snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SpectralClustering(BaseTransformer):
71
64
  r"""Apply clustering to a projection of the normalized Laplacian
72
65
  For more details on this class, see [sklearn.cluster.SpectralClustering]
@@ -319,12 +312,7 @@ class SpectralClustering(BaseTransformer):
319
312
  )
320
313
  return selected_cols
321
314
 
322
- @telemetry.send_api_usage_telemetry(
323
- project=_PROJECT,
324
- subproject=_SUBPROJECT,
325
- custom_tags=dict([("autogen", True)]),
326
- )
327
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralClustering":
315
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SpectralClustering":
328
316
  """Perform spectral clustering from features, or affinity matrix
329
317
  For more details on this function, see [sklearn.cluster.SpectralClustering.fit]
330
318
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering.fit)
@@ -351,12 +339,14 @@ class SpectralClustering(BaseTransformer):
351
339
 
352
340
  self._snowpark_cols = dataset.select(self.input_cols).columns
353
341
 
354
- # If we are already in a stored procedure, no need to kick off another one.
342
+ # If we are already in a stored procedure, no need to kick off another one.
355
343
  if SNOWML_SPROC_ENV in os.environ:
356
344
  statement_params = telemetry.get_function_usage_statement_params(
357
345
  project=_PROJECT,
358
346
  subproject=_SUBPROJECT,
359
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SpectralClustering.__class__.__name__),
347
+ function_name=telemetry.get_statement_params_full_func_name(
348
+ inspect.currentframe(), SpectralClustering.__class__.__name__
349
+ ),
360
350
  api_calls=[Session.call],
361
351
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
362
352
  )
@@ -377,27 +367,24 @@ class SpectralClustering(BaseTransformer):
377
367
  )
378
368
  self._sklearn_object = model_trainer.train()
379
369
  self._is_fitted = True
380
- self._get_model_signatures(dataset)
370
+ self._generate_model_signatures(dataset)
381
371
  return self
382
372
 
383
373
  def _batch_inference_validate_snowpark(
384
374
  self,
385
375
  dataset: DataFrame,
386
376
  inference_method: str,
387
- ) -> List[str]:
388
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
389
- return the available package that exists in the snowflake anaconda channel
377
+ ) -> None:
378
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
390
379
 
391
380
  Args:
392
381
  dataset: snowpark dataframe
393
382
  inference_method: the inference method such as predict, score...
394
-
383
+
395
384
  Raises:
396
385
  SnowflakeMLException: If the estimator is not fitted, raise error
397
386
  SnowflakeMLException: If the session is None, raise error
398
387
 
399
- Returns:
400
- A list of available package that exists in the snowflake anaconda channel
401
388
  """
402
389
  if not self._is_fitted:
403
390
  raise exceptions.SnowflakeMLException(
@@ -415,9 +402,7 @@ class SpectralClustering(BaseTransformer):
415
402
  "Session must not specified for snowpark dataset."
416
403
  ),
417
404
  )
418
- # Validate that key package version in user workspace are supported in snowflake conda channel
419
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
420
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
405
+
421
406
 
422
407
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
423
408
  @telemetry.send_api_usage_telemetry(
@@ -451,7 +436,9 @@ class SpectralClustering(BaseTransformer):
451
436
  # when it is classifier, infer the datatype from label columns
452
437
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
453
438
  # Batch inference takes a single expected output column type. Use the first columns type for now.
454
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
439
+ label_cols_signatures = [
440
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
441
+ ]
455
442
  if len(label_cols_signatures) == 0:
456
443
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
457
444
  raise exceptions.SnowflakeMLException(
@@ -459,25 +446,23 @@ class SpectralClustering(BaseTransformer):
459
446
  original_exception=ValueError(error_str),
460
447
  )
461
448
 
462
- expected_type_inferred = convert_sp_to_sf_type(
463
- label_cols_signatures[0].as_snowpark_type()
464
- )
449
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
465
450
 
466
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
467
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
451
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
452
+ self._deps = self._get_dependencies()
453
+ assert isinstance(
454
+ dataset._session, Session
455
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
468
456
 
469
457
  transform_kwargs = dict(
470
- session = dataset._session,
471
- dependencies = self._deps,
472
- drop_input_cols = self._drop_input_cols,
473
- expected_output_cols_type = expected_type_inferred,
458
+ session=dataset._session,
459
+ dependencies=self._deps,
460
+ drop_input_cols=self._drop_input_cols,
461
+ expected_output_cols_type=expected_type_inferred,
474
462
  )
475
463
 
476
464
  elif isinstance(dataset, pd.DataFrame):
477
- transform_kwargs = dict(
478
- snowpark_input_cols = self._snowpark_cols,
479
- drop_input_cols = self._drop_input_cols
480
- )
465
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
481
466
 
482
467
  transform_handlers = ModelTransformerBuilder.build(
483
468
  dataset=dataset,
@@ -517,7 +502,7 @@ class SpectralClustering(BaseTransformer):
517
502
  Transformed dataset.
518
503
  """
519
504
  super()._check_dataset_type(dataset)
520
- inference_method="transform"
505
+ inference_method = "transform"
521
506
 
522
507
  # This dictionary contains optional kwargs for batch inference. These kwargs
523
508
  # are specific to the type of dataset used.
@@ -547,24 +532,19 @@ class SpectralClustering(BaseTransformer):
547
532
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
548
533
  expected_dtype = convert_sp_to_sf_type(output_types[0])
549
534
 
550
- self._deps = self._batch_inference_validate_snowpark(
551
- dataset=dataset,
552
- inference_method=inference_method,
553
- )
535
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
536
+ self._deps = self._get_dependencies()
554
537
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
555
538
 
556
539
  transform_kwargs = dict(
557
- session = dataset._session,
558
- dependencies = self._deps,
559
- drop_input_cols = self._drop_input_cols,
560
- expected_output_cols_type = expected_dtype,
540
+ session=dataset._session,
541
+ dependencies=self._deps,
542
+ drop_input_cols=self._drop_input_cols,
543
+ expected_output_cols_type=expected_dtype,
561
544
  )
562
545
 
563
546
  elif isinstance(dataset, pd.DataFrame):
564
- transform_kwargs = dict(
565
- snowpark_input_cols = self._snowpark_cols,
566
- drop_input_cols = self._drop_input_cols
567
- )
547
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
568
548
 
569
549
  transform_handlers = ModelTransformerBuilder.build(
570
550
  dataset=dataset,
@@ -583,7 +563,11 @@ class SpectralClustering(BaseTransformer):
583
563
  return output_df
584
564
 
585
565
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
586
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
566
+ def fit_predict(
567
+ self,
568
+ dataset: Union[DataFrame, pd.DataFrame],
569
+ output_cols_prefix: str = "fit_predict_",
570
+ ) -> Union[DataFrame, pd.DataFrame]:
587
571
  """ Perform spectral clustering on `X` and return cluster labels
588
572
  For more details on this function, see [sklearn.cluster.SpectralClustering.fit_predict]
589
573
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html#sklearn.cluster.SpectralClustering.fit_predict)
@@ -610,22 +594,104 @@ class SpectralClustering(BaseTransformer):
610
594
  )
611
595
  output_result, fitted_estimator = model_trainer.train_fit_predict(
612
596
  drop_input_cols=self._drop_input_cols,
613
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
597
+ expected_output_cols_list=(
598
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
599
+ ),
614
600
  )
615
601
  self._sklearn_object = fitted_estimator
616
602
  self._is_fitted = True
617
603
  return output_result
618
604
 
605
+
606
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
607
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
608
+ """ Method not supported for this class.
609
+
610
+
611
+ Raises:
612
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
619
613
 
620
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
621
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
622
- """
614
+ Args:
615
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
616
+ Snowpark or Pandas DataFrame.
617
+ output_cols_prefix: Prefix for the response columns
623
618
  Returns:
624
619
  Transformed dataset.
625
620
  """
626
- self.fit(dataset)
627
- assert self._sklearn_object is not None
628
- return self._sklearn_object.embedding_
621
+ self._infer_input_output_cols(dataset)
622
+ super()._check_dataset_type(dataset)
623
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
624
+ estimator=self._sklearn_object,
625
+ dataset=dataset,
626
+ input_cols=self.input_cols,
627
+ label_cols=self.label_cols,
628
+ sample_weight_col=self.sample_weight_col,
629
+ autogenerated=self._autogenerated,
630
+ subproject=_SUBPROJECT,
631
+ )
632
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
633
+ drop_input_cols=self._drop_input_cols,
634
+ expected_output_cols_list=self.output_cols,
635
+ )
636
+ self._sklearn_object = fitted_estimator
637
+ self._is_fitted = True
638
+ return output_result
639
+
640
+
641
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
642
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
643
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
644
+ """
645
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
646
+ # The following condition is introduced for kneighbors methods, and not used in other methods
647
+ if output_cols:
648
+ output_cols = [
649
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
650
+ for c in output_cols
651
+ ]
652
+ elif getattr(self._sklearn_object, "classes_", None) is None:
653
+ output_cols = [output_cols_prefix]
654
+ elif self._sklearn_object is not None:
655
+ classes = self._sklearn_object.classes_
656
+ if isinstance(classes, numpy.ndarray):
657
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
658
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
659
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
660
+ output_cols = []
661
+ for i, cl in enumerate(classes):
662
+ # For binary classification, there is only one output column for each class
663
+ # ndarray as the two classes are complementary.
664
+ if len(cl) == 2:
665
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
666
+ else:
667
+ output_cols.extend([
668
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
669
+ ])
670
+ else:
671
+ output_cols = []
672
+
673
+ # Make sure column names are valid snowflake identifiers.
674
+ assert output_cols is not None # Make MyPy happy
675
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
676
+
677
+ return rv
678
+
679
+ def _align_expected_output_names(
680
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
681
+ ) -> List[str]:
682
+ # in case the inferred output column names dimension is different
683
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
684
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
685
+ output_df_columns = list(output_df_pd.columns)
686
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
687
+ if self.sample_weight_col:
688
+ output_df_columns_set -= set(self.sample_weight_col)
689
+ # if the dimension of inferred output column names is correct; use it
690
+ if len(expected_output_cols_list) == len(output_df_columns_set):
691
+ return expected_output_cols_list
692
+ # otherwise, use the sklearn estimator's output
693
+ else:
694
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
629
695
 
630
696
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
631
697
  @telemetry.send_api_usage_telemetry(
@@ -657,24 +723,26 @@ class SpectralClustering(BaseTransformer):
657
723
  # are specific to the type of dataset used.
658
724
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
659
725
 
726
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
727
+
660
728
  if isinstance(dataset, DataFrame):
661
- self._deps = self._batch_inference_validate_snowpark(
662
- dataset=dataset,
663
- inference_method=inference_method,
664
- )
665
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
729
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
730
+ self._deps = self._get_dependencies()
731
+ assert isinstance(
732
+ dataset._session, Session
733
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
666
734
  transform_kwargs = dict(
667
735
  session=dataset._session,
668
736
  dependencies=self._deps,
669
- drop_input_cols = self._drop_input_cols,
737
+ drop_input_cols=self._drop_input_cols,
670
738
  expected_output_cols_type="float",
671
739
  )
740
+ expected_output_cols = self._align_expected_output_names(
741
+ inference_method, dataset, expected_output_cols, output_cols_prefix
742
+ )
672
743
 
673
744
  elif isinstance(dataset, pd.DataFrame):
674
- transform_kwargs = dict(
675
- snowpark_input_cols = self._snowpark_cols,
676
- drop_input_cols = self._drop_input_cols
677
- )
745
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
678
746
 
679
747
  transform_handlers = ModelTransformerBuilder.build(
680
748
  dataset=dataset,
@@ -686,7 +754,7 @@ class SpectralClustering(BaseTransformer):
686
754
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
687
755
  inference_method=inference_method,
688
756
  input_cols=self.input_cols,
689
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
757
+ expected_output_cols=expected_output_cols,
690
758
  **transform_kwargs
691
759
  )
692
760
  return output_df
@@ -716,29 +784,30 @@ class SpectralClustering(BaseTransformer):
716
784
  Output dataset with log probability of the sample for each class in the model.
717
785
  """
718
786
  super()._check_dataset_type(dataset)
719
- inference_method="predict_log_proba"
787
+ inference_method = "predict_log_proba"
788
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
720
789
 
721
790
  # This dictionary contains optional kwargs for batch inference. These kwargs
722
791
  # are specific to the type of dataset used.
723
792
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
724
793
 
725
794
  if isinstance(dataset, DataFrame):
726
- self._deps = self._batch_inference_validate_snowpark(
727
- dataset=dataset,
728
- inference_method=inference_method,
729
- )
730
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
795
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
796
+ self._deps = self._get_dependencies()
797
+ assert isinstance(
798
+ dataset._session, Session
799
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
731
800
  transform_kwargs = dict(
732
801
  session=dataset._session,
733
802
  dependencies=self._deps,
734
- drop_input_cols = self._drop_input_cols,
803
+ drop_input_cols=self._drop_input_cols,
735
804
  expected_output_cols_type="float",
736
805
  )
806
+ expected_output_cols = self._align_expected_output_names(
807
+ inference_method, dataset, expected_output_cols, output_cols_prefix
808
+ )
737
809
  elif isinstance(dataset, pd.DataFrame):
738
- transform_kwargs = dict(
739
- snowpark_input_cols = self._snowpark_cols,
740
- drop_input_cols = self._drop_input_cols
741
- )
810
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
742
811
 
743
812
  transform_handlers = ModelTransformerBuilder.build(
744
813
  dataset=dataset,
@@ -751,7 +820,7 @@ class SpectralClustering(BaseTransformer):
751
820
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
752
821
  inference_method=inference_method,
753
822
  input_cols=self.input_cols,
754
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
823
+ expected_output_cols=expected_output_cols,
755
824
  **transform_kwargs
756
825
  )
757
826
  return output_df
@@ -777,30 +846,32 @@ class SpectralClustering(BaseTransformer):
777
846
  Output dataset with results of the decision function for the samples in input dataset.
778
847
  """
779
848
  super()._check_dataset_type(dataset)
780
- inference_method="decision_function"
849
+ inference_method = "decision_function"
781
850
 
782
851
  # This dictionary contains optional kwargs for batch inference. These kwargs
783
852
  # are specific to the type of dataset used.
784
853
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
785
854
 
855
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
856
+
786
857
  if isinstance(dataset, DataFrame):
787
- self._deps = self._batch_inference_validate_snowpark(
788
- dataset=dataset,
789
- inference_method=inference_method,
790
- )
791
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
858
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
859
+ self._deps = self._get_dependencies()
860
+ assert isinstance(
861
+ dataset._session, Session
862
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
792
863
  transform_kwargs = dict(
793
864
  session=dataset._session,
794
865
  dependencies=self._deps,
795
- drop_input_cols = self._drop_input_cols,
866
+ drop_input_cols=self._drop_input_cols,
796
867
  expected_output_cols_type="float",
797
868
  )
869
+ expected_output_cols = self._align_expected_output_names(
870
+ inference_method, dataset, expected_output_cols, output_cols_prefix
871
+ )
798
872
 
799
873
  elif isinstance(dataset, pd.DataFrame):
800
- transform_kwargs = dict(
801
- snowpark_input_cols = self._snowpark_cols,
802
- drop_input_cols = self._drop_input_cols
803
- )
874
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
804
875
 
805
876
  transform_handlers = ModelTransformerBuilder.build(
806
877
  dataset=dataset,
@@ -813,7 +884,7 @@ class SpectralClustering(BaseTransformer):
813
884
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
814
885
  inference_method=inference_method,
815
886
  input_cols=self.input_cols,
816
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
887
+ expected_output_cols=expected_output_cols,
817
888
  **transform_kwargs
818
889
  )
819
890
  return output_df
@@ -842,17 +913,17 @@ class SpectralClustering(BaseTransformer):
842
913
  Output dataset with probability of the sample for each class in the model.
843
914
  """
844
915
  super()._check_dataset_type(dataset)
845
- inference_method="score_samples"
916
+ inference_method = "score_samples"
846
917
 
847
918
  # This dictionary contains optional kwargs for batch inference. These kwargs
848
919
  # are specific to the type of dataset used.
849
920
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
850
921
 
922
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
923
+
851
924
  if isinstance(dataset, DataFrame):
852
- self._deps = self._batch_inference_validate_snowpark(
853
- dataset=dataset,
854
- inference_method=inference_method,
855
- )
925
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
926
+ self._deps = self._get_dependencies()
856
927
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
857
928
  transform_kwargs = dict(
858
929
  session=dataset._session,
@@ -860,6 +931,9 @@ class SpectralClustering(BaseTransformer):
860
931
  drop_input_cols = self._drop_input_cols,
861
932
  expected_output_cols_type="float",
862
933
  )
934
+ expected_output_cols = self._align_expected_output_names(
935
+ inference_method, dataset, expected_output_cols, output_cols_prefix
936
+ )
863
937
 
864
938
  elif isinstance(dataset, pd.DataFrame):
865
939
  transform_kwargs = dict(
@@ -878,7 +952,7 @@ class SpectralClustering(BaseTransformer):
878
952
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
879
953
  inference_method=inference_method,
880
954
  input_cols=self.input_cols,
881
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
955
+ expected_output_cols=expected_output_cols,
882
956
  **transform_kwargs
883
957
  )
884
958
  return output_df
@@ -911,17 +985,15 @@ class SpectralClustering(BaseTransformer):
911
985
  transform_kwargs: ScoreKwargsTypedDict = dict()
912
986
 
913
987
  if isinstance(dataset, DataFrame):
914
- self._deps = self._batch_inference_validate_snowpark(
915
- dataset=dataset,
916
- inference_method="score",
917
- )
988
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
989
+ self._deps = self._get_dependencies()
918
990
  selected_cols = self._get_active_columns()
919
991
  if len(selected_cols) > 0:
920
992
  dataset = dataset.select(selected_cols)
921
993
  assert isinstance(dataset._session, Session) # keep mypy happy
922
994
  transform_kwargs = dict(
923
995
  session=dataset._session,
924
- dependencies=["snowflake-snowpark-python"] + self._deps,
996
+ dependencies=self._deps,
925
997
  score_sproc_imports=['sklearn'],
926
998
  )
927
999
  elif isinstance(dataset, pd.DataFrame):
@@ -986,11 +1058,8 @@ class SpectralClustering(BaseTransformer):
986
1058
 
987
1059
  if isinstance(dataset, DataFrame):
988
1060
 
989
- self._deps = self._batch_inference_validate_snowpark(
990
- dataset=dataset,
991
- inference_method=inference_method,
992
-
993
- )
1061
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1062
+ self._deps = self._get_dependencies()
994
1063
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
995
1064
  transform_kwargs = dict(
996
1065
  session = dataset._session,
@@ -1023,50 +1092,84 @@ class SpectralClustering(BaseTransformer):
1023
1092
  )
1024
1093
  return output_df
1025
1094
 
1095
+
1096
+
1097
+ def to_sklearn(self) -> Any:
1098
+ """Get sklearn.cluster.SpectralClustering object.
1099
+ """
1100
+ if self._sklearn_object is None:
1101
+ self._sklearn_object = self._create_sklearn_object()
1102
+ return self._sklearn_object
1103
+
1104
+ def to_xgboost(self) -> Any:
1105
+ raise exceptions.SnowflakeMLException(
1106
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1107
+ original_exception=AttributeError(
1108
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1109
+ "to_xgboost()",
1110
+ "to_sklearn()"
1111
+ )
1112
+ ),
1113
+ )
1026
1114
 
1027
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1115
+ def to_lightgbm(self) -> Any:
1116
+ raise exceptions.SnowflakeMLException(
1117
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1118
+ original_exception=AttributeError(
1119
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1120
+ "to_lightgbm()",
1121
+ "to_sklearn()"
1122
+ )
1123
+ ),
1124
+ )
1125
+
1126
+ def _get_dependencies(self) -> List[str]:
1127
+ return self._deps
1128
+
1129
+
1130
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1028
1131
  self._model_signature_dict = dict()
1029
1132
 
1030
1133
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1031
1134
 
1032
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1135
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1033
1136
  outputs: List[BaseFeatureSpec] = []
1034
1137
  if hasattr(self, "predict"):
1035
1138
  # keep mypy happy
1036
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1139
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1037
1140
  # For classifier, the type of predict is the same as the type of label
1038
- if self._sklearn_object._estimator_type == 'classifier':
1039
- # label columns is the desired type for output
1141
+ if self._sklearn_object._estimator_type == "classifier":
1142
+ # label columns is the desired type for output
1040
1143
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1041
1144
  # rename the output columns
1042
1145
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1043
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1044
- ([] if self._drop_input_cols else inputs)
1045
- + outputs)
1146
+ self._model_signature_dict["predict"] = ModelSignature(
1147
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1148
+ )
1046
1149
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1047
1150
  # For outlier models, returns -1 for outliers and 1 for inliers.
1048
- # Clusterer returns int64 cluster labels.
1151
+ # Clusterer returns int64 cluster labels.
1049
1152
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1050
1153
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1051
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1052
- ([] if self._drop_input_cols else inputs)
1053
- + outputs)
1054
-
1154
+ self._model_signature_dict["predict"] = ModelSignature(
1155
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1156
+ )
1157
+
1055
1158
  # For regressor, the type of predict is float64
1056
- elif self._sklearn_object._estimator_type == 'regressor':
1159
+ elif self._sklearn_object._estimator_type == "regressor":
1057
1160
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1058
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1059
- ([] if self._drop_input_cols else inputs)
1060
- + outputs)
1061
-
1161
+ self._model_signature_dict["predict"] = ModelSignature(
1162
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1163
+ )
1164
+
1062
1165
  for prob_func in PROB_FUNCTIONS:
1063
1166
  if hasattr(self, prob_func):
1064
1167
  output_cols_prefix: str = f"{prob_func}_"
1065
1168
  output_column_names = self._get_output_column_names(output_cols_prefix)
1066
1169
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1067
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1068
- ([] if self._drop_input_cols else inputs)
1069
- + outputs)
1170
+ self._model_signature_dict[prob_func] = ModelSignature(
1171
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1172
+ )
1070
1173
 
1071
1174
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1072
1175
  items = list(self._model_signature_dict.items())
@@ -1079,10 +1182,10 @@ class SpectralClustering(BaseTransformer):
1079
1182
  """Returns model signature of current class.
1080
1183
 
1081
1184
  Raises:
1082
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1185
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1083
1186
 
1084
1187
  Returns:
1085
- Dict[str, ModelSignature]: each method and its input output signature
1188
+ Dict with each method and its input output signature
1086
1189
  """
1087
1190
  if self._model_signature_dict is None:
1088
1191
  raise exceptions.SnowflakeMLException(
@@ -1090,35 +1193,3 @@ class SpectralClustering(BaseTransformer):
1090
1193
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1091
1194
  )
1092
1195
  return self._model_signature_dict
1093
-
1094
- def to_sklearn(self) -> Any:
1095
- """Get sklearn.cluster.SpectralClustering object.
1096
- """
1097
- if self._sklearn_object is None:
1098
- self._sklearn_object = self._create_sklearn_object()
1099
- return self._sklearn_object
1100
-
1101
- def to_xgboost(self) -> Any:
1102
- raise exceptions.SnowflakeMLException(
1103
- error_code=error_codes.METHOD_NOT_ALLOWED,
1104
- original_exception=AttributeError(
1105
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1106
- "to_xgboost()",
1107
- "to_sklearn()"
1108
- )
1109
- ),
1110
- )
1111
-
1112
- def to_lightgbm(self) -> Any:
1113
- raise exceptions.SnowflakeMLException(
1114
- error_code=error_codes.METHOD_NOT_ALLOWED,
1115
- original_exception=AttributeError(
1116
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1117
- "to_lightgbm()",
1118
- "to_sklearn()"
1119
- )
1120
- ),
1121
- )
1122
-
1123
- def _get_dependencies(self) -> List[str]:
1124
- return self._deps