snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class Lasso(BaseTransformer):
71
64
  r"""Linear Model trained with L1 prior as regularizer (aka the Lasso)
72
65
  For more details on this class, see [sklearn.linear_model.Lasso]
@@ -262,12 +255,7 @@ class Lasso(BaseTransformer):
262
255
  )
263
256
  return selected_cols
264
257
 
265
- @telemetry.send_api_usage_telemetry(
266
- project=_PROJECT,
267
- subproject=_SUBPROJECT,
268
- custom_tags=dict([("autogen", True)]),
269
- )
270
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lasso":
258
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Lasso":
271
259
  """Fit model with coordinate descent
272
260
  For more details on this function, see [sklearn.linear_model.Lasso.fit]
273
261
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso.fit)
@@ -294,12 +282,14 @@ class Lasso(BaseTransformer):
294
282
 
295
283
  self._snowpark_cols = dataset.select(self.input_cols).columns
296
284
 
297
- # If we are already in a stored procedure, no need to kick off another one.
285
+ # If we are already in a stored procedure, no need to kick off another one.
298
286
  if SNOWML_SPROC_ENV in os.environ:
299
287
  statement_params = telemetry.get_function_usage_statement_params(
300
288
  project=_PROJECT,
301
289
  subproject=_SUBPROJECT,
302
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Lasso.__class__.__name__),
290
+ function_name=telemetry.get_statement_params_full_func_name(
291
+ inspect.currentframe(), Lasso.__class__.__name__
292
+ ),
303
293
  api_calls=[Session.call],
304
294
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
305
295
  )
@@ -320,27 +310,24 @@ class Lasso(BaseTransformer):
320
310
  )
321
311
  self._sklearn_object = model_trainer.train()
322
312
  self._is_fitted = True
323
- self._get_model_signatures(dataset)
313
+ self._generate_model_signatures(dataset)
324
314
  return self
325
315
 
326
316
  def _batch_inference_validate_snowpark(
327
317
  self,
328
318
  dataset: DataFrame,
329
319
  inference_method: str,
330
- ) -> List[str]:
331
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
332
- return the available package that exists in the snowflake anaconda channel
320
+ ) -> None:
321
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
333
322
 
334
323
  Args:
335
324
  dataset: snowpark dataframe
336
325
  inference_method: the inference method such as predict, score...
337
-
326
+
338
327
  Raises:
339
328
  SnowflakeMLException: If the estimator is not fitted, raise error
340
329
  SnowflakeMLException: If the session is None, raise error
341
330
 
342
- Returns:
343
- A list of available package that exists in the snowflake anaconda channel
344
331
  """
345
332
  if not self._is_fitted:
346
333
  raise exceptions.SnowflakeMLException(
@@ -358,9 +345,7 @@ class Lasso(BaseTransformer):
358
345
  "Session must not specified for snowpark dataset."
359
346
  ),
360
347
  )
361
- # Validate that key package version in user workspace are supported in snowflake conda channel
362
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
363
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
348
+
364
349
 
365
350
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
366
351
  @telemetry.send_api_usage_telemetry(
@@ -396,7 +381,9 @@ class Lasso(BaseTransformer):
396
381
  # when it is classifier, infer the datatype from label columns
397
382
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
398
383
  # Batch inference takes a single expected output column type. Use the first columns type for now.
399
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
384
+ label_cols_signatures = [
385
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
386
+ ]
400
387
  if len(label_cols_signatures) == 0:
401
388
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
402
389
  raise exceptions.SnowflakeMLException(
@@ -404,25 +391,23 @@ class Lasso(BaseTransformer):
404
391
  original_exception=ValueError(error_str),
405
392
  )
406
393
 
407
- expected_type_inferred = convert_sp_to_sf_type(
408
- label_cols_signatures[0].as_snowpark_type()
409
- )
394
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
410
395
 
411
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
412
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
396
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
397
+ self._deps = self._get_dependencies()
398
+ assert isinstance(
399
+ dataset._session, Session
400
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
413
401
 
414
402
  transform_kwargs = dict(
415
- session = dataset._session,
416
- dependencies = self._deps,
417
- drop_input_cols = self._drop_input_cols,
418
- expected_output_cols_type = expected_type_inferred,
403
+ session=dataset._session,
404
+ dependencies=self._deps,
405
+ drop_input_cols=self._drop_input_cols,
406
+ expected_output_cols_type=expected_type_inferred,
419
407
  )
420
408
 
421
409
  elif isinstance(dataset, pd.DataFrame):
422
- transform_kwargs = dict(
423
- snowpark_input_cols = self._snowpark_cols,
424
- drop_input_cols = self._drop_input_cols
425
- )
410
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
426
411
 
427
412
  transform_handlers = ModelTransformerBuilder.build(
428
413
  dataset=dataset,
@@ -462,7 +447,7 @@ class Lasso(BaseTransformer):
462
447
  Transformed dataset.
463
448
  """
464
449
  super()._check_dataset_type(dataset)
465
- inference_method="transform"
450
+ inference_method = "transform"
466
451
 
467
452
  # This dictionary contains optional kwargs for batch inference. These kwargs
468
453
  # are specific to the type of dataset used.
@@ -492,24 +477,19 @@ class Lasso(BaseTransformer):
492
477
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
493
478
  expected_dtype = convert_sp_to_sf_type(output_types[0])
494
479
 
495
- self._deps = self._batch_inference_validate_snowpark(
496
- dataset=dataset,
497
- inference_method=inference_method,
498
- )
480
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
481
+ self._deps = self._get_dependencies()
499
482
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
500
483
 
501
484
  transform_kwargs = dict(
502
- session = dataset._session,
503
- dependencies = self._deps,
504
- drop_input_cols = self._drop_input_cols,
505
- expected_output_cols_type = expected_dtype,
485
+ session=dataset._session,
486
+ dependencies=self._deps,
487
+ drop_input_cols=self._drop_input_cols,
488
+ expected_output_cols_type=expected_dtype,
506
489
  )
507
490
 
508
491
  elif isinstance(dataset, pd.DataFrame):
509
- transform_kwargs = dict(
510
- snowpark_input_cols = self._snowpark_cols,
511
- drop_input_cols = self._drop_input_cols
512
- )
492
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
513
493
 
514
494
  transform_handlers = ModelTransformerBuilder.build(
515
495
  dataset=dataset,
@@ -528,7 +508,11 @@ class Lasso(BaseTransformer):
528
508
  return output_df
529
509
 
530
510
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
531
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
511
+ def fit_predict(
512
+ self,
513
+ dataset: Union[DataFrame, pd.DataFrame],
514
+ output_cols_prefix: str = "fit_predict_",
515
+ ) -> Union[DataFrame, pd.DataFrame]:
532
516
  """ Method not supported for this class.
533
517
 
534
518
 
@@ -553,22 +537,104 @@ class Lasso(BaseTransformer):
553
537
  )
554
538
  output_result, fitted_estimator = model_trainer.train_fit_predict(
555
539
  drop_input_cols=self._drop_input_cols,
556
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
540
+ expected_output_cols_list=(
541
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
542
+ ),
557
543
  )
558
544
  self._sklearn_object = fitted_estimator
559
545
  self._is_fitted = True
560
546
  return output_result
561
547
 
548
+
549
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
550
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
551
+ """ Method not supported for this class.
552
+
562
553
 
563
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
564
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
565
- """
554
+ Raises:
555
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
556
+
557
+ Args:
558
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
559
+ Snowpark or Pandas DataFrame.
560
+ output_cols_prefix: Prefix for the response columns
566
561
  Returns:
567
562
  Transformed dataset.
568
563
  """
569
- self.fit(dataset)
570
- assert self._sklearn_object is not None
571
- return self._sklearn_object.embedding_
564
+ self._infer_input_output_cols(dataset)
565
+ super()._check_dataset_type(dataset)
566
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
567
+ estimator=self._sklearn_object,
568
+ dataset=dataset,
569
+ input_cols=self.input_cols,
570
+ label_cols=self.label_cols,
571
+ sample_weight_col=self.sample_weight_col,
572
+ autogenerated=self._autogenerated,
573
+ subproject=_SUBPROJECT,
574
+ )
575
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
576
+ drop_input_cols=self._drop_input_cols,
577
+ expected_output_cols_list=self.output_cols,
578
+ )
579
+ self._sklearn_object = fitted_estimator
580
+ self._is_fitted = True
581
+ return output_result
582
+
583
+
584
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
585
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
586
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
587
+ """
588
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
589
+ # The following condition is introduced for kneighbors methods, and not used in other methods
590
+ if output_cols:
591
+ output_cols = [
592
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
593
+ for c in output_cols
594
+ ]
595
+ elif getattr(self._sklearn_object, "classes_", None) is None:
596
+ output_cols = [output_cols_prefix]
597
+ elif self._sklearn_object is not None:
598
+ classes = self._sklearn_object.classes_
599
+ if isinstance(classes, numpy.ndarray):
600
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
601
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
602
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
603
+ output_cols = []
604
+ for i, cl in enumerate(classes):
605
+ # For binary classification, there is only one output column for each class
606
+ # ndarray as the two classes are complementary.
607
+ if len(cl) == 2:
608
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
609
+ else:
610
+ output_cols.extend([
611
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
612
+ ])
613
+ else:
614
+ output_cols = []
615
+
616
+ # Make sure column names are valid snowflake identifiers.
617
+ assert output_cols is not None # Make MyPy happy
618
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
619
+
620
+ return rv
621
+
622
+ def _align_expected_output_names(
623
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
624
+ ) -> List[str]:
625
+ # in case the inferred output column names dimension is different
626
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
627
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
628
+ output_df_columns = list(output_df_pd.columns)
629
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
630
+ if self.sample_weight_col:
631
+ output_df_columns_set -= set(self.sample_weight_col)
632
+ # if the dimension of inferred output column names is correct; use it
633
+ if len(expected_output_cols_list) == len(output_df_columns_set):
634
+ return expected_output_cols_list
635
+ # otherwise, use the sklearn estimator's output
636
+ else:
637
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
572
638
 
573
639
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
574
640
  @telemetry.send_api_usage_telemetry(
@@ -600,24 +666,26 @@ class Lasso(BaseTransformer):
600
666
  # are specific to the type of dataset used.
601
667
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
602
668
 
669
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
670
+
603
671
  if isinstance(dataset, DataFrame):
604
- self._deps = self._batch_inference_validate_snowpark(
605
- dataset=dataset,
606
- inference_method=inference_method,
607
- )
608
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
672
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
673
+ self._deps = self._get_dependencies()
674
+ assert isinstance(
675
+ dataset._session, Session
676
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
609
677
  transform_kwargs = dict(
610
678
  session=dataset._session,
611
679
  dependencies=self._deps,
612
- drop_input_cols = self._drop_input_cols,
680
+ drop_input_cols=self._drop_input_cols,
613
681
  expected_output_cols_type="float",
614
682
  )
683
+ expected_output_cols = self._align_expected_output_names(
684
+ inference_method, dataset, expected_output_cols, output_cols_prefix
685
+ )
615
686
 
616
687
  elif isinstance(dataset, pd.DataFrame):
617
- transform_kwargs = dict(
618
- snowpark_input_cols = self._snowpark_cols,
619
- drop_input_cols = self._drop_input_cols
620
- )
688
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
621
689
 
622
690
  transform_handlers = ModelTransformerBuilder.build(
623
691
  dataset=dataset,
@@ -629,7 +697,7 @@ class Lasso(BaseTransformer):
629
697
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
630
698
  inference_method=inference_method,
631
699
  input_cols=self.input_cols,
632
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
700
+ expected_output_cols=expected_output_cols,
633
701
  **transform_kwargs
634
702
  )
635
703
  return output_df
@@ -659,29 +727,30 @@ class Lasso(BaseTransformer):
659
727
  Output dataset with log probability of the sample for each class in the model.
660
728
  """
661
729
  super()._check_dataset_type(dataset)
662
- inference_method="predict_log_proba"
730
+ inference_method = "predict_log_proba"
731
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
663
732
 
664
733
  # This dictionary contains optional kwargs for batch inference. These kwargs
665
734
  # are specific to the type of dataset used.
666
735
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
667
736
 
668
737
  if isinstance(dataset, DataFrame):
669
- self._deps = self._batch_inference_validate_snowpark(
670
- dataset=dataset,
671
- inference_method=inference_method,
672
- )
673
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
738
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
739
+ self._deps = self._get_dependencies()
740
+ assert isinstance(
741
+ dataset._session, Session
742
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
674
743
  transform_kwargs = dict(
675
744
  session=dataset._session,
676
745
  dependencies=self._deps,
677
- drop_input_cols = self._drop_input_cols,
746
+ drop_input_cols=self._drop_input_cols,
678
747
  expected_output_cols_type="float",
679
748
  )
749
+ expected_output_cols = self._align_expected_output_names(
750
+ inference_method, dataset, expected_output_cols, output_cols_prefix
751
+ )
680
752
  elif isinstance(dataset, pd.DataFrame):
681
- transform_kwargs = dict(
682
- snowpark_input_cols = self._snowpark_cols,
683
- drop_input_cols = self._drop_input_cols
684
- )
753
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
685
754
 
686
755
  transform_handlers = ModelTransformerBuilder.build(
687
756
  dataset=dataset,
@@ -694,7 +763,7 @@ class Lasso(BaseTransformer):
694
763
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
695
764
  inference_method=inference_method,
696
765
  input_cols=self.input_cols,
697
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
766
+ expected_output_cols=expected_output_cols,
698
767
  **transform_kwargs
699
768
  )
700
769
  return output_df
@@ -720,30 +789,32 @@ class Lasso(BaseTransformer):
720
789
  Output dataset with results of the decision function for the samples in input dataset.
721
790
  """
722
791
  super()._check_dataset_type(dataset)
723
- inference_method="decision_function"
792
+ inference_method = "decision_function"
724
793
 
725
794
  # This dictionary contains optional kwargs for batch inference. These kwargs
726
795
  # are specific to the type of dataset used.
727
796
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
728
797
 
798
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
799
+
729
800
  if isinstance(dataset, DataFrame):
730
- self._deps = self._batch_inference_validate_snowpark(
731
- dataset=dataset,
732
- inference_method=inference_method,
733
- )
734
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
801
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
802
+ self._deps = self._get_dependencies()
803
+ assert isinstance(
804
+ dataset._session, Session
805
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
735
806
  transform_kwargs = dict(
736
807
  session=dataset._session,
737
808
  dependencies=self._deps,
738
- drop_input_cols = self._drop_input_cols,
809
+ drop_input_cols=self._drop_input_cols,
739
810
  expected_output_cols_type="float",
740
811
  )
812
+ expected_output_cols = self._align_expected_output_names(
813
+ inference_method, dataset, expected_output_cols, output_cols_prefix
814
+ )
741
815
 
742
816
  elif isinstance(dataset, pd.DataFrame):
743
- transform_kwargs = dict(
744
- snowpark_input_cols = self._snowpark_cols,
745
- drop_input_cols = self._drop_input_cols
746
- )
817
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
747
818
 
748
819
  transform_handlers = ModelTransformerBuilder.build(
749
820
  dataset=dataset,
@@ -756,7 +827,7 @@ class Lasso(BaseTransformer):
756
827
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
757
828
  inference_method=inference_method,
758
829
  input_cols=self.input_cols,
759
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
830
+ expected_output_cols=expected_output_cols,
760
831
  **transform_kwargs
761
832
  )
762
833
  return output_df
@@ -785,17 +856,17 @@ class Lasso(BaseTransformer):
785
856
  Output dataset with probability of the sample for each class in the model.
786
857
  """
787
858
  super()._check_dataset_type(dataset)
788
- inference_method="score_samples"
859
+ inference_method = "score_samples"
789
860
 
790
861
  # This dictionary contains optional kwargs for batch inference. These kwargs
791
862
  # are specific to the type of dataset used.
792
863
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
793
864
 
865
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
866
+
794
867
  if isinstance(dataset, DataFrame):
795
- self._deps = self._batch_inference_validate_snowpark(
796
- dataset=dataset,
797
- inference_method=inference_method,
798
- )
868
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
869
+ self._deps = self._get_dependencies()
799
870
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
800
871
  transform_kwargs = dict(
801
872
  session=dataset._session,
@@ -803,6 +874,9 @@ class Lasso(BaseTransformer):
803
874
  drop_input_cols = self._drop_input_cols,
804
875
  expected_output_cols_type="float",
805
876
  )
877
+ expected_output_cols = self._align_expected_output_names(
878
+ inference_method, dataset, expected_output_cols, output_cols_prefix
879
+ )
806
880
 
807
881
  elif isinstance(dataset, pd.DataFrame):
808
882
  transform_kwargs = dict(
@@ -821,7 +895,7 @@ class Lasso(BaseTransformer):
821
895
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
822
896
  inference_method=inference_method,
823
897
  input_cols=self.input_cols,
824
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
898
+ expected_output_cols=expected_output_cols,
825
899
  **transform_kwargs
826
900
  )
827
901
  return output_df
@@ -856,17 +930,15 @@ class Lasso(BaseTransformer):
856
930
  transform_kwargs: ScoreKwargsTypedDict = dict()
857
931
 
858
932
  if isinstance(dataset, DataFrame):
859
- self._deps = self._batch_inference_validate_snowpark(
860
- dataset=dataset,
861
- inference_method="score",
862
- )
933
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
934
+ self._deps = self._get_dependencies()
863
935
  selected_cols = self._get_active_columns()
864
936
  if len(selected_cols) > 0:
865
937
  dataset = dataset.select(selected_cols)
866
938
  assert isinstance(dataset._session, Session) # keep mypy happy
867
939
  transform_kwargs = dict(
868
940
  session=dataset._session,
869
- dependencies=["snowflake-snowpark-python"] + self._deps,
941
+ dependencies=self._deps,
870
942
  score_sproc_imports=['sklearn'],
871
943
  )
872
944
  elif isinstance(dataset, pd.DataFrame):
@@ -931,11 +1003,8 @@ class Lasso(BaseTransformer):
931
1003
 
932
1004
  if isinstance(dataset, DataFrame):
933
1005
 
934
- self._deps = self._batch_inference_validate_snowpark(
935
- dataset=dataset,
936
- inference_method=inference_method,
937
-
938
- )
1006
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1007
+ self._deps = self._get_dependencies()
939
1008
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
940
1009
  transform_kwargs = dict(
941
1010
  session = dataset._session,
@@ -968,50 +1037,84 @@ class Lasso(BaseTransformer):
968
1037
  )
969
1038
  return output_df
970
1039
 
1040
+
1041
+
1042
+ def to_sklearn(self) -> Any:
1043
+ """Get sklearn.linear_model.Lasso object.
1044
+ """
1045
+ if self._sklearn_object is None:
1046
+ self._sklearn_object = self._create_sklearn_object()
1047
+ return self._sklearn_object
1048
+
1049
+ def to_xgboost(self) -> Any:
1050
+ raise exceptions.SnowflakeMLException(
1051
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1052
+ original_exception=AttributeError(
1053
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1054
+ "to_xgboost()",
1055
+ "to_sklearn()"
1056
+ )
1057
+ ),
1058
+ )
1059
+
1060
+ def to_lightgbm(self) -> Any:
1061
+ raise exceptions.SnowflakeMLException(
1062
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1063
+ original_exception=AttributeError(
1064
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1065
+ "to_lightgbm()",
1066
+ "to_sklearn()"
1067
+ )
1068
+ ),
1069
+ )
1070
+
1071
+ def _get_dependencies(self) -> List[str]:
1072
+ return self._deps
1073
+
971
1074
 
972
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1075
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
973
1076
  self._model_signature_dict = dict()
974
1077
 
975
1078
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
976
1079
 
977
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1080
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
978
1081
  outputs: List[BaseFeatureSpec] = []
979
1082
  if hasattr(self, "predict"):
980
1083
  # keep mypy happy
981
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1084
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
982
1085
  # For classifier, the type of predict is the same as the type of label
983
- if self._sklearn_object._estimator_type == 'classifier':
984
- # label columns is the desired type for output
1086
+ if self._sklearn_object._estimator_type == "classifier":
1087
+ # label columns is the desired type for output
985
1088
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
986
1089
  # rename the output columns
987
1090
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
988
- self._model_signature_dict["predict"] = ModelSignature(inputs,
989
- ([] if self._drop_input_cols else inputs)
990
- + outputs)
1091
+ self._model_signature_dict["predict"] = ModelSignature(
1092
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1093
+ )
991
1094
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
992
1095
  # For outlier models, returns -1 for outliers and 1 for inliers.
993
- # Clusterer returns int64 cluster labels.
1096
+ # Clusterer returns int64 cluster labels.
994
1097
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
995
1098
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
996
- self._model_signature_dict["predict"] = ModelSignature(inputs,
997
- ([] if self._drop_input_cols else inputs)
998
- + outputs)
999
-
1099
+ self._model_signature_dict["predict"] = ModelSignature(
1100
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1101
+ )
1102
+
1000
1103
  # For regressor, the type of predict is float64
1001
- elif self._sklearn_object._estimator_type == 'regressor':
1104
+ elif self._sklearn_object._estimator_type == "regressor":
1002
1105
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1003
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1004
- ([] if self._drop_input_cols else inputs)
1005
- + outputs)
1006
-
1106
+ self._model_signature_dict["predict"] = ModelSignature(
1107
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1108
+ )
1109
+
1007
1110
  for prob_func in PROB_FUNCTIONS:
1008
1111
  if hasattr(self, prob_func):
1009
1112
  output_cols_prefix: str = f"{prob_func}_"
1010
1113
  output_column_names = self._get_output_column_names(output_cols_prefix)
1011
1114
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1012
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1013
- ([] if self._drop_input_cols else inputs)
1014
- + outputs)
1115
+ self._model_signature_dict[prob_func] = ModelSignature(
1116
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1117
+ )
1015
1118
 
1016
1119
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1017
1120
  items = list(self._model_signature_dict.items())
@@ -1024,10 +1127,10 @@ class Lasso(BaseTransformer):
1024
1127
  """Returns model signature of current class.
1025
1128
 
1026
1129
  Raises:
1027
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1130
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1028
1131
 
1029
1132
  Returns:
1030
- Dict[str, ModelSignature]: each method and its input output signature
1133
+ Dict with each method and its input output signature
1031
1134
  """
1032
1135
  if self._model_signature_dict is None:
1033
1136
  raise exceptions.SnowflakeMLException(
@@ -1035,35 +1138,3 @@ class Lasso(BaseTransformer):
1035
1138
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1036
1139
  )
1037
1140
  return self._model_signature_dict
1038
-
1039
- def to_sklearn(self) -> Any:
1040
- """Get sklearn.linear_model.Lasso object.
1041
- """
1042
- if self._sklearn_object is None:
1043
- self._sklearn_object = self._create_sklearn_object()
1044
- return self._sklearn_object
1045
-
1046
- def to_xgboost(self) -> Any:
1047
- raise exceptions.SnowflakeMLException(
1048
- error_code=error_codes.METHOD_NOT_ALLOWED,
1049
- original_exception=AttributeError(
1050
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1051
- "to_xgboost()",
1052
- "to_sklearn()"
1053
- )
1054
- ),
1055
- )
1056
-
1057
- def to_lightgbm(self) -> Any:
1058
- raise exceptions.SnowflakeMLException(
1059
- error_code=error_codes.METHOD_NOT_ALLOWED,
1060
- original_exception=AttributeError(
1061
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1062
- "to_lightgbm()",
1063
- "to_sklearn()"
1064
- )
1065
- ),
1066
- )
1067
-
1068
- def _get_dependencies(self) -> List[str]:
1069
- return self._deps