snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class LabelSpreading(BaseTransformer):
|
71
64
|
r"""LabelSpreading model for semi-supervised learning
|
72
65
|
For more details on this class, see [sklearn.semi_supervised.LabelSpreading]
|
@@ -237,12 +230,7 @@ class LabelSpreading(BaseTransformer):
|
|
237
230
|
)
|
238
231
|
return selected_cols
|
239
232
|
|
240
|
-
|
241
|
-
project=_PROJECT,
|
242
|
-
subproject=_SUBPROJECT,
|
243
|
-
custom_tags=dict([("autogen", True)]),
|
244
|
-
)
|
245
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
|
233
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
|
246
234
|
"""Fit a semi-supervised label propagation model to X
|
247
235
|
For more details on this function, see [sklearn.semi_supervised.LabelSpreading.fit]
|
248
236
|
(https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading.fit)
|
@@ -269,12 +257,14 @@ class LabelSpreading(BaseTransformer):
|
|
269
257
|
|
270
258
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
271
259
|
|
272
|
-
|
260
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
273
261
|
if SNOWML_SPROC_ENV in os.environ:
|
274
262
|
statement_params = telemetry.get_function_usage_statement_params(
|
275
263
|
project=_PROJECT,
|
276
264
|
subproject=_SUBPROJECT,
|
277
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
265
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
266
|
+
inspect.currentframe(), LabelSpreading.__class__.__name__
|
267
|
+
),
|
278
268
|
api_calls=[Session.call],
|
279
269
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
280
270
|
)
|
@@ -295,27 +285,24 @@ class LabelSpreading(BaseTransformer):
|
|
295
285
|
)
|
296
286
|
self._sklearn_object = model_trainer.train()
|
297
287
|
self._is_fitted = True
|
298
|
-
self.
|
288
|
+
self._generate_model_signatures(dataset)
|
299
289
|
return self
|
300
290
|
|
301
291
|
def _batch_inference_validate_snowpark(
|
302
292
|
self,
|
303
293
|
dataset: DataFrame,
|
304
294
|
inference_method: str,
|
305
|
-
) ->
|
306
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
307
|
-
return the available package that exists in the snowflake anaconda channel
|
295
|
+
) -> None:
|
296
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
308
297
|
|
309
298
|
Args:
|
310
299
|
dataset: snowpark dataframe
|
311
300
|
inference_method: the inference method such as predict, score...
|
312
|
-
|
301
|
+
|
313
302
|
Raises:
|
314
303
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
315
304
|
SnowflakeMLException: If the session is None, raise error
|
316
305
|
|
317
|
-
Returns:
|
318
|
-
A list of available package that exists in the snowflake anaconda channel
|
319
306
|
"""
|
320
307
|
if not self._is_fitted:
|
321
308
|
raise exceptions.SnowflakeMLException(
|
@@ -333,9 +320,7 @@ class LabelSpreading(BaseTransformer):
|
|
333
320
|
"Session must not specified for snowpark dataset."
|
334
321
|
),
|
335
322
|
)
|
336
|
-
|
337
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
338
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
323
|
+
|
339
324
|
|
340
325
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
341
326
|
@telemetry.send_api_usage_telemetry(
|
@@ -371,7 +356,9 @@ class LabelSpreading(BaseTransformer):
|
|
371
356
|
# when it is classifier, infer the datatype from label columns
|
372
357
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
373
358
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
374
|
-
label_cols_signatures = [
|
359
|
+
label_cols_signatures = [
|
360
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
361
|
+
]
|
375
362
|
if len(label_cols_signatures) == 0:
|
376
363
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
377
364
|
raise exceptions.SnowflakeMLException(
|
@@ -379,25 +366,23 @@ class LabelSpreading(BaseTransformer):
|
|
379
366
|
original_exception=ValueError(error_str),
|
380
367
|
)
|
381
368
|
|
382
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
383
|
-
label_cols_signatures[0].as_snowpark_type()
|
384
|
-
)
|
369
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
385
370
|
|
386
|
-
self.
|
387
|
-
|
371
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
372
|
+
self._deps = self._get_dependencies()
|
373
|
+
assert isinstance(
|
374
|
+
dataset._session, Session
|
375
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
388
376
|
|
389
377
|
transform_kwargs = dict(
|
390
|
-
session
|
391
|
-
dependencies
|
392
|
-
drop_input_cols
|
393
|
-
expected_output_cols_type
|
378
|
+
session=dataset._session,
|
379
|
+
dependencies=self._deps,
|
380
|
+
drop_input_cols=self._drop_input_cols,
|
381
|
+
expected_output_cols_type=expected_type_inferred,
|
394
382
|
)
|
395
383
|
|
396
384
|
elif isinstance(dataset, pd.DataFrame):
|
397
|
-
transform_kwargs = dict(
|
398
|
-
snowpark_input_cols = self._snowpark_cols,
|
399
|
-
drop_input_cols = self._drop_input_cols
|
400
|
-
)
|
385
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
401
386
|
|
402
387
|
transform_handlers = ModelTransformerBuilder.build(
|
403
388
|
dataset=dataset,
|
@@ -437,7 +422,7 @@ class LabelSpreading(BaseTransformer):
|
|
437
422
|
Transformed dataset.
|
438
423
|
"""
|
439
424
|
super()._check_dataset_type(dataset)
|
440
|
-
inference_method="transform"
|
425
|
+
inference_method = "transform"
|
441
426
|
|
442
427
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
443
428
|
# are specific to the type of dataset used.
|
@@ -467,24 +452,19 @@ class LabelSpreading(BaseTransformer):
|
|
467
452
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
468
453
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
469
454
|
|
470
|
-
self.
|
471
|
-
|
472
|
-
inference_method=inference_method,
|
473
|
-
)
|
455
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
456
|
+
self._deps = self._get_dependencies()
|
474
457
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
475
458
|
|
476
459
|
transform_kwargs = dict(
|
477
|
-
session
|
478
|
-
dependencies
|
479
|
-
drop_input_cols
|
480
|
-
expected_output_cols_type
|
460
|
+
session=dataset._session,
|
461
|
+
dependencies=self._deps,
|
462
|
+
drop_input_cols=self._drop_input_cols,
|
463
|
+
expected_output_cols_type=expected_dtype,
|
481
464
|
)
|
482
465
|
|
483
466
|
elif isinstance(dataset, pd.DataFrame):
|
484
|
-
transform_kwargs = dict(
|
485
|
-
snowpark_input_cols = self._snowpark_cols,
|
486
|
-
drop_input_cols = self._drop_input_cols
|
487
|
-
)
|
467
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
488
468
|
|
489
469
|
transform_handlers = ModelTransformerBuilder.build(
|
490
470
|
dataset=dataset,
|
@@ -503,7 +483,11 @@ class LabelSpreading(BaseTransformer):
|
|
503
483
|
return output_df
|
504
484
|
|
505
485
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
506
|
-
def fit_predict(
|
486
|
+
def fit_predict(
|
487
|
+
self,
|
488
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
489
|
+
output_cols_prefix: str = "fit_predict_",
|
490
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
507
491
|
""" Method not supported for this class.
|
508
492
|
|
509
493
|
|
@@ -528,22 +512,104 @@ class LabelSpreading(BaseTransformer):
|
|
528
512
|
)
|
529
513
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
530
514
|
drop_input_cols=self._drop_input_cols,
|
531
|
-
expected_output_cols_list=
|
515
|
+
expected_output_cols_list=(
|
516
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
517
|
+
),
|
532
518
|
)
|
533
519
|
self._sklearn_object = fitted_estimator
|
534
520
|
self._is_fitted = True
|
535
521
|
return output_result
|
536
522
|
|
523
|
+
|
524
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
525
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
526
|
+
""" Method not supported for this class.
|
527
|
+
|
537
528
|
|
538
|
-
|
539
|
-
|
540
|
-
|
529
|
+
Raises:
|
530
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
531
|
+
|
532
|
+
Args:
|
533
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
534
|
+
Snowpark or Pandas DataFrame.
|
535
|
+
output_cols_prefix: Prefix for the response columns
|
541
536
|
Returns:
|
542
537
|
Transformed dataset.
|
543
538
|
"""
|
544
|
-
self.
|
545
|
-
|
546
|
-
|
539
|
+
self._infer_input_output_cols(dataset)
|
540
|
+
super()._check_dataset_type(dataset)
|
541
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
542
|
+
estimator=self._sklearn_object,
|
543
|
+
dataset=dataset,
|
544
|
+
input_cols=self.input_cols,
|
545
|
+
label_cols=self.label_cols,
|
546
|
+
sample_weight_col=self.sample_weight_col,
|
547
|
+
autogenerated=self._autogenerated,
|
548
|
+
subproject=_SUBPROJECT,
|
549
|
+
)
|
550
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
551
|
+
drop_input_cols=self._drop_input_cols,
|
552
|
+
expected_output_cols_list=self.output_cols,
|
553
|
+
)
|
554
|
+
self._sklearn_object = fitted_estimator
|
555
|
+
self._is_fitted = True
|
556
|
+
return output_result
|
557
|
+
|
558
|
+
|
559
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
560
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
561
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
562
|
+
"""
|
563
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
564
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
565
|
+
if output_cols:
|
566
|
+
output_cols = [
|
567
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
568
|
+
for c in output_cols
|
569
|
+
]
|
570
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
571
|
+
output_cols = [output_cols_prefix]
|
572
|
+
elif self._sklearn_object is not None:
|
573
|
+
classes = self._sklearn_object.classes_
|
574
|
+
if isinstance(classes, numpy.ndarray):
|
575
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
576
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
577
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
578
|
+
output_cols = []
|
579
|
+
for i, cl in enumerate(classes):
|
580
|
+
# For binary classification, there is only one output column for each class
|
581
|
+
# ndarray as the two classes are complementary.
|
582
|
+
if len(cl) == 2:
|
583
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
584
|
+
else:
|
585
|
+
output_cols.extend([
|
586
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
587
|
+
])
|
588
|
+
else:
|
589
|
+
output_cols = []
|
590
|
+
|
591
|
+
# Make sure column names are valid snowflake identifiers.
|
592
|
+
assert output_cols is not None # Make MyPy happy
|
593
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
594
|
+
|
595
|
+
return rv
|
596
|
+
|
597
|
+
def _align_expected_output_names(
|
598
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
599
|
+
) -> List[str]:
|
600
|
+
# in case the inferred output column names dimension is different
|
601
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
602
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
603
|
+
output_df_columns = list(output_df_pd.columns)
|
604
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
605
|
+
if self.sample_weight_col:
|
606
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
607
|
+
# if the dimension of inferred output column names is correct; use it
|
608
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
609
|
+
return expected_output_cols_list
|
610
|
+
# otherwise, use the sklearn estimator's output
|
611
|
+
else:
|
612
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
547
613
|
|
548
614
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
549
615
|
@telemetry.send_api_usage_telemetry(
|
@@ -577,24 +643,26 @@ class LabelSpreading(BaseTransformer):
|
|
577
643
|
# are specific to the type of dataset used.
|
578
644
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
579
645
|
|
646
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
647
|
+
|
580
648
|
if isinstance(dataset, DataFrame):
|
581
|
-
self.
|
582
|
-
|
583
|
-
|
584
|
-
|
585
|
-
|
649
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
650
|
+
self._deps = self._get_dependencies()
|
651
|
+
assert isinstance(
|
652
|
+
dataset._session, Session
|
653
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
586
654
|
transform_kwargs = dict(
|
587
655
|
session=dataset._session,
|
588
656
|
dependencies=self._deps,
|
589
|
-
drop_input_cols
|
657
|
+
drop_input_cols=self._drop_input_cols,
|
590
658
|
expected_output_cols_type="float",
|
591
659
|
)
|
660
|
+
expected_output_cols = self._align_expected_output_names(
|
661
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
662
|
+
)
|
592
663
|
|
593
664
|
elif isinstance(dataset, pd.DataFrame):
|
594
|
-
transform_kwargs = dict(
|
595
|
-
snowpark_input_cols = self._snowpark_cols,
|
596
|
-
drop_input_cols = self._drop_input_cols
|
597
|
-
)
|
665
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
598
666
|
|
599
667
|
transform_handlers = ModelTransformerBuilder.build(
|
600
668
|
dataset=dataset,
|
@@ -606,7 +674,7 @@ class LabelSpreading(BaseTransformer):
|
|
606
674
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
607
675
|
inference_method=inference_method,
|
608
676
|
input_cols=self.input_cols,
|
609
|
-
expected_output_cols=
|
677
|
+
expected_output_cols=expected_output_cols,
|
610
678
|
**transform_kwargs
|
611
679
|
)
|
612
680
|
return output_df
|
@@ -638,29 +706,30 @@ class LabelSpreading(BaseTransformer):
|
|
638
706
|
Output dataset with log probability of the sample for each class in the model.
|
639
707
|
"""
|
640
708
|
super()._check_dataset_type(dataset)
|
641
|
-
inference_method="predict_log_proba"
|
709
|
+
inference_method = "predict_log_proba"
|
710
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
642
711
|
|
643
712
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
644
713
|
# are specific to the type of dataset used.
|
645
714
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
646
715
|
|
647
716
|
if isinstance(dataset, DataFrame):
|
648
|
-
self.
|
649
|
-
|
650
|
-
|
651
|
-
|
652
|
-
|
717
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
718
|
+
self._deps = self._get_dependencies()
|
719
|
+
assert isinstance(
|
720
|
+
dataset._session, Session
|
721
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
653
722
|
transform_kwargs = dict(
|
654
723
|
session=dataset._session,
|
655
724
|
dependencies=self._deps,
|
656
|
-
drop_input_cols
|
725
|
+
drop_input_cols=self._drop_input_cols,
|
657
726
|
expected_output_cols_type="float",
|
658
727
|
)
|
728
|
+
expected_output_cols = self._align_expected_output_names(
|
729
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
730
|
+
)
|
659
731
|
elif isinstance(dataset, pd.DataFrame):
|
660
|
-
transform_kwargs = dict(
|
661
|
-
snowpark_input_cols = self._snowpark_cols,
|
662
|
-
drop_input_cols = self._drop_input_cols
|
663
|
-
)
|
732
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
664
733
|
|
665
734
|
transform_handlers = ModelTransformerBuilder.build(
|
666
735
|
dataset=dataset,
|
@@ -673,7 +742,7 @@ class LabelSpreading(BaseTransformer):
|
|
673
742
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
674
743
|
inference_method=inference_method,
|
675
744
|
input_cols=self.input_cols,
|
676
|
-
expected_output_cols=
|
745
|
+
expected_output_cols=expected_output_cols,
|
677
746
|
**transform_kwargs
|
678
747
|
)
|
679
748
|
return output_df
|
@@ -699,30 +768,32 @@ class LabelSpreading(BaseTransformer):
|
|
699
768
|
Output dataset with results of the decision function for the samples in input dataset.
|
700
769
|
"""
|
701
770
|
super()._check_dataset_type(dataset)
|
702
|
-
inference_method="decision_function"
|
771
|
+
inference_method = "decision_function"
|
703
772
|
|
704
773
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
705
774
|
# are specific to the type of dataset used.
|
706
775
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
707
776
|
|
777
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
778
|
+
|
708
779
|
if isinstance(dataset, DataFrame):
|
709
|
-
self.
|
710
|
-
|
711
|
-
|
712
|
-
|
713
|
-
|
780
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
781
|
+
self._deps = self._get_dependencies()
|
782
|
+
assert isinstance(
|
783
|
+
dataset._session, Session
|
784
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
714
785
|
transform_kwargs = dict(
|
715
786
|
session=dataset._session,
|
716
787
|
dependencies=self._deps,
|
717
|
-
drop_input_cols
|
788
|
+
drop_input_cols=self._drop_input_cols,
|
718
789
|
expected_output_cols_type="float",
|
719
790
|
)
|
791
|
+
expected_output_cols = self._align_expected_output_names(
|
792
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
793
|
+
)
|
720
794
|
|
721
795
|
elif isinstance(dataset, pd.DataFrame):
|
722
|
-
transform_kwargs = dict(
|
723
|
-
snowpark_input_cols = self._snowpark_cols,
|
724
|
-
drop_input_cols = self._drop_input_cols
|
725
|
-
)
|
796
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
726
797
|
|
727
798
|
transform_handlers = ModelTransformerBuilder.build(
|
728
799
|
dataset=dataset,
|
@@ -735,7 +806,7 @@ class LabelSpreading(BaseTransformer):
|
|
735
806
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
736
807
|
inference_method=inference_method,
|
737
808
|
input_cols=self.input_cols,
|
738
|
-
expected_output_cols=
|
809
|
+
expected_output_cols=expected_output_cols,
|
739
810
|
**transform_kwargs
|
740
811
|
)
|
741
812
|
return output_df
|
@@ -764,17 +835,17 @@ class LabelSpreading(BaseTransformer):
|
|
764
835
|
Output dataset with probability of the sample for each class in the model.
|
765
836
|
"""
|
766
837
|
super()._check_dataset_type(dataset)
|
767
|
-
inference_method="score_samples"
|
838
|
+
inference_method = "score_samples"
|
768
839
|
|
769
840
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
770
841
|
# are specific to the type of dataset used.
|
771
842
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
772
843
|
|
844
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
845
|
+
|
773
846
|
if isinstance(dataset, DataFrame):
|
774
|
-
self.
|
775
|
-
|
776
|
-
inference_method=inference_method,
|
777
|
-
)
|
847
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
848
|
+
self._deps = self._get_dependencies()
|
778
849
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
779
850
|
transform_kwargs = dict(
|
780
851
|
session=dataset._session,
|
@@ -782,6 +853,9 @@ class LabelSpreading(BaseTransformer):
|
|
782
853
|
drop_input_cols = self._drop_input_cols,
|
783
854
|
expected_output_cols_type="float",
|
784
855
|
)
|
856
|
+
expected_output_cols = self._align_expected_output_names(
|
857
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
858
|
+
)
|
785
859
|
|
786
860
|
elif isinstance(dataset, pd.DataFrame):
|
787
861
|
transform_kwargs = dict(
|
@@ -800,7 +874,7 @@ class LabelSpreading(BaseTransformer):
|
|
800
874
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
801
875
|
inference_method=inference_method,
|
802
876
|
input_cols=self.input_cols,
|
803
|
-
expected_output_cols=
|
877
|
+
expected_output_cols=expected_output_cols,
|
804
878
|
**transform_kwargs
|
805
879
|
)
|
806
880
|
return output_df
|
@@ -835,17 +909,15 @@ class LabelSpreading(BaseTransformer):
|
|
835
909
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
836
910
|
|
837
911
|
if isinstance(dataset, DataFrame):
|
838
|
-
self.
|
839
|
-
|
840
|
-
inference_method="score",
|
841
|
-
)
|
912
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
913
|
+
self._deps = self._get_dependencies()
|
842
914
|
selected_cols = self._get_active_columns()
|
843
915
|
if len(selected_cols) > 0:
|
844
916
|
dataset = dataset.select(selected_cols)
|
845
917
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
846
918
|
transform_kwargs = dict(
|
847
919
|
session=dataset._session,
|
848
|
-
dependencies=
|
920
|
+
dependencies=self._deps,
|
849
921
|
score_sproc_imports=['sklearn'],
|
850
922
|
)
|
851
923
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -910,11 +982,8 @@ class LabelSpreading(BaseTransformer):
|
|
910
982
|
|
911
983
|
if isinstance(dataset, DataFrame):
|
912
984
|
|
913
|
-
self.
|
914
|
-
|
915
|
-
inference_method=inference_method,
|
916
|
-
|
917
|
-
)
|
985
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
986
|
+
self._deps = self._get_dependencies()
|
918
987
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
919
988
|
transform_kwargs = dict(
|
920
989
|
session = dataset._session,
|
@@ -947,50 +1016,84 @@ class LabelSpreading(BaseTransformer):
|
|
947
1016
|
)
|
948
1017
|
return output_df
|
949
1018
|
|
1019
|
+
|
1020
|
+
|
1021
|
+
def to_sklearn(self) -> Any:
|
1022
|
+
"""Get sklearn.semi_supervised.LabelSpreading object.
|
1023
|
+
"""
|
1024
|
+
if self._sklearn_object is None:
|
1025
|
+
self._sklearn_object = self._create_sklearn_object()
|
1026
|
+
return self._sklearn_object
|
1027
|
+
|
1028
|
+
def to_xgboost(self) -> Any:
|
1029
|
+
raise exceptions.SnowflakeMLException(
|
1030
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1031
|
+
original_exception=AttributeError(
|
1032
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1033
|
+
"to_xgboost()",
|
1034
|
+
"to_sklearn()"
|
1035
|
+
)
|
1036
|
+
),
|
1037
|
+
)
|
1038
|
+
|
1039
|
+
def to_lightgbm(self) -> Any:
|
1040
|
+
raise exceptions.SnowflakeMLException(
|
1041
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1042
|
+
original_exception=AttributeError(
|
1043
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1044
|
+
"to_lightgbm()",
|
1045
|
+
"to_sklearn()"
|
1046
|
+
)
|
1047
|
+
),
|
1048
|
+
)
|
1049
|
+
|
1050
|
+
def _get_dependencies(self) -> List[str]:
|
1051
|
+
return self._deps
|
1052
|
+
|
950
1053
|
|
951
|
-
def
|
1054
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
952
1055
|
self._model_signature_dict = dict()
|
953
1056
|
|
954
1057
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
955
1058
|
|
956
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1059
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
957
1060
|
outputs: List[BaseFeatureSpec] = []
|
958
1061
|
if hasattr(self, "predict"):
|
959
1062
|
# keep mypy happy
|
960
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1063
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
961
1064
|
# For classifier, the type of predict is the same as the type of label
|
962
|
-
if self._sklearn_object._estimator_type ==
|
963
|
-
|
1065
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1066
|
+
# label columns is the desired type for output
|
964
1067
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
965
1068
|
# rename the output columns
|
966
1069
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
967
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
968
|
-
|
969
|
-
|
1070
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1071
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1072
|
+
)
|
970
1073
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
971
1074
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
972
|
-
# Clusterer returns int64 cluster labels.
|
1075
|
+
# Clusterer returns int64 cluster labels.
|
973
1076
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
974
1077
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
975
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
976
|
-
|
977
|
-
|
978
|
-
|
1078
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1079
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1080
|
+
)
|
1081
|
+
|
979
1082
|
# For regressor, the type of predict is float64
|
980
|
-
elif self._sklearn_object._estimator_type ==
|
1083
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
981
1084
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
982
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
983
|
-
|
984
|
-
|
985
|
-
|
1085
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1086
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1087
|
+
)
|
1088
|
+
|
986
1089
|
for prob_func in PROB_FUNCTIONS:
|
987
1090
|
if hasattr(self, prob_func):
|
988
1091
|
output_cols_prefix: str = f"{prob_func}_"
|
989
1092
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
990
1093
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
991
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
992
|
-
|
993
|
-
|
1094
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1095
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1096
|
+
)
|
994
1097
|
|
995
1098
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
996
1099
|
items = list(self._model_signature_dict.items())
|
@@ -1003,10 +1106,10 @@ class LabelSpreading(BaseTransformer):
|
|
1003
1106
|
"""Returns model signature of current class.
|
1004
1107
|
|
1005
1108
|
Raises:
|
1006
|
-
|
1109
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1007
1110
|
|
1008
1111
|
Returns:
|
1009
|
-
Dict
|
1112
|
+
Dict with each method and its input output signature
|
1010
1113
|
"""
|
1011
1114
|
if self._model_signature_dict is None:
|
1012
1115
|
raise exceptions.SnowflakeMLException(
|
@@ -1014,35 +1117,3 @@ class LabelSpreading(BaseTransformer):
|
|
1014
1117
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1015
1118
|
)
|
1016
1119
|
return self._model_signature_dict
|
1017
|
-
|
1018
|
-
def to_sklearn(self) -> Any:
|
1019
|
-
"""Get sklearn.semi_supervised.LabelSpreading object.
|
1020
|
-
"""
|
1021
|
-
if self._sklearn_object is None:
|
1022
|
-
self._sklearn_object = self._create_sklearn_object()
|
1023
|
-
return self._sklearn_object
|
1024
|
-
|
1025
|
-
def to_xgboost(self) -> Any:
|
1026
|
-
raise exceptions.SnowflakeMLException(
|
1027
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1028
|
-
original_exception=AttributeError(
|
1029
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1030
|
-
"to_xgboost()",
|
1031
|
-
"to_sklearn()"
|
1032
|
-
)
|
1033
|
-
),
|
1034
|
-
)
|
1035
|
-
|
1036
|
-
def to_lightgbm(self) -> Any:
|
1037
|
-
raise exceptions.SnowflakeMLException(
|
1038
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1039
|
-
original_exception=AttributeError(
|
1040
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1041
|
-
"to_lightgbm()",
|
1042
|
-
"to_sklearn()"
|
1043
|
-
)
|
1044
|
-
),
|
1045
|
-
)
|
1046
|
-
|
1047
|
-
def _get_dependencies(self) -> List[str]:
|
1048
|
-
return self._deps
|