snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class ExtraTreesRegressor(BaseTransformer):
71
64
  r"""An extra-trees regressor
72
65
  For more details on this class, see [sklearn.ensemble.ExtraTreesRegressor]
@@ -358,12 +351,7 @@ class ExtraTreesRegressor(BaseTransformer):
358
351
  )
359
352
  return selected_cols
360
353
 
361
- @telemetry.send_api_usage_telemetry(
362
- project=_PROJECT,
363
- subproject=_SUBPROJECT,
364
- custom_tags=dict([("autogen", True)]),
365
- )
366
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreesRegressor":
354
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "ExtraTreesRegressor":
367
355
  """Build a forest of trees from the training set (X, y)
368
356
  For more details on this function, see [sklearn.ensemble.ExtraTreesRegressor.fit]
369
357
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesRegressor.html#sklearn.ensemble.ExtraTreesRegressor.fit)
@@ -390,12 +378,14 @@ class ExtraTreesRegressor(BaseTransformer):
390
378
 
391
379
  self._snowpark_cols = dataset.select(self.input_cols).columns
392
380
 
393
- # If we are already in a stored procedure, no need to kick off another one.
381
+ # If we are already in a stored procedure, no need to kick off another one.
394
382
  if SNOWML_SPROC_ENV in os.environ:
395
383
  statement_params = telemetry.get_function_usage_statement_params(
396
384
  project=_PROJECT,
397
385
  subproject=_SUBPROJECT,
398
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), ExtraTreesRegressor.__class__.__name__),
386
+ function_name=telemetry.get_statement_params_full_func_name(
387
+ inspect.currentframe(), ExtraTreesRegressor.__class__.__name__
388
+ ),
399
389
  api_calls=[Session.call],
400
390
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
401
391
  )
@@ -416,27 +406,24 @@ class ExtraTreesRegressor(BaseTransformer):
416
406
  )
417
407
  self._sklearn_object = model_trainer.train()
418
408
  self._is_fitted = True
419
- self._get_model_signatures(dataset)
409
+ self._generate_model_signatures(dataset)
420
410
  return self
421
411
 
422
412
  def _batch_inference_validate_snowpark(
423
413
  self,
424
414
  dataset: DataFrame,
425
415
  inference_method: str,
426
- ) -> List[str]:
427
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
428
- return the available package that exists in the snowflake anaconda channel
416
+ ) -> None:
417
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
429
418
 
430
419
  Args:
431
420
  dataset: snowpark dataframe
432
421
  inference_method: the inference method such as predict, score...
433
-
422
+
434
423
  Raises:
435
424
  SnowflakeMLException: If the estimator is not fitted, raise error
436
425
  SnowflakeMLException: If the session is None, raise error
437
426
 
438
- Returns:
439
- A list of available package that exists in the snowflake anaconda channel
440
427
  """
441
428
  if not self._is_fitted:
442
429
  raise exceptions.SnowflakeMLException(
@@ -454,9 +441,7 @@ class ExtraTreesRegressor(BaseTransformer):
454
441
  "Session must not specified for snowpark dataset."
455
442
  ),
456
443
  )
457
- # Validate that key package version in user workspace are supported in snowflake conda channel
458
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
459
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
444
+
460
445
 
461
446
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
462
447
  @telemetry.send_api_usage_telemetry(
@@ -492,7 +477,9 @@ class ExtraTreesRegressor(BaseTransformer):
492
477
  # when it is classifier, infer the datatype from label columns
493
478
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
494
479
  # Batch inference takes a single expected output column type. Use the first columns type for now.
495
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
480
+ label_cols_signatures = [
481
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
482
+ ]
496
483
  if len(label_cols_signatures) == 0:
497
484
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
498
485
  raise exceptions.SnowflakeMLException(
@@ -500,25 +487,23 @@ class ExtraTreesRegressor(BaseTransformer):
500
487
  original_exception=ValueError(error_str),
501
488
  )
502
489
 
503
- expected_type_inferred = convert_sp_to_sf_type(
504
- label_cols_signatures[0].as_snowpark_type()
505
- )
490
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
506
491
 
507
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
508
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
492
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
493
+ self._deps = self._get_dependencies()
494
+ assert isinstance(
495
+ dataset._session, Session
496
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
509
497
 
510
498
  transform_kwargs = dict(
511
- session = dataset._session,
512
- dependencies = self._deps,
513
- drop_input_cols = self._drop_input_cols,
514
- expected_output_cols_type = expected_type_inferred,
499
+ session=dataset._session,
500
+ dependencies=self._deps,
501
+ drop_input_cols=self._drop_input_cols,
502
+ expected_output_cols_type=expected_type_inferred,
515
503
  )
516
504
 
517
505
  elif isinstance(dataset, pd.DataFrame):
518
- transform_kwargs = dict(
519
- snowpark_input_cols = self._snowpark_cols,
520
- drop_input_cols = self._drop_input_cols
521
- )
506
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
522
507
 
523
508
  transform_handlers = ModelTransformerBuilder.build(
524
509
  dataset=dataset,
@@ -558,7 +543,7 @@ class ExtraTreesRegressor(BaseTransformer):
558
543
  Transformed dataset.
559
544
  """
560
545
  super()._check_dataset_type(dataset)
561
- inference_method="transform"
546
+ inference_method = "transform"
562
547
 
563
548
  # This dictionary contains optional kwargs for batch inference. These kwargs
564
549
  # are specific to the type of dataset used.
@@ -588,24 +573,19 @@ class ExtraTreesRegressor(BaseTransformer):
588
573
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
589
574
  expected_dtype = convert_sp_to_sf_type(output_types[0])
590
575
 
591
- self._deps = self._batch_inference_validate_snowpark(
592
- dataset=dataset,
593
- inference_method=inference_method,
594
- )
576
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
577
+ self._deps = self._get_dependencies()
595
578
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
596
579
 
597
580
  transform_kwargs = dict(
598
- session = dataset._session,
599
- dependencies = self._deps,
600
- drop_input_cols = self._drop_input_cols,
601
- expected_output_cols_type = expected_dtype,
581
+ session=dataset._session,
582
+ dependencies=self._deps,
583
+ drop_input_cols=self._drop_input_cols,
584
+ expected_output_cols_type=expected_dtype,
602
585
  )
603
586
 
604
587
  elif isinstance(dataset, pd.DataFrame):
605
- transform_kwargs = dict(
606
- snowpark_input_cols = self._snowpark_cols,
607
- drop_input_cols = self._drop_input_cols
608
- )
588
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
609
589
 
610
590
  transform_handlers = ModelTransformerBuilder.build(
611
591
  dataset=dataset,
@@ -624,7 +604,11 @@ class ExtraTreesRegressor(BaseTransformer):
624
604
  return output_df
625
605
 
626
606
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
627
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
607
+ def fit_predict(
608
+ self,
609
+ dataset: Union[DataFrame, pd.DataFrame],
610
+ output_cols_prefix: str = "fit_predict_",
611
+ ) -> Union[DataFrame, pd.DataFrame]:
628
612
  """ Method not supported for this class.
629
613
 
630
614
 
@@ -649,22 +633,104 @@ class ExtraTreesRegressor(BaseTransformer):
649
633
  )
650
634
  output_result, fitted_estimator = model_trainer.train_fit_predict(
651
635
  drop_input_cols=self._drop_input_cols,
652
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
636
+ expected_output_cols_list=(
637
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
638
+ ),
653
639
  )
654
640
  self._sklearn_object = fitted_estimator
655
641
  self._is_fitted = True
656
642
  return output_result
657
643
 
644
+
645
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
646
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
647
+ """ Method not supported for this class.
648
+
658
649
 
659
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
660
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
661
- """
650
+ Raises:
651
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
652
+
653
+ Args:
654
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
655
+ Snowpark or Pandas DataFrame.
656
+ output_cols_prefix: Prefix for the response columns
662
657
  Returns:
663
658
  Transformed dataset.
664
659
  """
665
- self.fit(dataset)
666
- assert self._sklearn_object is not None
667
- return self._sklearn_object.embedding_
660
+ self._infer_input_output_cols(dataset)
661
+ super()._check_dataset_type(dataset)
662
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
663
+ estimator=self._sklearn_object,
664
+ dataset=dataset,
665
+ input_cols=self.input_cols,
666
+ label_cols=self.label_cols,
667
+ sample_weight_col=self.sample_weight_col,
668
+ autogenerated=self._autogenerated,
669
+ subproject=_SUBPROJECT,
670
+ )
671
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
672
+ drop_input_cols=self._drop_input_cols,
673
+ expected_output_cols_list=self.output_cols,
674
+ )
675
+ self._sklearn_object = fitted_estimator
676
+ self._is_fitted = True
677
+ return output_result
678
+
679
+
680
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
681
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
682
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
683
+ """
684
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
685
+ # The following condition is introduced for kneighbors methods, and not used in other methods
686
+ if output_cols:
687
+ output_cols = [
688
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
689
+ for c in output_cols
690
+ ]
691
+ elif getattr(self._sklearn_object, "classes_", None) is None:
692
+ output_cols = [output_cols_prefix]
693
+ elif self._sklearn_object is not None:
694
+ classes = self._sklearn_object.classes_
695
+ if isinstance(classes, numpy.ndarray):
696
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
697
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
698
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
699
+ output_cols = []
700
+ for i, cl in enumerate(classes):
701
+ # For binary classification, there is only one output column for each class
702
+ # ndarray as the two classes are complementary.
703
+ if len(cl) == 2:
704
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
705
+ else:
706
+ output_cols.extend([
707
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
708
+ ])
709
+ else:
710
+ output_cols = []
711
+
712
+ # Make sure column names are valid snowflake identifiers.
713
+ assert output_cols is not None # Make MyPy happy
714
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
715
+
716
+ return rv
717
+
718
+ def _align_expected_output_names(
719
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
720
+ ) -> List[str]:
721
+ # in case the inferred output column names dimension is different
722
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
723
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
724
+ output_df_columns = list(output_df_pd.columns)
725
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
726
+ if self.sample_weight_col:
727
+ output_df_columns_set -= set(self.sample_weight_col)
728
+ # if the dimension of inferred output column names is correct; use it
729
+ if len(expected_output_cols_list) == len(output_df_columns_set):
730
+ return expected_output_cols_list
731
+ # otherwise, use the sklearn estimator's output
732
+ else:
733
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
668
734
 
669
735
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
670
736
  @telemetry.send_api_usage_telemetry(
@@ -696,24 +762,26 @@ class ExtraTreesRegressor(BaseTransformer):
696
762
  # are specific to the type of dataset used.
697
763
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
698
764
 
765
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
766
+
699
767
  if isinstance(dataset, DataFrame):
700
- self._deps = self._batch_inference_validate_snowpark(
701
- dataset=dataset,
702
- inference_method=inference_method,
703
- )
704
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
768
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
769
+ self._deps = self._get_dependencies()
770
+ assert isinstance(
771
+ dataset._session, Session
772
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
705
773
  transform_kwargs = dict(
706
774
  session=dataset._session,
707
775
  dependencies=self._deps,
708
- drop_input_cols = self._drop_input_cols,
776
+ drop_input_cols=self._drop_input_cols,
709
777
  expected_output_cols_type="float",
710
778
  )
779
+ expected_output_cols = self._align_expected_output_names(
780
+ inference_method, dataset, expected_output_cols, output_cols_prefix
781
+ )
711
782
 
712
783
  elif isinstance(dataset, pd.DataFrame):
713
- transform_kwargs = dict(
714
- snowpark_input_cols = self._snowpark_cols,
715
- drop_input_cols = self._drop_input_cols
716
- )
784
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
717
785
 
718
786
  transform_handlers = ModelTransformerBuilder.build(
719
787
  dataset=dataset,
@@ -725,7 +793,7 @@ class ExtraTreesRegressor(BaseTransformer):
725
793
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
726
794
  inference_method=inference_method,
727
795
  input_cols=self.input_cols,
728
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
796
+ expected_output_cols=expected_output_cols,
729
797
  **transform_kwargs
730
798
  )
731
799
  return output_df
@@ -755,29 +823,30 @@ class ExtraTreesRegressor(BaseTransformer):
755
823
  Output dataset with log probability of the sample for each class in the model.
756
824
  """
757
825
  super()._check_dataset_type(dataset)
758
- inference_method="predict_log_proba"
826
+ inference_method = "predict_log_proba"
827
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
759
828
 
760
829
  # This dictionary contains optional kwargs for batch inference. These kwargs
761
830
  # are specific to the type of dataset used.
762
831
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
763
832
 
764
833
  if isinstance(dataset, DataFrame):
765
- self._deps = self._batch_inference_validate_snowpark(
766
- dataset=dataset,
767
- inference_method=inference_method,
768
- )
769
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
834
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
835
+ self._deps = self._get_dependencies()
836
+ assert isinstance(
837
+ dataset._session, Session
838
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
839
  transform_kwargs = dict(
771
840
  session=dataset._session,
772
841
  dependencies=self._deps,
773
- drop_input_cols = self._drop_input_cols,
842
+ drop_input_cols=self._drop_input_cols,
774
843
  expected_output_cols_type="float",
775
844
  )
845
+ expected_output_cols = self._align_expected_output_names(
846
+ inference_method, dataset, expected_output_cols, output_cols_prefix
847
+ )
776
848
  elif isinstance(dataset, pd.DataFrame):
777
- transform_kwargs = dict(
778
- snowpark_input_cols = self._snowpark_cols,
779
- drop_input_cols = self._drop_input_cols
780
- )
849
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
781
850
 
782
851
  transform_handlers = ModelTransformerBuilder.build(
783
852
  dataset=dataset,
@@ -790,7 +859,7 @@ class ExtraTreesRegressor(BaseTransformer):
790
859
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
791
860
  inference_method=inference_method,
792
861
  input_cols=self.input_cols,
793
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
862
+ expected_output_cols=expected_output_cols,
794
863
  **transform_kwargs
795
864
  )
796
865
  return output_df
@@ -816,30 +885,32 @@ class ExtraTreesRegressor(BaseTransformer):
816
885
  Output dataset with results of the decision function for the samples in input dataset.
817
886
  """
818
887
  super()._check_dataset_type(dataset)
819
- inference_method="decision_function"
888
+ inference_method = "decision_function"
820
889
 
821
890
  # This dictionary contains optional kwargs for batch inference. These kwargs
822
891
  # are specific to the type of dataset used.
823
892
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
824
893
 
894
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
895
+
825
896
  if isinstance(dataset, DataFrame):
826
- self._deps = self._batch_inference_validate_snowpark(
827
- dataset=dataset,
828
- inference_method=inference_method,
829
- )
830
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
897
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
898
+ self._deps = self._get_dependencies()
899
+ assert isinstance(
900
+ dataset._session, Session
901
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
831
902
  transform_kwargs = dict(
832
903
  session=dataset._session,
833
904
  dependencies=self._deps,
834
- drop_input_cols = self._drop_input_cols,
905
+ drop_input_cols=self._drop_input_cols,
835
906
  expected_output_cols_type="float",
836
907
  )
908
+ expected_output_cols = self._align_expected_output_names(
909
+ inference_method, dataset, expected_output_cols, output_cols_prefix
910
+ )
837
911
 
838
912
  elif isinstance(dataset, pd.DataFrame):
839
- transform_kwargs = dict(
840
- snowpark_input_cols = self._snowpark_cols,
841
- drop_input_cols = self._drop_input_cols
842
- )
913
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
843
914
 
844
915
  transform_handlers = ModelTransformerBuilder.build(
845
916
  dataset=dataset,
@@ -852,7 +923,7 @@ class ExtraTreesRegressor(BaseTransformer):
852
923
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
853
924
  inference_method=inference_method,
854
925
  input_cols=self.input_cols,
855
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
926
+ expected_output_cols=expected_output_cols,
856
927
  **transform_kwargs
857
928
  )
858
929
  return output_df
@@ -881,17 +952,17 @@ class ExtraTreesRegressor(BaseTransformer):
881
952
  Output dataset with probability of the sample for each class in the model.
882
953
  """
883
954
  super()._check_dataset_type(dataset)
884
- inference_method="score_samples"
955
+ inference_method = "score_samples"
885
956
 
886
957
  # This dictionary contains optional kwargs for batch inference. These kwargs
887
958
  # are specific to the type of dataset used.
888
959
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
889
960
 
961
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
962
+
890
963
  if isinstance(dataset, DataFrame):
891
- self._deps = self._batch_inference_validate_snowpark(
892
- dataset=dataset,
893
- inference_method=inference_method,
894
- )
964
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
965
+ self._deps = self._get_dependencies()
895
966
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
896
967
  transform_kwargs = dict(
897
968
  session=dataset._session,
@@ -899,6 +970,9 @@ class ExtraTreesRegressor(BaseTransformer):
899
970
  drop_input_cols = self._drop_input_cols,
900
971
  expected_output_cols_type="float",
901
972
  )
973
+ expected_output_cols = self._align_expected_output_names(
974
+ inference_method, dataset, expected_output_cols, output_cols_prefix
975
+ )
902
976
 
903
977
  elif isinstance(dataset, pd.DataFrame):
904
978
  transform_kwargs = dict(
@@ -917,7 +991,7 @@ class ExtraTreesRegressor(BaseTransformer):
917
991
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
918
992
  inference_method=inference_method,
919
993
  input_cols=self.input_cols,
920
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
994
+ expected_output_cols=expected_output_cols,
921
995
  **transform_kwargs
922
996
  )
923
997
  return output_df
@@ -952,17 +1026,15 @@ class ExtraTreesRegressor(BaseTransformer):
952
1026
  transform_kwargs: ScoreKwargsTypedDict = dict()
953
1027
 
954
1028
  if isinstance(dataset, DataFrame):
955
- self._deps = self._batch_inference_validate_snowpark(
956
- dataset=dataset,
957
- inference_method="score",
958
- )
1029
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1030
+ self._deps = self._get_dependencies()
959
1031
  selected_cols = self._get_active_columns()
960
1032
  if len(selected_cols) > 0:
961
1033
  dataset = dataset.select(selected_cols)
962
1034
  assert isinstance(dataset._session, Session) # keep mypy happy
963
1035
  transform_kwargs = dict(
964
1036
  session=dataset._session,
965
- dependencies=["snowflake-snowpark-python"] + self._deps,
1037
+ dependencies=self._deps,
966
1038
  score_sproc_imports=['sklearn'],
967
1039
  )
968
1040
  elif isinstance(dataset, pd.DataFrame):
@@ -1027,11 +1099,8 @@ class ExtraTreesRegressor(BaseTransformer):
1027
1099
 
1028
1100
  if isinstance(dataset, DataFrame):
1029
1101
 
1030
- self._deps = self._batch_inference_validate_snowpark(
1031
- dataset=dataset,
1032
- inference_method=inference_method,
1033
-
1034
- )
1102
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1103
+ self._deps = self._get_dependencies()
1035
1104
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1036
1105
  transform_kwargs = dict(
1037
1106
  session = dataset._session,
@@ -1064,50 +1133,84 @@ class ExtraTreesRegressor(BaseTransformer):
1064
1133
  )
1065
1134
  return output_df
1066
1135
 
1136
+
1137
+
1138
+ def to_sklearn(self) -> Any:
1139
+ """Get sklearn.ensemble.ExtraTreesRegressor object.
1140
+ """
1141
+ if self._sklearn_object is None:
1142
+ self._sklearn_object = self._create_sklearn_object()
1143
+ return self._sklearn_object
1144
+
1145
+ def to_xgboost(self) -> Any:
1146
+ raise exceptions.SnowflakeMLException(
1147
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1148
+ original_exception=AttributeError(
1149
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1150
+ "to_xgboost()",
1151
+ "to_sklearn()"
1152
+ )
1153
+ ),
1154
+ )
1155
+
1156
+ def to_lightgbm(self) -> Any:
1157
+ raise exceptions.SnowflakeMLException(
1158
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1159
+ original_exception=AttributeError(
1160
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1161
+ "to_lightgbm()",
1162
+ "to_sklearn()"
1163
+ )
1164
+ ),
1165
+ )
1166
+
1167
+ def _get_dependencies(self) -> List[str]:
1168
+ return self._deps
1169
+
1067
1170
 
1068
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1171
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1069
1172
  self._model_signature_dict = dict()
1070
1173
 
1071
1174
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1072
1175
 
1073
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1176
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1074
1177
  outputs: List[BaseFeatureSpec] = []
1075
1178
  if hasattr(self, "predict"):
1076
1179
  # keep mypy happy
1077
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1180
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1078
1181
  # For classifier, the type of predict is the same as the type of label
1079
- if self._sklearn_object._estimator_type == 'classifier':
1080
- # label columns is the desired type for output
1182
+ if self._sklearn_object._estimator_type == "classifier":
1183
+ # label columns is the desired type for output
1081
1184
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1082
1185
  # rename the output columns
1083
1186
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1084
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1085
- ([] if self._drop_input_cols else inputs)
1086
- + outputs)
1187
+ self._model_signature_dict["predict"] = ModelSignature(
1188
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1189
+ )
1087
1190
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1088
1191
  # For outlier models, returns -1 for outliers and 1 for inliers.
1089
- # Clusterer returns int64 cluster labels.
1192
+ # Clusterer returns int64 cluster labels.
1090
1193
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1091
1194
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1092
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1093
- ([] if self._drop_input_cols else inputs)
1094
- + outputs)
1095
-
1195
+ self._model_signature_dict["predict"] = ModelSignature(
1196
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1197
+ )
1198
+
1096
1199
  # For regressor, the type of predict is float64
1097
- elif self._sklearn_object._estimator_type == 'regressor':
1200
+ elif self._sklearn_object._estimator_type == "regressor":
1098
1201
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1099
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1100
- ([] if self._drop_input_cols else inputs)
1101
- + outputs)
1102
-
1202
+ self._model_signature_dict["predict"] = ModelSignature(
1203
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1204
+ )
1205
+
1103
1206
  for prob_func in PROB_FUNCTIONS:
1104
1207
  if hasattr(self, prob_func):
1105
1208
  output_cols_prefix: str = f"{prob_func}_"
1106
1209
  output_column_names = self._get_output_column_names(output_cols_prefix)
1107
1210
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1108
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1109
- ([] if self._drop_input_cols else inputs)
1110
- + outputs)
1211
+ self._model_signature_dict[prob_func] = ModelSignature(
1212
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1213
+ )
1111
1214
 
1112
1215
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1113
1216
  items = list(self._model_signature_dict.items())
@@ -1120,10 +1223,10 @@ class ExtraTreesRegressor(BaseTransformer):
1120
1223
  """Returns model signature of current class.
1121
1224
 
1122
1225
  Raises:
1123
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1226
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1124
1227
 
1125
1228
  Returns:
1126
- Dict[str, ModelSignature]: each method and its input output signature
1229
+ Dict with each method and its input output signature
1127
1230
  """
1128
1231
  if self._model_signature_dict is None:
1129
1232
  raise exceptions.SnowflakeMLException(
@@ -1131,35 +1234,3 @@ class ExtraTreesRegressor(BaseTransformer):
1131
1234
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1132
1235
  )
1133
1236
  return self._model_signature_dict
1134
-
1135
- def to_sklearn(self) -> Any:
1136
- """Get sklearn.ensemble.ExtraTreesRegressor object.
1137
- """
1138
- if self._sklearn_object is None:
1139
- self._sklearn_object = self._create_sklearn_object()
1140
- return self._sklearn_object
1141
-
1142
- def to_xgboost(self) -> Any:
1143
- raise exceptions.SnowflakeMLException(
1144
- error_code=error_codes.METHOD_NOT_ALLOWED,
1145
- original_exception=AttributeError(
1146
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1147
- "to_xgboost()",
1148
- "to_sklearn()"
1149
- )
1150
- ),
1151
- )
1152
-
1153
- def to_lightgbm(self) -> Any:
1154
- raise exceptions.SnowflakeMLException(
1155
- error_code=error_codes.METHOD_NOT_ALLOWED,
1156
- original_exception=AttributeError(
1157
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1158
- "to_lightgbm()",
1159
- "to_sklearn()"
1160
- )
1161
- ),
1162
- )
1163
-
1164
- def _get_dependencies(self) -> List[str]:
1165
- return self._deps