snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class Ridge(BaseTransformer):
71
64
  r"""Linear least squares with l2 regularization
72
65
  For more details on this class, see [sklearn.linear_model.Ridge]
@@ -297,12 +290,7 @@ class Ridge(BaseTransformer):
297
290
  )
298
291
  return selected_cols
299
292
 
300
- @telemetry.send_api_usage_telemetry(
301
- project=_PROJECT,
302
- subproject=_SUBPROJECT,
303
- custom_tags=dict([("autogen", True)]),
304
- )
305
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Ridge":
293
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Ridge":
306
294
  """Fit Ridge regression model
307
295
  For more details on this function, see [sklearn.linear_model.Ridge.fit]
308
296
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge.fit)
@@ -329,12 +317,14 @@ class Ridge(BaseTransformer):
329
317
 
330
318
  self._snowpark_cols = dataset.select(self.input_cols).columns
331
319
 
332
- # If we are already in a stored procedure, no need to kick off another one.
320
+ # If we are already in a stored procedure, no need to kick off another one.
333
321
  if SNOWML_SPROC_ENV in os.environ:
334
322
  statement_params = telemetry.get_function_usage_statement_params(
335
323
  project=_PROJECT,
336
324
  subproject=_SUBPROJECT,
337
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Ridge.__class__.__name__),
325
+ function_name=telemetry.get_statement_params_full_func_name(
326
+ inspect.currentframe(), Ridge.__class__.__name__
327
+ ),
338
328
  api_calls=[Session.call],
339
329
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
340
330
  )
@@ -355,27 +345,24 @@ class Ridge(BaseTransformer):
355
345
  )
356
346
  self._sklearn_object = model_trainer.train()
357
347
  self._is_fitted = True
358
- self._get_model_signatures(dataset)
348
+ self._generate_model_signatures(dataset)
359
349
  return self
360
350
 
361
351
  def _batch_inference_validate_snowpark(
362
352
  self,
363
353
  dataset: DataFrame,
364
354
  inference_method: str,
365
- ) -> List[str]:
366
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
367
- return the available package that exists in the snowflake anaconda channel
355
+ ) -> None:
356
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
368
357
 
369
358
  Args:
370
359
  dataset: snowpark dataframe
371
360
  inference_method: the inference method such as predict, score...
372
-
361
+
373
362
  Raises:
374
363
  SnowflakeMLException: If the estimator is not fitted, raise error
375
364
  SnowflakeMLException: If the session is None, raise error
376
365
 
377
- Returns:
378
- A list of available package that exists in the snowflake anaconda channel
379
366
  """
380
367
  if not self._is_fitted:
381
368
  raise exceptions.SnowflakeMLException(
@@ -393,9 +380,7 @@ class Ridge(BaseTransformer):
393
380
  "Session must not specified for snowpark dataset."
394
381
  ),
395
382
  )
396
- # Validate that key package version in user workspace are supported in snowflake conda channel
397
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
398
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
383
+
399
384
 
400
385
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
401
386
  @telemetry.send_api_usage_telemetry(
@@ -431,7 +416,9 @@ class Ridge(BaseTransformer):
431
416
  # when it is classifier, infer the datatype from label columns
432
417
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
433
418
  # Batch inference takes a single expected output column type. Use the first columns type for now.
434
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
419
+ label_cols_signatures = [
420
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
421
+ ]
435
422
  if len(label_cols_signatures) == 0:
436
423
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
437
424
  raise exceptions.SnowflakeMLException(
@@ -439,25 +426,23 @@ class Ridge(BaseTransformer):
439
426
  original_exception=ValueError(error_str),
440
427
  )
441
428
 
442
- expected_type_inferred = convert_sp_to_sf_type(
443
- label_cols_signatures[0].as_snowpark_type()
444
- )
429
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
445
430
 
446
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
447
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
431
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
432
+ self._deps = self._get_dependencies()
433
+ assert isinstance(
434
+ dataset._session, Session
435
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
448
436
 
449
437
  transform_kwargs = dict(
450
- session = dataset._session,
451
- dependencies = self._deps,
452
- drop_input_cols = self._drop_input_cols,
453
- expected_output_cols_type = expected_type_inferred,
438
+ session=dataset._session,
439
+ dependencies=self._deps,
440
+ drop_input_cols=self._drop_input_cols,
441
+ expected_output_cols_type=expected_type_inferred,
454
442
  )
455
443
 
456
444
  elif isinstance(dataset, pd.DataFrame):
457
- transform_kwargs = dict(
458
- snowpark_input_cols = self._snowpark_cols,
459
- drop_input_cols = self._drop_input_cols
460
- )
445
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
461
446
 
462
447
  transform_handlers = ModelTransformerBuilder.build(
463
448
  dataset=dataset,
@@ -497,7 +482,7 @@ class Ridge(BaseTransformer):
497
482
  Transformed dataset.
498
483
  """
499
484
  super()._check_dataset_type(dataset)
500
- inference_method="transform"
485
+ inference_method = "transform"
501
486
 
502
487
  # This dictionary contains optional kwargs for batch inference. These kwargs
503
488
  # are specific to the type of dataset used.
@@ -527,24 +512,19 @@ class Ridge(BaseTransformer):
527
512
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
528
513
  expected_dtype = convert_sp_to_sf_type(output_types[0])
529
514
 
530
- self._deps = self._batch_inference_validate_snowpark(
531
- dataset=dataset,
532
- inference_method=inference_method,
533
- )
515
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
516
+ self._deps = self._get_dependencies()
534
517
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
535
518
 
536
519
  transform_kwargs = dict(
537
- session = dataset._session,
538
- dependencies = self._deps,
539
- drop_input_cols = self._drop_input_cols,
540
- expected_output_cols_type = expected_dtype,
520
+ session=dataset._session,
521
+ dependencies=self._deps,
522
+ drop_input_cols=self._drop_input_cols,
523
+ expected_output_cols_type=expected_dtype,
541
524
  )
542
525
 
543
526
  elif isinstance(dataset, pd.DataFrame):
544
- transform_kwargs = dict(
545
- snowpark_input_cols = self._snowpark_cols,
546
- drop_input_cols = self._drop_input_cols
547
- )
527
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
548
528
 
549
529
  transform_handlers = ModelTransformerBuilder.build(
550
530
  dataset=dataset,
@@ -563,7 +543,11 @@ class Ridge(BaseTransformer):
563
543
  return output_df
564
544
 
565
545
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
566
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
546
+ def fit_predict(
547
+ self,
548
+ dataset: Union[DataFrame, pd.DataFrame],
549
+ output_cols_prefix: str = "fit_predict_",
550
+ ) -> Union[DataFrame, pd.DataFrame]:
567
551
  """ Method not supported for this class.
568
552
 
569
553
 
@@ -588,22 +572,104 @@ class Ridge(BaseTransformer):
588
572
  )
589
573
  output_result, fitted_estimator = model_trainer.train_fit_predict(
590
574
  drop_input_cols=self._drop_input_cols,
591
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
575
+ expected_output_cols_list=(
576
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
577
+ ),
592
578
  )
593
579
  self._sklearn_object = fitted_estimator
594
580
  self._is_fitted = True
595
581
  return output_result
596
582
 
583
+
584
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
585
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
586
+ """ Method not supported for this class.
587
+
597
588
 
598
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
599
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
600
- """
589
+ Raises:
590
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
591
+
592
+ Args:
593
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
594
+ Snowpark or Pandas DataFrame.
595
+ output_cols_prefix: Prefix for the response columns
601
596
  Returns:
602
597
  Transformed dataset.
603
598
  """
604
- self.fit(dataset)
605
- assert self._sklearn_object is not None
606
- return self._sklearn_object.embedding_
599
+ self._infer_input_output_cols(dataset)
600
+ super()._check_dataset_type(dataset)
601
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
602
+ estimator=self._sklearn_object,
603
+ dataset=dataset,
604
+ input_cols=self.input_cols,
605
+ label_cols=self.label_cols,
606
+ sample_weight_col=self.sample_weight_col,
607
+ autogenerated=self._autogenerated,
608
+ subproject=_SUBPROJECT,
609
+ )
610
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
611
+ drop_input_cols=self._drop_input_cols,
612
+ expected_output_cols_list=self.output_cols,
613
+ )
614
+ self._sklearn_object = fitted_estimator
615
+ self._is_fitted = True
616
+ return output_result
617
+
618
+
619
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
620
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
621
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
622
+ """
623
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
624
+ # The following condition is introduced for kneighbors methods, and not used in other methods
625
+ if output_cols:
626
+ output_cols = [
627
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
628
+ for c in output_cols
629
+ ]
630
+ elif getattr(self._sklearn_object, "classes_", None) is None:
631
+ output_cols = [output_cols_prefix]
632
+ elif self._sklearn_object is not None:
633
+ classes = self._sklearn_object.classes_
634
+ if isinstance(classes, numpy.ndarray):
635
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
636
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
637
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
638
+ output_cols = []
639
+ for i, cl in enumerate(classes):
640
+ # For binary classification, there is only one output column for each class
641
+ # ndarray as the two classes are complementary.
642
+ if len(cl) == 2:
643
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
644
+ else:
645
+ output_cols.extend([
646
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
647
+ ])
648
+ else:
649
+ output_cols = []
650
+
651
+ # Make sure column names are valid snowflake identifiers.
652
+ assert output_cols is not None # Make MyPy happy
653
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
654
+
655
+ return rv
656
+
657
+ def _align_expected_output_names(
658
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
659
+ ) -> List[str]:
660
+ # in case the inferred output column names dimension is different
661
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
662
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
663
+ output_df_columns = list(output_df_pd.columns)
664
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
665
+ if self.sample_weight_col:
666
+ output_df_columns_set -= set(self.sample_weight_col)
667
+ # if the dimension of inferred output column names is correct; use it
668
+ if len(expected_output_cols_list) == len(output_df_columns_set):
669
+ return expected_output_cols_list
670
+ # otherwise, use the sklearn estimator's output
671
+ else:
672
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
607
673
 
608
674
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
609
675
  @telemetry.send_api_usage_telemetry(
@@ -635,24 +701,26 @@ class Ridge(BaseTransformer):
635
701
  # are specific to the type of dataset used.
636
702
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
637
703
 
704
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
705
+
638
706
  if isinstance(dataset, DataFrame):
639
- self._deps = self._batch_inference_validate_snowpark(
640
- dataset=dataset,
641
- inference_method=inference_method,
642
- )
643
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
707
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
708
+ self._deps = self._get_dependencies()
709
+ assert isinstance(
710
+ dataset._session, Session
711
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
644
712
  transform_kwargs = dict(
645
713
  session=dataset._session,
646
714
  dependencies=self._deps,
647
- drop_input_cols = self._drop_input_cols,
715
+ drop_input_cols=self._drop_input_cols,
648
716
  expected_output_cols_type="float",
649
717
  )
718
+ expected_output_cols = self._align_expected_output_names(
719
+ inference_method, dataset, expected_output_cols, output_cols_prefix
720
+ )
650
721
 
651
722
  elif isinstance(dataset, pd.DataFrame):
652
- transform_kwargs = dict(
653
- snowpark_input_cols = self._snowpark_cols,
654
- drop_input_cols = self._drop_input_cols
655
- )
723
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
656
724
 
657
725
  transform_handlers = ModelTransformerBuilder.build(
658
726
  dataset=dataset,
@@ -664,7 +732,7 @@ class Ridge(BaseTransformer):
664
732
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
665
733
  inference_method=inference_method,
666
734
  input_cols=self.input_cols,
667
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
735
+ expected_output_cols=expected_output_cols,
668
736
  **transform_kwargs
669
737
  )
670
738
  return output_df
@@ -694,29 +762,30 @@ class Ridge(BaseTransformer):
694
762
  Output dataset with log probability of the sample for each class in the model.
695
763
  """
696
764
  super()._check_dataset_type(dataset)
697
- inference_method="predict_log_proba"
765
+ inference_method = "predict_log_proba"
766
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
698
767
 
699
768
  # This dictionary contains optional kwargs for batch inference. These kwargs
700
769
  # are specific to the type of dataset used.
701
770
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
702
771
 
703
772
  if isinstance(dataset, DataFrame):
704
- self._deps = self._batch_inference_validate_snowpark(
705
- dataset=dataset,
706
- inference_method=inference_method,
707
- )
708
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
773
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
774
+ self._deps = self._get_dependencies()
775
+ assert isinstance(
776
+ dataset._session, Session
777
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
709
778
  transform_kwargs = dict(
710
779
  session=dataset._session,
711
780
  dependencies=self._deps,
712
- drop_input_cols = self._drop_input_cols,
781
+ drop_input_cols=self._drop_input_cols,
713
782
  expected_output_cols_type="float",
714
783
  )
784
+ expected_output_cols = self._align_expected_output_names(
785
+ inference_method, dataset, expected_output_cols, output_cols_prefix
786
+ )
715
787
  elif isinstance(dataset, pd.DataFrame):
716
- transform_kwargs = dict(
717
- snowpark_input_cols = self._snowpark_cols,
718
- drop_input_cols = self._drop_input_cols
719
- )
788
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
720
789
 
721
790
  transform_handlers = ModelTransformerBuilder.build(
722
791
  dataset=dataset,
@@ -729,7 +798,7 @@ class Ridge(BaseTransformer):
729
798
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
730
799
  inference_method=inference_method,
731
800
  input_cols=self.input_cols,
732
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
801
+ expected_output_cols=expected_output_cols,
733
802
  **transform_kwargs
734
803
  )
735
804
  return output_df
@@ -755,30 +824,32 @@ class Ridge(BaseTransformer):
755
824
  Output dataset with results of the decision function for the samples in input dataset.
756
825
  """
757
826
  super()._check_dataset_type(dataset)
758
- inference_method="decision_function"
827
+ inference_method = "decision_function"
759
828
 
760
829
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
830
  # are specific to the type of dataset used.
762
831
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
832
 
833
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
834
+
764
835
  if isinstance(dataset, DataFrame):
765
- self._deps = self._batch_inference_validate_snowpark(
766
- dataset=dataset,
767
- inference_method=inference_method,
768
- )
769
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
836
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
837
+ self._deps = self._get_dependencies()
838
+ assert isinstance(
839
+ dataset._session, Session
840
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
841
  transform_kwargs = dict(
771
842
  session=dataset._session,
772
843
  dependencies=self._deps,
773
- drop_input_cols = self._drop_input_cols,
844
+ drop_input_cols=self._drop_input_cols,
774
845
  expected_output_cols_type="float",
775
846
  )
847
+ expected_output_cols = self._align_expected_output_names(
848
+ inference_method, dataset, expected_output_cols, output_cols_prefix
849
+ )
776
850
 
777
851
  elif isinstance(dataset, pd.DataFrame):
778
- transform_kwargs = dict(
779
- snowpark_input_cols = self._snowpark_cols,
780
- drop_input_cols = self._drop_input_cols
781
- )
852
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
782
853
 
783
854
  transform_handlers = ModelTransformerBuilder.build(
784
855
  dataset=dataset,
@@ -791,7 +862,7 @@ class Ridge(BaseTransformer):
791
862
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
792
863
  inference_method=inference_method,
793
864
  input_cols=self.input_cols,
794
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
865
+ expected_output_cols=expected_output_cols,
795
866
  **transform_kwargs
796
867
  )
797
868
  return output_df
@@ -820,17 +891,17 @@ class Ridge(BaseTransformer):
820
891
  Output dataset with probability of the sample for each class in the model.
821
892
  """
822
893
  super()._check_dataset_type(dataset)
823
- inference_method="score_samples"
894
+ inference_method = "score_samples"
824
895
 
825
896
  # This dictionary contains optional kwargs for batch inference. These kwargs
826
897
  # are specific to the type of dataset used.
827
898
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
828
899
 
900
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
901
+
829
902
  if isinstance(dataset, DataFrame):
830
- self._deps = self._batch_inference_validate_snowpark(
831
- dataset=dataset,
832
- inference_method=inference_method,
833
- )
903
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
904
+ self._deps = self._get_dependencies()
834
905
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
835
906
  transform_kwargs = dict(
836
907
  session=dataset._session,
@@ -838,6 +909,9 @@ class Ridge(BaseTransformer):
838
909
  drop_input_cols = self._drop_input_cols,
839
910
  expected_output_cols_type="float",
840
911
  )
912
+ expected_output_cols = self._align_expected_output_names(
913
+ inference_method, dataset, expected_output_cols, output_cols_prefix
914
+ )
841
915
 
842
916
  elif isinstance(dataset, pd.DataFrame):
843
917
  transform_kwargs = dict(
@@ -856,7 +930,7 @@ class Ridge(BaseTransformer):
856
930
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
857
931
  inference_method=inference_method,
858
932
  input_cols=self.input_cols,
859
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
933
+ expected_output_cols=expected_output_cols,
860
934
  **transform_kwargs
861
935
  )
862
936
  return output_df
@@ -891,17 +965,15 @@ class Ridge(BaseTransformer):
891
965
  transform_kwargs: ScoreKwargsTypedDict = dict()
892
966
 
893
967
  if isinstance(dataset, DataFrame):
894
- self._deps = self._batch_inference_validate_snowpark(
895
- dataset=dataset,
896
- inference_method="score",
897
- )
968
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
969
+ self._deps = self._get_dependencies()
898
970
  selected_cols = self._get_active_columns()
899
971
  if len(selected_cols) > 0:
900
972
  dataset = dataset.select(selected_cols)
901
973
  assert isinstance(dataset._session, Session) # keep mypy happy
902
974
  transform_kwargs = dict(
903
975
  session=dataset._session,
904
- dependencies=["snowflake-snowpark-python"] + self._deps,
976
+ dependencies=self._deps,
905
977
  score_sproc_imports=['sklearn'],
906
978
  )
907
979
  elif isinstance(dataset, pd.DataFrame):
@@ -966,11 +1038,8 @@ class Ridge(BaseTransformer):
966
1038
 
967
1039
  if isinstance(dataset, DataFrame):
968
1040
 
969
- self._deps = self._batch_inference_validate_snowpark(
970
- dataset=dataset,
971
- inference_method=inference_method,
972
-
973
- )
1041
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1042
+ self._deps = self._get_dependencies()
974
1043
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
975
1044
  transform_kwargs = dict(
976
1045
  session = dataset._session,
@@ -1003,50 +1072,84 @@ class Ridge(BaseTransformer):
1003
1072
  )
1004
1073
  return output_df
1005
1074
 
1075
+
1076
+
1077
+ def to_sklearn(self) -> Any:
1078
+ """Get sklearn.linear_model.Ridge object.
1079
+ """
1080
+ if self._sklearn_object is None:
1081
+ self._sklearn_object = self._create_sklearn_object()
1082
+ return self._sklearn_object
1083
+
1084
+ def to_xgboost(self) -> Any:
1085
+ raise exceptions.SnowflakeMLException(
1086
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1087
+ original_exception=AttributeError(
1088
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1089
+ "to_xgboost()",
1090
+ "to_sklearn()"
1091
+ )
1092
+ ),
1093
+ )
1094
+
1095
+ def to_lightgbm(self) -> Any:
1096
+ raise exceptions.SnowflakeMLException(
1097
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1098
+ original_exception=AttributeError(
1099
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1100
+ "to_lightgbm()",
1101
+ "to_sklearn()"
1102
+ )
1103
+ ),
1104
+ )
1105
+
1106
+ def _get_dependencies(self) -> List[str]:
1107
+ return self._deps
1108
+
1006
1109
 
1007
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1110
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1008
1111
  self._model_signature_dict = dict()
1009
1112
 
1010
1113
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1011
1114
 
1012
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1115
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1013
1116
  outputs: List[BaseFeatureSpec] = []
1014
1117
  if hasattr(self, "predict"):
1015
1118
  # keep mypy happy
1016
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1119
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1017
1120
  # For classifier, the type of predict is the same as the type of label
1018
- if self._sklearn_object._estimator_type == 'classifier':
1019
- # label columns is the desired type for output
1121
+ if self._sklearn_object._estimator_type == "classifier":
1122
+ # label columns is the desired type for output
1020
1123
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1021
1124
  # rename the output columns
1022
1125
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1126
+ self._model_signature_dict["predict"] = ModelSignature(
1127
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1128
+ )
1026
1129
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1027
1130
  # For outlier models, returns -1 for outliers and 1 for inliers.
1028
- # Clusterer returns int64 cluster labels.
1131
+ # Clusterer returns int64 cluster labels.
1029
1132
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1030
1133
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1031
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1032
- ([] if self._drop_input_cols else inputs)
1033
- + outputs)
1034
-
1134
+ self._model_signature_dict["predict"] = ModelSignature(
1135
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1136
+ )
1137
+
1035
1138
  # For regressor, the type of predict is float64
1036
- elif self._sklearn_object._estimator_type == 'regressor':
1139
+ elif self._sklearn_object._estimator_type == "regressor":
1037
1140
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1038
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1039
- ([] if self._drop_input_cols else inputs)
1040
- + outputs)
1041
-
1141
+ self._model_signature_dict["predict"] = ModelSignature(
1142
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1143
+ )
1144
+
1042
1145
  for prob_func in PROB_FUNCTIONS:
1043
1146
  if hasattr(self, prob_func):
1044
1147
  output_cols_prefix: str = f"{prob_func}_"
1045
1148
  output_column_names = self._get_output_column_names(output_cols_prefix)
1046
1149
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1047
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1048
- ([] if self._drop_input_cols else inputs)
1049
- + outputs)
1150
+ self._model_signature_dict[prob_func] = ModelSignature(
1151
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1152
+ )
1050
1153
 
1051
1154
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1052
1155
  items = list(self._model_signature_dict.items())
@@ -1059,10 +1162,10 @@ class Ridge(BaseTransformer):
1059
1162
  """Returns model signature of current class.
1060
1163
 
1061
1164
  Raises:
1062
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1165
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1063
1166
 
1064
1167
  Returns:
1065
- Dict[str, ModelSignature]: each method and its input output signature
1168
+ Dict with each method and its input output signature
1066
1169
  """
1067
1170
  if self._model_signature_dict is None:
1068
1171
  raise exceptions.SnowflakeMLException(
@@ -1070,35 +1173,3 @@ class Ridge(BaseTransformer):
1070
1173
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1071
1174
  )
1072
1175
  return self._model_signature_dict
1073
-
1074
- def to_sklearn(self) -> Any:
1075
- """Get sklearn.linear_model.Ridge object.
1076
- """
1077
- if self._sklearn_object is None:
1078
- self._sklearn_object = self._create_sklearn_object()
1079
- return self._sklearn_object
1080
-
1081
- def to_xgboost(self) -> Any:
1082
- raise exceptions.SnowflakeMLException(
1083
- error_code=error_codes.METHOD_NOT_ALLOWED,
1084
- original_exception=AttributeError(
1085
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1086
- "to_xgboost()",
1087
- "to_sklearn()"
1088
- )
1089
- ),
1090
- )
1091
-
1092
- def to_lightgbm(self) -> Any:
1093
- raise exceptions.SnowflakeMLException(
1094
- error_code=error_codes.METHOD_NOT_ALLOWED,
1095
- original_exception=AttributeError(
1096
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
- "to_lightgbm()",
1098
- "to_sklearn()"
1099
- )
1100
- ),
1101
- )
1102
-
1103
- def _get_dependencies(self) -> List[str]:
1104
- return self._deps