snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.semi_supervised".replace
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LabelSpreading(BaseTransformer):
71
64
  r"""LabelSpreading model for semi-supervised learning
72
65
  For more details on this class, see [sklearn.semi_supervised.LabelSpreading]
@@ -237,12 +230,7 @@ class LabelSpreading(BaseTransformer):
237
230
  )
238
231
  return selected_cols
239
232
 
240
- @telemetry.send_api_usage_telemetry(
241
- project=_PROJECT,
242
- subproject=_SUBPROJECT,
243
- custom_tags=dict([("autogen", True)]),
244
- )
245
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
233
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LabelSpreading":
246
234
  """Fit a semi-supervised label propagation model to X
247
235
  For more details on this function, see [sklearn.semi_supervised.LabelSpreading.fit]
248
236
  (https://scikit-learn.org/stable/modules/generated/sklearn.semi_supervised.LabelSpreading.html#sklearn.semi_supervised.LabelSpreading.fit)
@@ -269,12 +257,14 @@ class LabelSpreading(BaseTransformer):
269
257
 
270
258
  self._snowpark_cols = dataset.select(self.input_cols).columns
271
259
 
272
- # If we are already in a stored procedure, no need to kick off another one.
260
+ # If we are already in a stored procedure, no need to kick off another one.
273
261
  if SNOWML_SPROC_ENV in os.environ:
274
262
  statement_params = telemetry.get_function_usage_statement_params(
275
263
  project=_PROJECT,
276
264
  subproject=_SUBPROJECT,
277
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LabelSpreading.__class__.__name__),
265
+ function_name=telemetry.get_statement_params_full_func_name(
266
+ inspect.currentframe(), LabelSpreading.__class__.__name__
267
+ ),
278
268
  api_calls=[Session.call],
279
269
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
280
270
  )
@@ -295,27 +285,24 @@ class LabelSpreading(BaseTransformer):
295
285
  )
296
286
  self._sklearn_object = model_trainer.train()
297
287
  self._is_fitted = True
298
- self._get_model_signatures(dataset)
288
+ self._generate_model_signatures(dataset)
299
289
  return self
300
290
 
301
291
  def _batch_inference_validate_snowpark(
302
292
  self,
303
293
  dataset: DataFrame,
304
294
  inference_method: str,
305
- ) -> List[str]:
306
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
307
- return the available package that exists in the snowflake anaconda channel
295
+ ) -> None:
296
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
308
297
 
309
298
  Args:
310
299
  dataset: snowpark dataframe
311
300
  inference_method: the inference method such as predict, score...
312
-
301
+
313
302
  Raises:
314
303
  SnowflakeMLException: If the estimator is not fitted, raise error
315
304
  SnowflakeMLException: If the session is None, raise error
316
305
 
317
- Returns:
318
- A list of available package that exists in the snowflake anaconda channel
319
306
  """
320
307
  if not self._is_fitted:
321
308
  raise exceptions.SnowflakeMLException(
@@ -333,9 +320,7 @@ class LabelSpreading(BaseTransformer):
333
320
  "Session must not specified for snowpark dataset."
334
321
  ),
335
322
  )
336
- # Validate that key package version in user workspace are supported in snowflake conda channel
337
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
338
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
323
+
339
324
 
340
325
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
341
326
  @telemetry.send_api_usage_telemetry(
@@ -371,7 +356,9 @@ class LabelSpreading(BaseTransformer):
371
356
  # when it is classifier, infer the datatype from label columns
372
357
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
373
358
  # Batch inference takes a single expected output column type. Use the first columns type for now.
374
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
359
+ label_cols_signatures = [
360
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
361
+ ]
375
362
  if len(label_cols_signatures) == 0:
376
363
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
377
364
  raise exceptions.SnowflakeMLException(
@@ -379,25 +366,23 @@ class LabelSpreading(BaseTransformer):
379
366
  original_exception=ValueError(error_str),
380
367
  )
381
368
 
382
- expected_type_inferred = convert_sp_to_sf_type(
383
- label_cols_signatures[0].as_snowpark_type()
384
- )
369
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
385
370
 
386
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
387
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
371
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
+ self._deps = self._get_dependencies()
373
+ assert isinstance(
374
+ dataset._session, Session
375
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
388
376
 
389
377
  transform_kwargs = dict(
390
- session = dataset._session,
391
- dependencies = self._deps,
392
- drop_input_cols = self._drop_input_cols,
393
- expected_output_cols_type = expected_type_inferred,
378
+ session=dataset._session,
379
+ dependencies=self._deps,
380
+ drop_input_cols=self._drop_input_cols,
381
+ expected_output_cols_type=expected_type_inferred,
394
382
  )
395
383
 
396
384
  elif isinstance(dataset, pd.DataFrame):
397
- transform_kwargs = dict(
398
- snowpark_input_cols = self._snowpark_cols,
399
- drop_input_cols = self._drop_input_cols
400
- )
385
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
401
386
 
402
387
  transform_handlers = ModelTransformerBuilder.build(
403
388
  dataset=dataset,
@@ -437,7 +422,7 @@ class LabelSpreading(BaseTransformer):
437
422
  Transformed dataset.
438
423
  """
439
424
  super()._check_dataset_type(dataset)
440
- inference_method="transform"
425
+ inference_method = "transform"
441
426
 
442
427
  # This dictionary contains optional kwargs for batch inference. These kwargs
443
428
  # are specific to the type of dataset used.
@@ -467,24 +452,19 @@ class LabelSpreading(BaseTransformer):
467
452
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
468
453
  expected_dtype = convert_sp_to_sf_type(output_types[0])
469
454
 
470
- self._deps = self._batch_inference_validate_snowpark(
471
- dataset=dataset,
472
- inference_method=inference_method,
473
- )
455
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
456
+ self._deps = self._get_dependencies()
474
457
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
475
458
 
476
459
  transform_kwargs = dict(
477
- session = dataset._session,
478
- dependencies = self._deps,
479
- drop_input_cols = self._drop_input_cols,
480
- expected_output_cols_type = expected_dtype,
460
+ session=dataset._session,
461
+ dependencies=self._deps,
462
+ drop_input_cols=self._drop_input_cols,
463
+ expected_output_cols_type=expected_dtype,
481
464
  )
482
465
 
483
466
  elif isinstance(dataset, pd.DataFrame):
484
- transform_kwargs = dict(
485
- snowpark_input_cols = self._snowpark_cols,
486
- drop_input_cols = self._drop_input_cols
487
- )
467
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
488
468
 
489
469
  transform_handlers = ModelTransformerBuilder.build(
490
470
  dataset=dataset,
@@ -503,7 +483,11 @@ class LabelSpreading(BaseTransformer):
503
483
  return output_df
504
484
 
505
485
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
506
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
486
+ def fit_predict(
487
+ self,
488
+ dataset: Union[DataFrame, pd.DataFrame],
489
+ output_cols_prefix: str = "fit_predict_",
490
+ ) -> Union[DataFrame, pd.DataFrame]:
507
491
  """ Method not supported for this class.
508
492
 
509
493
 
@@ -528,22 +512,104 @@ class LabelSpreading(BaseTransformer):
528
512
  )
529
513
  output_result, fitted_estimator = model_trainer.train_fit_predict(
530
514
  drop_input_cols=self._drop_input_cols,
531
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
515
+ expected_output_cols_list=(
516
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
517
+ ),
532
518
  )
533
519
  self._sklearn_object = fitted_estimator
534
520
  self._is_fitted = True
535
521
  return output_result
536
522
 
523
+
524
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
525
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
526
+ """ Method not supported for this class.
527
+
537
528
 
538
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
539
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
540
- """
529
+ Raises:
530
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
531
+
532
+ Args:
533
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
534
+ Snowpark or Pandas DataFrame.
535
+ output_cols_prefix: Prefix for the response columns
541
536
  Returns:
542
537
  Transformed dataset.
543
538
  """
544
- self.fit(dataset)
545
- assert self._sklearn_object is not None
546
- return self._sklearn_object.embedding_
539
+ self._infer_input_output_cols(dataset)
540
+ super()._check_dataset_type(dataset)
541
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
542
+ estimator=self._sklearn_object,
543
+ dataset=dataset,
544
+ input_cols=self.input_cols,
545
+ label_cols=self.label_cols,
546
+ sample_weight_col=self.sample_weight_col,
547
+ autogenerated=self._autogenerated,
548
+ subproject=_SUBPROJECT,
549
+ )
550
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
551
+ drop_input_cols=self._drop_input_cols,
552
+ expected_output_cols_list=self.output_cols,
553
+ )
554
+ self._sklearn_object = fitted_estimator
555
+ self._is_fitted = True
556
+ return output_result
557
+
558
+
559
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
560
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
561
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
562
+ """
563
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
564
+ # The following condition is introduced for kneighbors methods, and not used in other methods
565
+ if output_cols:
566
+ output_cols = [
567
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
568
+ for c in output_cols
569
+ ]
570
+ elif getattr(self._sklearn_object, "classes_", None) is None:
571
+ output_cols = [output_cols_prefix]
572
+ elif self._sklearn_object is not None:
573
+ classes = self._sklearn_object.classes_
574
+ if isinstance(classes, numpy.ndarray):
575
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
576
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
577
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
578
+ output_cols = []
579
+ for i, cl in enumerate(classes):
580
+ # For binary classification, there is only one output column for each class
581
+ # ndarray as the two classes are complementary.
582
+ if len(cl) == 2:
583
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
584
+ else:
585
+ output_cols.extend([
586
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
587
+ ])
588
+ else:
589
+ output_cols = []
590
+
591
+ # Make sure column names are valid snowflake identifiers.
592
+ assert output_cols is not None # Make MyPy happy
593
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
594
+
595
+ return rv
596
+
597
+ def _align_expected_output_names(
598
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
599
+ ) -> List[str]:
600
+ # in case the inferred output column names dimension is different
601
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
602
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
603
+ output_df_columns = list(output_df_pd.columns)
604
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
605
+ if self.sample_weight_col:
606
+ output_df_columns_set -= set(self.sample_weight_col)
607
+ # if the dimension of inferred output column names is correct; use it
608
+ if len(expected_output_cols_list) == len(output_df_columns_set):
609
+ return expected_output_cols_list
610
+ # otherwise, use the sklearn estimator's output
611
+ else:
612
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
547
613
 
548
614
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
549
615
  @telemetry.send_api_usage_telemetry(
@@ -577,24 +643,26 @@ class LabelSpreading(BaseTransformer):
577
643
  # are specific to the type of dataset used.
578
644
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
579
645
 
646
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
647
+
580
648
  if isinstance(dataset, DataFrame):
581
- self._deps = self._batch_inference_validate_snowpark(
582
- dataset=dataset,
583
- inference_method=inference_method,
584
- )
585
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
650
+ self._deps = self._get_dependencies()
651
+ assert isinstance(
652
+ dataset._session, Session
653
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
586
654
  transform_kwargs = dict(
587
655
  session=dataset._session,
588
656
  dependencies=self._deps,
589
- drop_input_cols = self._drop_input_cols,
657
+ drop_input_cols=self._drop_input_cols,
590
658
  expected_output_cols_type="float",
591
659
  )
660
+ expected_output_cols = self._align_expected_output_names(
661
+ inference_method, dataset, expected_output_cols, output_cols_prefix
662
+ )
592
663
 
593
664
  elif isinstance(dataset, pd.DataFrame):
594
- transform_kwargs = dict(
595
- snowpark_input_cols = self._snowpark_cols,
596
- drop_input_cols = self._drop_input_cols
597
- )
665
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
598
666
 
599
667
  transform_handlers = ModelTransformerBuilder.build(
600
668
  dataset=dataset,
@@ -606,7 +674,7 @@ class LabelSpreading(BaseTransformer):
606
674
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
607
675
  inference_method=inference_method,
608
676
  input_cols=self.input_cols,
609
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
677
+ expected_output_cols=expected_output_cols,
610
678
  **transform_kwargs
611
679
  )
612
680
  return output_df
@@ -638,29 +706,30 @@ class LabelSpreading(BaseTransformer):
638
706
  Output dataset with log probability of the sample for each class in the model.
639
707
  """
640
708
  super()._check_dataset_type(dataset)
641
- inference_method="predict_log_proba"
709
+ inference_method = "predict_log_proba"
710
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
642
711
 
643
712
  # This dictionary contains optional kwargs for batch inference. These kwargs
644
713
  # are specific to the type of dataset used.
645
714
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
646
715
 
647
716
  if isinstance(dataset, DataFrame):
648
- self._deps = self._batch_inference_validate_snowpark(
649
- dataset=dataset,
650
- inference_method=inference_method,
651
- )
652
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
717
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
718
+ self._deps = self._get_dependencies()
719
+ assert isinstance(
720
+ dataset._session, Session
721
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
653
722
  transform_kwargs = dict(
654
723
  session=dataset._session,
655
724
  dependencies=self._deps,
656
- drop_input_cols = self._drop_input_cols,
725
+ drop_input_cols=self._drop_input_cols,
657
726
  expected_output_cols_type="float",
658
727
  )
728
+ expected_output_cols = self._align_expected_output_names(
729
+ inference_method, dataset, expected_output_cols, output_cols_prefix
730
+ )
659
731
  elif isinstance(dataset, pd.DataFrame):
660
- transform_kwargs = dict(
661
- snowpark_input_cols = self._snowpark_cols,
662
- drop_input_cols = self._drop_input_cols
663
- )
732
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
664
733
 
665
734
  transform_handlers = ModelTransformerBuilder.build(
666
735
  dataset=dataset,
@@ -673,7 +742,7 @@ class LabelSpreading(BaseTransformer):
673
742
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
674
743
  inference_method=inference_method,
675
744
  input_cols=self.input_cols,
676
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
745
+ expected_output_cols=expected_output_cols,
677
746
  **transform_kwargs
678
747
  )
679
748
  return output_df
@@ -699,30 +768,32 @@ class LabelSpreading(BaseTransformer):
699
768
  Output dataset with results of the decision function for the samples in input dataset.
700
769
  """
701
770
  super()._check_dataset_type(dataset)
702
- inference_method="decision_function"
771
+ inference_method = "decision_function"
703
772
 
704
773
  # This dictionary contains optional kwargs for batch inference. These kwargs
705
774
  # are specific to the type of dataset used.
706
775
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
707
776
 
777
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
778
+
708
779
  if isinstance(dataset, DataFrame):
709
- self._deps = self._batch_inference_validate_snowpark(
710
- dataset=dataset,
711
- inference_method=inference_method,
712
- )
713
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
780
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
781
+ self._deps = self._get_dependencies()
782
+ assert isinstance(
783
+ dataset._session, Session
784
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
785
  transform_kwargs = dict(
715
786
  session=dataset._session,
716
787
  dependencies=self._deps,
717
- drop_input_cols = self._drop_input_cols,
788
+ drop_input_cols=self._drop_input_cols,
718
789
  expected_output_cols_type="float",
719
790
  )
791
+ expected_output_cols = self._align_expected_output_names(
792
+ inference_method, dataset, expected_output_cols, output_cols_prefix
793
+ )
720
794
 
721
795
  elif isinstance(dataset, pd.DataFrame):
722
- transform_kwargs = dict(
723
- snowpark_input_cols = self._snowpark_cols,
724
- drop_input_cols = self._drop_input_cols
725
- )
796
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
726
797
 
727
798
  transform_handlers = ModelTransformerBuilder.build(
728
799
  dataset=dataset,
@@ -735,7 +806,7 @@ class LabelSpreading(BaseTransformer):
735
806
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
736
807
  inference_method=inference_method,
737
808
  input_cols=self.input_cols,
738
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
809
+ expected_output_cols=expected_output_cols,
739
810
  **transform_kwargs
740
811
  )
741
812
  return output_df
@@ -764,17 +835,17 @@ class LabelSpreading(BaseTransformer):
764
835
  Output dataset with probability of the sample for each class in the model.
765
836
  """
766
837
  super()._check_dataset_type(dataset)
767
- inference_method="score_samples"
838
+ inference_method = "score_samples"
768
839
 
769
840
  # This dictionary contains optional kwargs for batch inference. These kwargs
770
841
  # are specific to the type of dataset used.
771
842
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
772
843
 
844
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
845
+
773
846
  if isinstance(dataset, DataFrame):
774
- self._deps = self._batch_inference_validate_snowpark(
775
- dataset=dataset,
776
- inference_method=inference_method,
777
- )
847
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
848
+ self._deps = self._get_dependencies()
778
849
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
779
850
  transform_kwargs = dict(
780
851
  session=dataset._session,
@@ -782,6 +853,9 @@ class LabelSpreading(BaseTransformer):
782
853
  drop_input_cols = self._drop_input_cols,
783
854
  expected_output_cols_type="float",
784
855
  )
856
+ expected_output_cols = self._align_expected_output_names(
857
+ inference_method, dataset, expected_output_cols, output_cols_prefix
858
+ )
785
859
 
786
860
  elif isinstance(dataset, pd.DataFrame):
787
861
  transform_kwargs = dict(
@@ -800,7 +874,7 @@ class LabelSpreading(BaseTransformer):
800
874
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
801
875
  inference_method=inference_method,
802
876
  input_cols=self.input_cols,
803
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
877
+ expected_output_cols=expected_output_cols,
804
878
  **transform_kwargs
805
879
  )
806
880
  return output_df
@@ -835,17 +909,15 @@ class LabelSpreading(BaseTransformer):
835
909
  transform_kwargs: ScoreKwargsTypedDict = dict()
836
910
 
837
911
  if isinstance(dataset, DataFrame):
838
- self._deps = self._batch_inference_validate_snowpark(
839
- dataset=dataset,
840
- inference_method="score",
841
- )
912
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
913
+ self._deps = self._get_dependencies()
842
914
  selected_cols = self._get_active_columns()
843
915
  if len(selected_cols) > 0:
844
916
  dataset = dataset.select(selected_cols)
845
917
  assert isinstance(dataset._session, Session) # keep mypy happy
846
918
  transform_kwargs = dict(
847
919
  session=dataset._session,
848
- dependencies=["snowflake-snowpark-python"] + self._deps,
920
+ dependencies=self._deps,
849
921
  score_sproc_imports=['sklearn'],
850
922
  )
851
923
  elif isinstance(dataset, pd.DataFrame):
@@ -910,11 +982,8 @@ class LabelSpreading(BaseTransformer):
910
982
 
911
983
  if isinstance(dataset, DataFrame):
912
984
 
913
- self._deps = self._batch_inference_validate_snowpark(
914
- dataset=dataset,
915
- inference_method=inference_method,
916
-
917
- )
985
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
986
+ self._deps = self._get_dependencies()
918
987
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
919
988
  transform_kwargs = dict(
920
989
  session = dataset._session,
@@ -947,50 +1016,84 @@ class LabelSpreading(BaseTransformer):
947
1016
  )
948
1017
  return output_df
949
1018
 
1019
+
1020
+
1021
+ def to_sklearn(self) -> Any:
1022
+ """Get sklearn.semi_supervised.LabelSpreading object.
1023
+ """
1024
+ if self._sklearn_object is None:
1025
+ self._sklearn_object = self._create_sklearn_object()
1026
+ return self._sklearn_object
1027
+
1028
+ def to_xgboost(self) -> Any:
1029
+ raise exceptions.SnowflakeMLException(
1030
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1031
+ original_exception=AttributeError(
1032
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1033
+ "to_xgboost()",
1034
+ "to_sklearn()"
1035
+ )
1036
+ ),
1037
+ )
1038
+
1039
+ def to_lightgbm(self) -> Any:
1040
+ raise exceptions.SnowflakeMLException(
1041
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1042
+ original_exception=AttributeError(
1043
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1044
+ "to_lightgbm()",
1045
+ "to_sklearn()"
1046
+ )
1047
+ ),
1048
+ )
1049
+
1050
+ def _get_dependencies(self) -> List[str]:
1051
+ return self._deps
1052
+
950
1053
 
951
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1054
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
952
1055
  self._model_signature_dict = dict()
953
1056
 
954
1057
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
955
1058
 
956
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1059
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
957
1060
  outputs: List[BaseFeatureSpec] = []
958
1061
  if hasattr(self, "predict"):
959
1062
  # keep mypy happy
960
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1063
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
961
1064
  # For classifier, the type of predict is the same as the type of label
962
- if self._sklearn_object._estimator_type == 'classifier':
963
- # label columns is the desired type for output
1065
+ if self._sklearn_object._estimator_type == "classifier":
1066
+ # label columns is the desired type for output
964
1067
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
965
1068
  # rename the output columns
966
1069
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
967
- self._model_signature_dict["predict"] = ModelSignature(inputs,
968
- ([] if self._drop_input_cols else inputs)
969
- + outputs)
1070
+ self._model_signature_dict["predict"] = ModelSignature(
1071
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1072
+ )
970
1073
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
971
1074
  # For outlier models, returns -1 for outliers and 1 for inliers.
972
- # Clusterer returns int64 cluster labels.
1075
+ # Clusterer returns int64 cluster labels.
973
1076
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
974
1077
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
975
- self._model_signature_dict["predict"] = ModelSignature(inputs,
976
- ([] if self._drop_input_cols else inputs)
977
- + outputs)
978
-
1078
+ self._model_signature_dict["predict"] = ModelSignature(
1079
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1080
+ )
1081
+
979
1082
  # For regressor, the type of predict is float64
980
- elif self._sklearn_object._estimator_type == 'regressor':
1083
+ elif self._sklearn_object._estimator_type == "regressor":
981
1084
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
982
- self._model_signature_dict["predict"] = ModelSignature(inputs,
983
- ([] if self._drop_input_cols else inputs)
984
- + outputs)
985
-
1085
+ self._model_signature_dict["predict"] = ModelSignature(
1086
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1087
+ )
1088
+
986
1089
  for prob_func in PROB_FUNCTIONS:
987
1090
  if hasattr(self, prob_func):
988
1091
  output_cols_prefix: str = f"{prob_func}_"
989
1092
  output_column_names = self._get_output_column_names(output_cols_prefix)
990
1093
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
991
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
992
- ([] if self._drop_input_cols else inputs)
993
- + outputs)
1094
+ self._model_signature_dict[prob_func] = ModelSignature(
1095
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1096
+ )
994
1097
 
995
1098
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
996
1099
  items = list(self._model_signature_dict.items())
@@ -1003,10 +1106,10 @@ class LabelSpreading(BaseTransformer):
1003
1106
  """Returns model signature of current class.
1004
1107
 
1005
1108
  Raises:
1006
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1109
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1007
1110
 
1008
1111
  Returns:
1009
- Dict[str, ModelSignature]: each method and its input output signature
1112
+ Dict with each method and its input output signature
1010
1113
  """
1011
1114
  if self._model_signature_dict is None:
1012
1115
  raise exceptions.SnowflakeMLException(
@@ -1014,35 +1117,3 @@ class LabelSpreading(BaseTransformer):
1014
1117
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1015
1118
  )
1016
1119
  return self._model_signature_dict
1017
-
1018
- def to_sklearn(self) -> Any:
1019
- """Get sklearn.semi_supervised.LabelSpreading object.
1020
- """
1021
- if self._sklearn_object is None:
1022
- self._sklearn_object = self._create_sklearn_object()
1023
- return self._sklearn_object
1024
-
1025
- def to_xgboost(self) -> Any:
1026
- raise exceptions.SnowflakeMLException(
1027
- error_code=error_codes.METHOD_NOT_ALLOWED,
1028
- original_exception=AttributeError(
1029
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1030
- "to_xgboost()",
1031
- "to_sklearn()"
1032
- )
1033
- ),
1034
- )
1035
-
1036
- def to_lightgbm(self) -> Any:
1037
- raise exceptions.SnowflakeMLException(
1038
- error_code=error_codes.METHOD_NOT_ALLOWED,
1039
- original_exception=AttributeError(
1040
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1041
- "to_lightgbm()",
1042
- "to_sklearn()"
1043
- )
1044
- ),
1045
- )
1046
-
1047
- def _get_dependencies(self) -> List[str]:
1048
- return self._deps