snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ElasticNet(BaseTransformer):
71
64
  r"""Linear regression with combined L1 and L2 priors as regularizer
72
65
  For more details on this class, see [sklearn.linear_model.ElasticNet]
@@ -268,12 +261,7 @@ class ElasticNet(BaseTransformer):
268
261
  )
269
262
  return selected_cols
270
263
 
271
- @telemetry.send_api_usage_telemetry(
272
- project=_PROJECT,
273
- subproject=_SUBPROJECT,
274
- custom_tags=dict([("autogen", True)]),
275
- )
276
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ElasticNet":
264
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ElasticNet":
277
265
  """Fit model with coordinate descent
278
266
  For more details on this function, see [sklearn.linear_model.ElasticNet.fit]
279
267
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet.fit)
@@ -300,12 +288,14 @@ class ElasticNet(BaseTransformer):
300
288
 
301
289
  self._snowpark_cols = dataset.select(self.input_cols).columns
302
290
 
303
- # If we are already in a stored procedure, no need to kick off another one.
291
+ # If we are already in a stored procedure, no need to kick off another one.
304
292
  if SNOWML_SPROC_ENV in os.environ:
305
293
  statement_params = telemetry.get_function_usage_statement_params(
306
294
  project=_PROJECT,
307
295
  subproject=_SUBPROJECT,
308
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ElasticNet.__class__.__name__),
296
+ function_name=telemetry.get_statement_params_full_func_name(
297
+ inspect.currentframe(), ElasticNet.__class__.__name__
298
+ ),
309
299
  api_calls=[Session.call],
310
300
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
311
301
  )
@@ -326,27 +316,24 @@ class ElasticNet(BaseTransformer):
326
316
  )
327
317
  self._sklearn_object = model_trainer.train()
328
318
  self._is_fitted = True
329
- self._get_model_signatures(dataset)
319
+ self._generate_model_signatures(dataset)
330
320
  return self
331
321
 
332
322
  def _batch_inference_validate_snowpark(
333
323
  self,
334
324
  dataset: DataFrame,
335
325
  inference_method: str,
336
- ) -> List[str]:
337
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
338
- return the available package that exists in the snowflake anaconda channel
326
+ ) -> None:
327
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
339
328
 
340
329
  Args:
341
330
  dataset: snowpark dataframe
342
331
  inference_method: the inference method such as predict, score...
343
-
332
+
344
333
  Raises:
345
334
  SnowflakeMLException: If the estimator is not fitted, raise error
346
335
  SnowflakeMLException: If the session is None, raise error
347
336
 
348
- Returns:
349
- A list of available package that exists in the snowflake anaconda channel
350
337
  """
351
338
  if not self._is_fitted:
352
339
  raise exceptions.SnowflakeMLException(
@@ -364,9 +351,7 @@ class ElasticNet(BaseTransformer):
364
351
  "Session must not specified for snowpark dataset."
365
352
  ),
366
353
  )
367
- # Validate that key package version in user workspace are supported in snowflake conda channel
368
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
369
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
354
+
370
355
 
371
356
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
372
357
  @telemetry.send_api_usage_telemetry(
@@ -402,7 +387,9 @@ class ElasticNet(BaseTransformer):
402
387
  # when it is classifier, infer the datatype from label columns
403
388
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
404
389
  # Batch inference takes a single expected output column type. Use the first columns type for now.
405
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
390
+ label_cols_signatures = [
391
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
392
+ ]
406
393
  if len(label_cols_signatures) == 0:
407
394
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
408
395
  raise exceptions.SnowflakeMLException(
@@ -410,25 +397,23 @@ class ElasticNet(BaseTransformer):
410
397
  original_exception=ValueError(error_str),
411
398
  )
412
399
 
413
- expected_type_inferred = convert_sp_to_sf_type(
414
- label_cols_signatures[0].as_snowpark_type()
415
- )
400
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
416
401
 
417
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
418
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
402
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
403
+ self._deps = self._get_dependencies()
404
+ assert isinstance(
405
+ dataset._session, Session
406
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
419
407
 
420
408
  transform_kwargs = dict(
421
- session = dataset._session,
422
- dependencies = self._deps,
423
- drop_input_cols = self._drop_input_cols,
424
- expected_output_cols_type = expected_type_inferred,
409
+ session=dataset._session,
410
+ dependencies=self._deps,
411
+ drop_input_cols=self._drop_input_cols,
412
+ expected_output_cols_type=expected_type_inferred,
425
413
  )
426
414
 
427
415
  elif isinstance(dataset, pd.DataFrame):
428
- transform_kwargs = dict(
429
- snowpark_input_cols = self._snowpark_cols,
430
- drop_input_cols = self._drop_input_cols
431
- )
416
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
432
417
 
433
418
  transform_handlers = ModelTransformerBuilder.build(
434
419
  dataset=dataset,
@@ -468,7 +453,7 @@ class ElasticNet(BaseTransformer):
468
453
  Transformed dataset.
469
454
  """
470
455
  super()._check_dataset_type(dataset)
471
- inference_method="transform"
456
+ inference_method = "transform"
472
457
 
473
458
  # This dictionary contains optional kwargs for batch inference. These kwargs
474
459
  # are specific to the type of dataset used.
@@ -498,24 +483,19 @@ class ElasticNet(BaseTransformer):
498
483
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
499
484
  expected_dtype = convert_sp_to_sf_type(output_types[0])
500
485
 
501
- self._deps = self._batch_inference_validate_snowpark(
502
- dataset=dataset,
503
- inference_method=inference_method,
504
- )
486
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
487
+ self._deps = self._get_dependencies()
505
488
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
506
489
 
507
490
  transform_kwargs = dict(
508
- session = dataset._session,
509
- dependencies = self._deps,
510
- drop_input_cols = self._drop_input_cols,
511
- expected_output_cols_type = expected_dtype,
491
+ session=dataset._session,
492
+ dependencies=self._deps,
493
+ drop_input_cols=self._drop_input_cols,
494
+ expected_output_cols_type=expected_dtype,
512
495
  )
513
496
 
514
497
  elif isinstance(dataset, pd.DataFrame):
515
- transform_kwargs = dict(
516
- snowpark_input_cols = self._snowpark_cols,
517
- drop_input_cols = self._drop_input_cols
518
- )
498
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
519
499
 
520
500
  transform_handlers = ModelTransformerBuilder.build(
521
501
  dataset=dataset,
@@ -534,7 +514,11 @@ class ElasticNet(BaseTransformer):
534
514
  return output_df
535
515
 
536
516
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
537
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
517
+ def fit_predict(
518
+ self,
519
+ dataset: Union[DataFrame, pd.DataFrame],
520
+ output_cols_prefix: str = "fit_predict_",
521
+ ) -> Union[DataFrame, pd.DataFrame]:
538
522
  """ Method not supported for this class.
539
523
 
540
524
 
@@ -559,22 +543,104 @@ class ElasticNet(BaseTransformer):
559
543
  )
560
544
  output_result, fitted_estimator = model_trainer.train_fit_predict(
561
545
  drop_input_cols=self._drop_input_cols,
562
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
546
+ expected_output_cols_list=(
547
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
548
+ ),
563
549
  )
564
550
  self._sklearn_object = fitted_estimator
565
551
  self._is_fitted = True
566
552
  return output_result
567
553
 
554
+
555
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
556
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
557
+ """ Method not supported for this class.
558
+
568
559
 
569
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
570
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
571
- """
560
+ Raises:
561
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
562
+
563
+ Args:
564
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
565
+ Snowpark or Pandas DataFrame.
566
+ output_cols_prefix: Prefix for the response columns
572
567
  Returns:
573
568
  Transformed dataset.
574
569
  """
575
- self.fit(dataset)
576
- assert self._sklearn_object is not None
577
- return self._sklearn_object.embedding_
570
+ self._infer_input_output_cols(dataset)
571
+ super()._check_dataset_type(dataset)
572
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
573
+ estimator=self._sklearn_object,
574
+ dataset=dataset,
575
+ input_cols=self.input_cols,
576
+ label_cols=self.label_cols,
577
+ sample_weight_col=self.sample_weight_col,
578
+ autogenerated=self._autogenerated,
579
+ subproject=_SUBPROJECT,
580
+ )
581
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
582
+ drop_input_cols=self._drop_input_cols,
583
+ expected_output_cols_list=self.output_cols,
584
+ )
585
+ self._sklearn_object = fitted_estimator
586
+ self._is_fitted = True
587
+ return output_result
588
+
589
+
590
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
591
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
592
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
593
+ """
594
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
595
+ # The following condition is introduced for kneighbors methods, and not used in other methods
596
+ if output_cols:
597
+ output_cols = [
598
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
599
+ for c in output_cols
600
+ ]
601
+ elif getattr(self._sklearn_object, "classes_", None) is None:
602
+ output_cols = [output_cols_prefix]
603
+ elif self._sklearn_object is not None:
604
+ classes = self._sklearn_object.classes_
605
+ if isinstance(classes, numpy.ndarray):
606
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
607
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
608
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
609
+ output_cols = []
610
+ for i, cl in enumerate(classes):
611
+ # For binary classification, there is only one output column for each class
612
+ # ndarray as the two classes are complementary.
613
+ if len(cl) == 2:
614
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
615
+ else:
616
+ output_cols.extend([
617
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
618
+ ])
619
+ else:
620
+ output_cols = []
621
+
622
+ # Make sure column names are valid snowflake identifiers.
623
+ assert output_cols is not None # Make MyPy happy
624
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
625
+
626
+ return rv
627
+
628
+ def _align_expected_output_names(
629
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
630
+ ) -> List[str]:
631
+ # in case the inferred output column names dimension is different
632
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
633
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
634
+ output_df_columns = list(output_df_pd.columns)
635
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
636
+ if self.sample_weight_col:
637
+ output_df_columns_set -= set(self.sample_weight_col)
638
+ # if the dimension of inferred output column names is correct; use it
639
+ if len(expected_output_cols_list) == len(output_df_columns_set):
640
+ return expected_output_cols_list
641
+ # otherwise, use the sklearn estimator's output
642
+ else:
643
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
578
644
 
579
645
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
580
646
  @telemetry.send_api_usage_telemetry(
@@ -606,24 +672,26 @@ class ElasticNet(BaseTransformer):
606
672
  # are specific to the type of dataset used.
607
673
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
608
674
 
675
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
676
+
609
677
  if isinstance(dataset, DataFrame):
610
- self._deps = self._batch_inference_validate_snowpark(
611
- dataset=dataset,
612
- inference_method=inference_method,
613
- )
614
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
678
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
679
+ self._deps = self._get_dependencies()
680
+ assert isinstance(
681
+ dataset._session, Session
682
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
615
683
  transform_kwargs = dict(
616
684
  session=dataset._session,
617
685
  dependencies=self._deps,
618
- drop_input_cols = self._drop_input_cols,
686
+ drop_input_cols=self._drop_input_cols,
619
687
  expected_output_cols_type="float",
620
688
  )
689
+ expected_output_cols = self._align_expected_output_names(
690
+ inference_method, dataset, expected_output_cols, output_cols_prefix
691
+ )
621
692
 
622
693
  elif isinstance(dataset, pd.DataFrame):
623
- transform_kwargs = dict(
624
- snowpark_input_cols = self._snowpark_cols,
625
- drop_input_cols = self._drop_input_cols
626
- )
694
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
627
695
 
628
696
  transform_handlers = ModelTransformerBuilder.build(
629
697
  dataset=dataset,
@@ -635,7 +703,7 @@ class ElasticNet(BaseTransformer):
635
703
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
636
704
  inference_method=inference_method,
637
705
  input_cols=self.input_cols,
638
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
706
+ expected_output_cols=expected_output_cols,
639
707
  **transform_kwargs
640
708
  )
641
709
  return output_df
@@ -665,29 +733,30 @@ class ElasticNet(BaseTransformer):
665
733
  Output dataset with log probability of the sample for each class in the model.
666
734
  """
667
735
  super()._check_dataset_type(dataset)
668
- inference_method="predict_log_proba"
736
+ inference_method = "predict_log_proba"
737
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
669
738
 
670
739
  # This dictionary contains optional kwargs for batch inference. These kwargs
671
740
  # are specific to the type of dataset used.
672
741
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
673
742
 
674
743
  if isinstance(dataset, DataFrame):
675
- self._deps = self._batch_inference_validate_snowpark(
676
- dataset=dataset,
677
- inference_method=inference_method,
678
- )
679
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
744
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
745
+ self._deps = self._get_dependencies()
746
+ assert isinstance(
747
+ dataset._session, Session
748
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
680
749
  transform_kwargs = dict(
681
750
  session=dataset._session,
682
751
  dependencies=self._deps,
683
- drop_input_cols = self._drop_input_cols,
752
+ drop_input_cols=self._drop_input_cols,
684
753
  expected_output_cols_type="float",
685
754
  )
755
+ expected_output_cols = self._align_expected_output_names(
756
+ inference_method, dataset, expected_output_cols, output_cols_prefix
757
+ )
686
758
  elif isinstance(dataset, pd.DataFrame):
687
- transform_kwargs = dict(
688
- snowpark_input_cols = self._snowpark_cols,
689
- drop_input_cols = self._drop_input_cols
690
- )
759
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
691
760
 
692
761
  transform_handlers = ModelTransformerBuilder.build(
693
762
  dataset=dataset,
@@ -700,7 +769,7 @@ class ElasticNet(BaseTransformer):
700
769
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
701
770
  inference_method=inference_method,
702
771
  input_cols=self.input_cols,
703
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
772
+ expected_output_cols=expected_output_cols,
704
773
  **transform_kwargs
705
774
  )
706
775
  return output_df
@@ -726,30 +795,32 @@ class ElasticNet(BaseTransformer):
726
795
  Output dataset with results of the decision function for the samples in input dataset.
727
796
  """
728
797
  super()._check_dataset_type(dataset)
729
- inference_method="decision_function"
798
+ inference_method = "decision_function"
730
799
 
731
800
  # This dictionary contains optional kwargs for batch inference. These kwargs
732
801
  # are specific to the type of dataset used.
733
802
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
734
803
 
804
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
805
+
735
806
  if isinstance(dataset, DataFrame):
736
- self._deps = self._batch_inference_validate_snowpark(
737
- dataset=dataset,
738
- inference_method=inference_method,
739
- )
740
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
807
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
808
+ self._deps = self._get_dependencies()
809
+ assert isinstance(
810
+ dataset._session, Session
811
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
812
  transform_kwargs = dict(
742
813
  session=dataset._session,
743
814
  dependencies=self._deps,
744
- drop_input_cols = self._drop_input_cols,
815
+ drop_input_cols=self._drop_input_cols,
745
816
  expected_output_cols_type="float",
746
817
  )
818
+ expected_output_cols = self._align_expected_output_names(
819
+ inference_method, dataset, expected_output_cols, output_cols_prefix
820
+ )
747
821
 
748
822
  elif isinstance(dataset, pd.DataFrame):
749
- transform_kwargs = dict(
750
- snowpark_input_cols = self._snowpark_cols,
751
- drop_input_cols = self._drop_input_cols
752
- )
823
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
753
824
 
754
825
  transform_handlers = ModelTransformerBuilder.build(
755
826
  dataset=dataset,
@@ -762,7 +833,7 @@ class ElasticNet(BaseTransformer):
762
833
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
763
834
  inference_method=inference_method,
764
835
  input_cols=self.input_cols,
765
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
836
+ expected_output_cols=expected_output_cols,
766
837
  **transform_kwargs
767
838
  )
768
839
  return output_df
@@ -791,17 +862,17 @@ class ElasticNet(BaseTransformer):
791
862
  Output dataset with probability of the sample for each class in the model.
792
863
  """
793
864
  super()._check_dataset_type(dataset)
794
- inference_method="score_samples"
865
+ inference_method = "score_samples"
795
866
 
796
867
  # This dictionary contains optional kwargs for batch inference. These kwargs
797
868
  # are specific to the type of dataset used.
798
869
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
799
870
 
871
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
872
+
800
873
  if isinstance(dataset, DataFrame):
801
- self._deps = self._batch_inference_validate_snowpark(
802
- dataset=dataset,
803
- inference_method=inference_method,
804
- )
874
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
875
+ self._deps = self._get_dependencies()
805
876
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
806
877
  transform_kwargs = dict(
807
878
  session=dataset._session,
@@ -809,6 +880,9 @@ class ElasticNet(BaseTransformer):
809
880
  drop_input_cols = self._drop_input_cols,
810
881
  expected_output_cols_type="float",
811
882
  )
883
+ expected_output_cols = self._align_expected_output_names(
884
+ inference_method, dataset, expected_output_cols, output_cols_prefix
885
+ )
812
886
 
813
887
  elif isinstance(dataset, pd.DataFrame):
814
888
  transform_kwargs = dict(
@@ -827,7 +901,7 @@ class ElasticNet(BaseTransformer):
827
901
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
828
902
  inference_method=inference_method,
829
903
  input_cols=self.input_cols,
830
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
904
+ expected_output_cols=expected_output_cols,
831
905
  **transform_kwargs
832
906
  )
833
907
  return output_df
@@ -862,17 +936,15 @@ class ElasticNet(BaseTransformer):
862
936
  transform_kwargs: ScoreKwargsTypedDict = dict()
863
937
 
864
938
  if isinstance(dataset, DataFrame):
865
- self._deps = self._batch_inference_validate_snowpark(
866
- dataset=dataset,
867
- inference_method="score",
868
- )
939
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
940
+ self._deps = self._get_dependencies()
869
941
  selected_cols = self._get_active_columns()
870
942
  if len(selected_cols) > 0:
871
943
  dataset = dataset.select(selected_cols)
872
944
  assert isinstance(dataset._session, Session) # keep mypy happy
873
945
  transform_kwargs = dict(
874
946
  session=dataset._session,
875
- dependencies=["snowflake-snowpark-python"] + self._deps,
947
+ dependencies=self._deps,
876
948
  score_sproc_imports=['sklearn'],
877
949
  )
878
950
  elif isinstance(dataset, pd.DataFrame):
@@ -937,11 +1009,8 @@ class ElasticNet(BaseTransformer):
937
1009
 
938
1010
  if isinstance(dataset, DataFrame):
939
1011
 
940
- self._deps = self._batch_inference_validate_snowpark(
941
- dataset=dataset,
942
- inference_method=inference_method,
943
-
944
- )
1012
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1013
+ self._deps = self._get_dependencies()
945
1014
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
946
1015
  transform_kwargs = dict(
947
1016
  session = dataset._session,
@@ -974,50 +1043,84 @@ class ElasticNet(BaseTransformer):
974
1043
  )
975
1044
  return output_df
976
1045
 
1046
+
1047
+
1048
+ def to_sklearn(self) -> Any:
1049
+ """Get sklearn.linear_model.ElasticNet object.
1050
+ """
1051
+ if self._sklearn_object is None:
1052
+ self._sklearn_object = self._create_sklearn_object()
1053
+ return self._sklearn_object
1054
+
1055
+ def to_xgboost(self) -> Any:
1056
+ raise exceptions.SnowflakeMLException(
1057
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1058
+ original_exception=AttributeError(
1059
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1060
+ "to_xgboost()",
1061
+ "to_sklearn()"
1062
+ )
1063
+ ),
1064
+ )
1065
+
1066
+ def to_lightgbm(self) -> Any:
1067
+ raise exceptions.SnowflakeMLException(
1068
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1069
+ original_exception=AttributeError(
1070
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1071
+ "to_lightgbm()",
1072
+ "to_sklearn()"
1073
+ )
1074
+ ),
1075
+ )
1076
+
1077
+ def _get_dependencies(self) -> List[str]:
1078
+ return self._deps
1079
+
977
1080
 
978
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1081
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
979
1082
  self._model_signature_dict = dict()
980
1083
 
981
1084
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
982
1085
 
983
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1086
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
984
1087
  outputs: List[BaseFeatureSpec] = []
985
1088
  if hasattr(self, "predict"):
986
1089
  # keep mypy happy
987
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1090
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
988
1091
  # For classifier, the type of predict is the same as the type of label
989
- if self._sklearn_object._estimator_type == 'classifier':
990
- # label columns is the desired type for output
1092
+ if self._sklearn_object._estimator_type == "classifier":
1093
+ # label columns is the desired type for output
991
1094
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
992
1095
  # rename the output columns
993
1096
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
994
- self._model_signature_dict["predict"] = ModelSignature(inputs,
995
- ([] if self._drop_input_cols else inputs)
996
- + outputs)
1097
+ self._model_signature_dict["predict"] = ModelSignature(
1098
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1099
+ )
997
1100
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
998
1101
  # For outlier models, returns -1 for outliers and 1 for inliers.
999
- # Clusterer returns int64 cluster labels.
1102
+ # Clusterer returns int64 cluster labels.
1000
1103
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1001
1104
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1002
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1003
- ([] if self._drop_input_cols else inputs)
1004
- + outputs)
1005
-
1105
+ self._model_signature_dict["predict"] = ModelSignature(
1106
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1107
+ )
1108
+
1006
1109
  # For regressor, the type of predict is float64
1007
- elif self._sklearn_object._estimator_type == 'regressor':
1110
+ elif self._sklearn_object._estimator_type == "regressor":
1008
1111
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1009
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1010
- ([] if self._drop_input_cols else inputs)
1011
- + outputs)
1012
-
1112
+ self._model_signature_dict["predict"] = ModelSignature(
1113
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1114
+ )
1115
+
1013
1116
  for prob_func in PROB_FUNCTIONS:
1014
1117
  if hasattr(self, prob_func):
1015
1118
  output_cols_prefix: str = f"{prob_func}_"
1016
1119
  output_column_names = self._get_output_column_names(output_cols_prefix)
1017
1120
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1018
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1019
- ([] if self._drop_input_cols else inputs)
1020
- + outputs)
1121
+ self._model_signature_dict[prob_func] = ModelSignature(
1122
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1123
+ )
1021
1124
 
1022
1125
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1023
1126
  items = list(self._model_signature_dict.items())
@@ -1030,10 +1133,10 @@ class ElasticNet(BaseTransformer):
1030
1133
  """Returns model signature of current class.
1031
1134
 
1032
1135
  Raises:
1033
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1136
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1034
1137
 
1035
1138
  Returns:
1036
- Dict[str, ModelSignature]: each method and its input output signature
1139
+ Dict with each method and its input output signature
1037
1140
  """
1038
1141
  if self._model_signature_dict is None:
1039
1142
  raise exceptions.SnowflakeMLException(
@@ -1041,35 +1144,3 @@ class ElasticNet(BaseTransformer):
1041
1144
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1042
1145
  )
1043
1146
  return self._model_signature_dict
1044
-
1045
- def to_sklearn(self) -> Any:
1046
- """Get sklearn.linear_model.ElasticNet object.
1047
- """
1048
- if self._sklearn_object is None:
1049
- self._sklearn_object = self._create_sklearn_object()
1050
- return self._sklearn_object
1051
-
1052
- def to_xgboost(self) -> Any:
1053
- raise exceptions.SnowflakeMLException(
1054
- error_code=error_codes.METHOD_NOT_ALLOWED,
1055
- original_exception=AttributeError(
1056
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1057
- "to_xgboost()",
1058
- "to_sklearn()"
1059
- )
1060
- ),
1061
- )
1062
-
1063
- def to_lightgbm(self) -> Any:
1064
- raise exceptions.SnowflakeMLException(
1065
- error_code=error_codes.METHOD_NOT_ALLOWED,
1066
- original_exception=AttributeError(
1067
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1068
- "to_lightgbm()",
1069
- "to_sklearn()"
1070
- )
1071
- ),
1072
- )
1073
-
1074
- def _get_dependencies(self) -> List[str]:
1075
- return self._deps