
|
1026
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1027
|
+
self._deps = self._get_dependencies()
|
959
1028
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
960
1029
|
transform_kwargs = dict(
|
961
1030
|
session = dataset._session,
|
@@ -988,50 +1057,84 @@ class BaggingClassifier(BaseTransformer):
|
|
988
1057
|
)
|
989
1058
|
return output_df
|
990
1059
|
|
1060
|
+
|
1061
|
+
|
1062
|
+
def to_sklearn(self) -> Any:
|
1063
|
+
"""Get sklearn.ensemble.BaggingClassifier object.
|
1064
|
+
"""
|
1065
|
+
if self._sklearn_object is None:
|
1066
|
+
self._sklearn_object = self._create_sklearn_object()
|
1067
|
+
return self._sklearn_object
|
1068
|
+
|
1069
|
+
def to_xgboost(self) -> Any:
|
1070
|
+
raise exceptions.SnowflakeMLException(
|
1071
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1072
|
+
original_exception=AttributeError(
|
1073
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1074
|
+
"to_xgboost()",
|
1075
|
+
"to_sklearn()"
|
1076
|
+
)
|
1077
|
+
),
|
1078
|
+
)
|
1079
|
+
|
1080
|
+
def to_lightgbm(self) -> Any:
|
1081
|
+
raise exceptions.SnowflakeMLException(
|
1082
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1083
|
+
original_exception=AttributeError(
|
1084
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1085
|
+
"to_lightgbm()",
|
1086
|
+
"to_sklearn()"
|
1087
|
+
)
|
1088
|
+
),
|
1089
|
+
)
|
1090
|
+
|
1091
|
+
def _get_dependencies(self) -> List[str]:
|
1092
|
+
return self._deps
|
1093
|
+
|
991
1094
|
|
992
|
-
def
|
1095
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
993
1096
|
self._model_signature_dict = dict()
|
994
1097
|
|
995
1098
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
996
1099
|
|
997
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1100
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
998
1101
|
outputs: List[BaseFeatureSpec] = []
|
999
1102
|
if hasattr(self, "predict"):
|
1000
1103
|
# keep mypy happy
|
1001
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1104
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1002
1105
|
# For classifier, the type of predict is the same as the type of label
|
1003
|
-
if self._sklearn_object._estimator_type ==
|
1004
|
-
|
1106
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1107
|
+
# label columns is the desired type for output
|
1005
1108
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1006
1109
|
# rename the output columns
|
1007
1110
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1008
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1009
|
-
|
1010
|
-
|
1111
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1112
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1113
|
+
)
|
1011
1114
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1012
1115
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1013
|
-
# Clusterer returns int64 cluster labels.
|
1116
|
+
# Clusterer returns int64 cluster labels.
|
1014
1117
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1015
1118
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1016
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1119
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1120
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1121
|
+
)
|
1122
|
+
|
1020
1123
|
# For regressor, the type of predict is float64
|
1021
|
-
elif self._sklearn_object._estimator_type ==
|
1124
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1022
1125
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1023
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1126
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1127
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1128
|
+
)
|
1129
|
+
|
1027
1130
|
for prob_func in PROB_FUNCTIONS:
|
1028
1131
|
if hasattr(self, prob_func):
|
1029
1132
|
output_cols_prefix: str = f"{prob_func}_"
|
1030
1133
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1031
1134
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1032
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1033
|
-
|
1034
|
-
|
1135
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1136
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1137
|
+
)
|
1035
1138
|
|
1036
1139
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1037
1140
|
items = list(self._model_signature_dict.items())
|
@@ -1044,10 +1147,10 @@ class BaggingClassifier(BaseTransformer):
|
|
1044
1147
|
"""Returns model signature of current class.
|
1045
1148
|
|
1046
1149
|
Raises:
|
1047
|
-
|
1150
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1048
1151
|
|
1049
1152
|
Returns:
|
1050
|
-
Dict
|
1153
|
+
Dict with each method and its input output signature
|
1051
1154
|
"""
|
1052
1155
|
if self._model_signature_dict is None:
|
1053
1156
|
raise exceptions.SnowflakeMLException(
|
@@ -1055,35 +1158,3 @@ class BaggingClassifier(BaseTransformer):
|
|
1055
1158
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1056
1159
|
)
|
1057
1160
|
return self._model_signature_dict
|
1058
|
-
|
1059
|
-
def to_sklearn(self) -> Any:
|
1060
|
-
"""Get sklearn.ensemble.BaggingClassifier object.
|
1061
|
-
"""
|
1062
|
-
if self._sklearn_object is None:
|
1063
|
-
self._sklearn_object = self._create_sklearn_object()
|
1064
|
-
return self._sklearn_object
|
1065
|
-
|
1066
|
-
def to_xgboost(self) -> Any:
|
1067
|
-
raise exceptions.SnowflakeMLException(
|
1068
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1069
|
-
original_exception=AttributeError(
|
1070
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1071
|
-
"to_xgboost()",
|
1072
|
-
"to_sklearn()"
|
1073
|
-
)
|
1074
|
-
),
|
1075
|
-
)
|
1076
|
-
|
1077
|
-
def to_lightgbm(self) -> Any:
|
1078
|
-
raise exceptions.SnowflakeMLException(
|
1079
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1080
|
-
original_exception=AttributeError(
|
1081
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1082
|
-
"to_lightgbm()",
|
1083
|
-
"to_sklearn()"
|
1084
|
-
)
|
1085
|
-
),
|
1086
|
-
)
|
1087
|
-
|
1088
|
-
def _get_dependencies(self) -> List[str]:
|
1089
|
-
return self._deps
|