snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class VotingClassifier(BaseTransformer):
71
64
  r"""Soft Voting/Majority Rule classifier for unfitted estimators
72
65
  For more details on this class, see [sklearn.ensemble.VotingClassifier]
@@ -237,12 +230,7 @@ class VotingClassifier(BaseTransformer):
237
230
  )
238
231
  return selected_cols
239
232
 
240
- @telemetry.send_api_usage_telemetry(
241
- project=_PROJECT,
242
- subproject=_SUBPROJECT,
243
- custom_tags=dict([("autogen", True)]),
244
- )
245
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingClassifier":
233
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "VotingClassifier":
246
234
  """Fit the estimators
247
235
  For more details on this function, see [sklearn.ensemble.VotingClassifier.fit]
248
236
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.VotingClassifier.fit)
@@ -269,12 +257,14 @@ class VotingClassifier(BaseTransformer):
269
257
 
270
258
  self._snowpark_cols = dataset.select(self.input_cols).columns
271
259
 
272
- # If we are already in a stored procedure, no need to kick off another one.
260
+ # If we are already in a stored procedure, no need to kick off another one.
273
261
  if SNOWML_SPROC_ENV in os.environ:
274
262
  statement_params = telemetry.get_function_usage_statement_params(
275
263
  project=_PROJECT,
276
264
  subproject=_SUBPROJECT,
277
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), VotingClassifier.__class__.__name__),
265
+ function_name=telemetry.get_statement_params_full_func_name(
266
+ inspect.currentframe(), VotingClassifier.__class__.__name__
267
+ ),
278
268
  api_calls=[Session.call],
279
269
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
280
270
  )
@@ -295,27 +285,24 @@ class VotingClassifier(BaseTransformer):
295
285
  )
296
286
  self._sklearn_object = model_trainer.train()
297
287
  self._is_fitted = True
298
- self._get_model_signatures(dataset)
288
+ self._generate_model_signatures(dataset)
299
289
  return self
300
290
 
301
291
  def _batch_inference_validate_snowpark(
302
292
  self,
303
293
  dataset: DataFrame,
304
294
  inference_method: str,
305
- ) -> List[str]:
306
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
307
- return the available package that exists in the snowflake anaconda channel
295
+ ) -> None:
296
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
308
297
 
309
298
  Args:
310
299
  dataset: snowpark dataframe
311
300
  inference_method: the inference method such as predict, score...
312
-
301
+
313
302
  Raises:
314
303
  SnowflakeMLException: If the estimator is not fitted, raise error
315
304
  SnowflakeMLException: If the session is None, raise error
316
305
 
317
- Returns:
318
- A list of available package that exists in the snowflake anaconda channel
319
306
  """
320
307
  if not self._is_fitted:
321
308
  raise exceptions.SnowflakeMLException(
@@ -333,9 +320,7 @@ class VotingClassifier(BaseTransformer):
333
320
  "Session must not specified for snowpark dataset."
334
321
  ),
335
322
  )
336
- # Validate that key package version in user workspace are supported in snowflake conda channel
337
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
338
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
323
+
339
324
 
340
325
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
341
326
  @telemetry.send_api_usage_telemetry(
@@ -371,7 +356,9 @@ class VotingClassifier(BaseTransformer):
371
356
  # when it is classifier, infer the datatype from label columns
372
357
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
373
358
  # Batch inference takes a single expected output column type. Use the first columns type for now.
374
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
359
+ label_cols_signatures = [
360
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
361
+ ]
375
362
  if len(label_cols_signatures) == 0:
376
363
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
377
364
  raise exceptions.SnowflakeMLException(
@@ -379,25 +366,23 @@ class VotingClassifier(BaseTransformer):
379
366
  original_exception=ValueError(error_str),
380
367
  )
381
368
 
382
- expected_type_inferred = convert_sp_to_sf_type(
383
- label_cols_signatures[0].as_snowpark_type()
384
- )
369
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
385
370
 
386
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
387
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
371
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
372
+ self._deps = self._get_dependencies()
373
+ assert isinstance(
374
+ dataset._session, Session
375
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
388
376
 
389
377
  transform_kwargs = dict(
390
- session = dataset._session,
391
- dependencies = self._deps,
392
- drop_input_cols = self._drop_input_cols,
393
- expected_output_cols_type = expected_type_inferred,
378
+ session=dataset._session,
379
+ dependencies=self._deps,
380
+ drop_input_cols=self._drop_input_cols,
381
+ expected_output_cols_type=expected_type_inferred,
394
382
  )
395
383
 
396
384
  elif isinstance(dataset, pd.DataFrame):
397
- transform_kwargs = dict(
398
- snowpark_input_cols = self._snowpark_cols,
399
- drop_input_cols = self._drop_input_cols
400
- )
385
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
401
386
 
402
387
  transform_handlers = ModelTransformerBuilder.build(
403
388
  dataset=dataset,
@@ -439,7 +424,7 @@ class VotingClassifier(BaseTransformer):
439
424
  Transformed dataset.
440
425
  """
441
426
  super()._check_dataset_type(dataset)
442
- inference_method="transform"
427
+ inference_method = "transform"
443
428
 
444
429
  # This dictionary contains optional kwargs for batch inference. These kwargs
445
430
  # are specific to the type of dataset used.
@@ -469,24 +454,19 @@ class VotingClassifier(BaseTransformer):
469
454
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
470
455
  expected_dtype = convert_sp_to_sf_type(output_types[0])
471
456
 
472
- self._deps = self._batch_inference_validate_snowpark(
473
- dataset=dataset,
474
- inference_method=inference_method,
475
- )
457
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
458
+ self._deps = self._get_dependencies()
476
459
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
477
460
 
478
461
  transform_kwargs = dict(
479
- session = dataset._session,
480
- dependencies = self._deps,
481
- drop_input_cols = self._drop_input_cols,
482
- expected_output_cols_type = expected_dtype,
462
+ session=dataset._session,
463
+ dependencies=self._deps,
464
+ drop_input_cols=self._drop_input_cols,
465
+ expected_output_cols_type=expected_dtype,
483
466
  )
484
467
 
485
468
  elif isinstance(dataset, pd.DataFrame):
486
- transform_kwargs = dict(
487
- snowpark_input_cols = self._snowpark_cols,
488
- drop_input_cols = self._drop_input_cols
489
- )
469
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
490
470
 
491
471
  transform_handlers = ModelTransformerBuilder.build(
492
472
  dataset=dataset,
@@ -505,7 +485,11 @@ class VotingClassifier(BaseTransformer):
505
485
  return output_df
506
486
 
507
487
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
508
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
488
+ def fit_predict(
489
+ self,
490
+ dataset: Union[DataFrame, pd.DataFrame],
491
+ output_cols_prefix: str = "fit_predict_",
492
+ ) -> Union[DataFrame, pd.DataFrame]:
509
493
  """ Method not supported for this class.
510
494
 
511
495
 
@@ -530,22 +514,106 @@ class VotingClassifier(BaseTransformer):
530
514
  )
531
515
  output_result, fitted_estimator = model_trainer.train_fit_predict(
532
516
  drop_input_cols=self._drop_input_cols,
533
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
517
+ expected_output_cols_list=(
518
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
519
+ ),
534
520
  )
535
521
  self._sklearn_object = fitted_estimator
536
522
  self._is_fitted = True
537
523
  return output_result
538
524
 
525
+
526
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
527
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
528
+ """ Return class labels or probabilities for each estimator
529
+ For more details on this function, see [sklearn.ensemble.VotingClassifier.fit_transform]
530
+ (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html#sklearn.ensemble.VotingClassifier.fit_transform)
531
+
532
+
533
+ Raises:
534
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
539
535
 
540
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
541
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
542
- """
536
+ Args:
537
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
538
+ Snowpark or Pandas DataFrame.
539
+ output_cols_prefix: Prefix for the response columns
543
540
  Returns:
544
541
  Transformed dataset.
545
542
  """
546
- self.fit(dataset)
547
- assert self._sklearn_object is not None
548
- return self._sklearn_object.embedding_
543
+ self._infer_input_output_cols(dataset)
544
+ super()._check_dataset_type(dataset)
545
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
546
+ estimator=self._sklearn_object,
547
+ dataset=dataset,
548
+ input_cols=self.input_cols,
549
+ label_cols=self.label_cols,
550
+ sample_weight_col=self.sample_weight_col,
551
+ autogenerated=self._autogenerated,
552
+ subproject=_SUBPROJECT,
553
+ )
554
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
555
+ drop_input_cols=self._drop_input_cols,
556
+ expected_output_cols_list=self.output_cols,
557
+ )
558
+ self._sklearn_object = fitted_estimator
559
+ self._is_fitted = True
560
+ return output_result
561
+
562
+
563
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
564
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
565
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
566
+ """
567
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
568
+ # The following condition is introduced for kneighbors methods, and not used in other methods
569
+ if output_cols:
570
+ output_cols = [
571
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
572
+ for c in output_cols
573
+ ]
574
+ elif getattr(self._sklearn_object, "classes_", None) is None:
575
+ output_cols = [output_cols_prefix]
576
+ elif self._sklearn_object is not None:
577
+ classes = self._sklearn_object.classes_
578
+ if isinstance(classes, numpy.ndarray):
579
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
580
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
581
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
582
+ output_cols = []
583
+ for i, cl in enumerate(classes):
584
+ # For binary classification, there is only one output column for each class
585
+ # ndarray as the two classes are complementary.
586
+ if len(cl) == 2:
587
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
588
+ else:
589
+ output_cols.extend([
590
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
591
+ ])
592
+ else:
593
+ output_cols = []
594
+
595
+ # Make sure column names are valid snowflake identifiers.
596
+ assert output_cols is not None # Make MyPy happy
597
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
598
+
599
+ return rv
600
+
601
+ def _align_expected_output_names(
602
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
603
+ ) -> List[str]:
604
+ # in case the inferred output column names dimension is different
605
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
606
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
607
+ output_df_columns = list(output_df_pd.columns)
608
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
609
+ if self.sample_weight_col:
610
+ output_df_columns_set -= set(self.sample_weight_col)
611
+ # if the dimension of inferred output column names is correct; use it
612
+ if len(expected_output_cols_list) == len(output_df_columns_set):
613
+ return expected_output_cols_list
614
+ # otherwise, use the sklearn estimator's output
615
+ else:
616
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
549
617
 
550
618
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
551
619
  @telemetry.send_api_usage_telemetry(
@@ -579,24 +647,26 @@ class VotingClassifier(BaseTransformer):
579
647
  # are specific to the type of dataset used.
580
648
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
581
649
 
650
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
651
+
582
652
  if isinstance(dataset, DataFrame):
583
- self._deps = self._batch_inference_validate_snowpark(
584
- dataset=dataset,
585
- inference_method=inference_method,
586
- )
587
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
653
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
654
+ self._deps = self._get_dependencies()
655
+ assert isinstance(
656
+ dataset._session, Session
657
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
588
658
  transform_kwargs = dict(
589
659
  session=dataset._session,
590
660
  dependencies=self._deps,
591
- drop_input_cols = self._drop_input_cols,
661
+ drop_input_cols=self._drop_input_cols,
592
662
  expected_output_cols_type="float",
593
663
  )
664
+ expected_output_cols = self._align_expected_output_names(
665
+ inference_method, dataset, expected_output_cols, output_cols_prefix
666
+ )
594
667
 
595
668
  elif isinstance(dataset, pd.DataFrame):
596
- transform_kwargs = dict(
597
- snowpark_input_cols = self._snowpark_cols,
598
- drop_input_cols = self._drop_input_cols
599
- )
669
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
600
670
 
601
671
  transform_handlers = ModelTransformerBuilder.build(
602
672
  dataset=dataset,
@@ -608,7 +678,7 @@ class VotingClassifier(BaseTransformer):
608
678
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
609
679
  inference_method=inference_method,
610
680
  input_cols=self.input_cols,
611
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
681
+ expected_output_cols=expected_output_cols,
612
682
  **transform_kwargs
613
683
  )
614
684
  return output_df
@@ -640,29 +710,30 @@ class VotingClassifier(BaseTransformer):
640
710
  Output dataset with log probability of the sample for each class in the model.
641
711
  """
642
712
  super()._check_dataset_type(dataset)
643
- inference_method="predict_log_proba"
713
+ inference_method = "predict_log_proba"
714
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
644
715
 
645
716
  # This dictionary contains optional kwargs for batch inference. These kwargs
646
717
  # are specific to the type of dataset used.
647
718
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
648
719
 
649
720
  if isinstance(dataset, DataFrame):
650
- self._deps = self._batch_inference_validate_snowpark(
651
- dataset=dataset,
652
- inference_method=inference_method,
653
- )
654
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
721
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
722
+ self._deps = self._get_dependencies()
723
+ assert isinstance(
724
+ dataset._session, Session
725
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
655
726
  transform_kwargs = dict(
656
727
  session=dataset._session,
657
728
  dependencies=self._deps,
658
- drop_input_cols = self._drop_input_cols,
729
+ drop_input_cols=self._drop_input_cols,
659
730
  expected_output_cols_type="float",
660
731
  )
732
+ expected_output_cols = self._align_expected_output_names(
733
+ inference_method, dataset, expected_output_cols, output_cols_prefix
734
+ )
661
735
  elif isinstance(dataset, pd.DataFrame):
662
- transform_kwargs = dict(
663
- snowpark_input_cols = self._snowpark_cols,
664
- drop_input_cols = self._drop_input_cols
665
- )
736
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
666
737
 
667
738
  transform_handlers = ModelTransformerBuilder.build(
668
739
  dataset=dataset,
@@ -675,7 +746,7 @@ class VotingClassifier(BaseTransformer):
675
746
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
676
747
  inference_method=inference_method,
677
748
  input_cols=self.input_cols,
678
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
749
+ expected_output_cols=expected_output_cols,
679
750
  **transform_kwargs
680
751
  )
681
752
  return output_df
@@ -701,30 +772,32 @@ class VotingClassifier(BaseTransformer):
701
772
  Output dataset with results of the decision function for the samples in input dataset.
702
773
  """
703
774
  super()._check_dataset_type(dataset)
704
- inference_method="decision_function"
775
+ inference_method = "decision_function"
705
776
 
706
777
  # This dictionary contains optional kwargs for batch inference. These kwargs
707
778
  # are specific to the type of dataset used.
708
779
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
709
780
 
781
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
782
+
710
783
  if isinstance(dataset, DataFrame):
711
- self._deps = self._batch_inference_validate_snowpark(
712
- dataset=dataset,
713
- inference_method=inference_method,
714
- )
715
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
784
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
785
+ self._deps = self._get_dependencies()
786
+ assert isinstance(
787
+ dataset._session, Session
788
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
716
789
  transform_kwargs = dict(
717
790
  session=dataset._session,
718
791
  dependencies=self._deps,
719
- drop_input_cols = self._drop_input_cols,
792
+ drop_input_cols=self._drop_input_cols,
720
793
  expected_output_cols_type="float",
721
794
  )
795
+ expected_output_cols = self._align_expected_output_names(
796
+ inference_method, dataset, expected_output_cols, output_cols_prefix
797
+ )
722
798
 
723
799
  elif isinstance(dataset, pd.DataFrame):
724
- transform_kwargs = dict(
725
- snowpark_input_cols = self._snowpark_cols,
726
- drop_input_cols = self._drop_input_cols
727
- )
800
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
728
801
 
729
802
  transform_handlers = ModelTransformerBuilder.build(
730
803
  dataset=dataset,
@@ -737,7 +810,7 @@ class VotingClassifier(BaseTransformer):
737
810
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
738
811
  inference_method=inference_method,
739
812
  input_cols=self.input_cols,
740
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
813
+ expected_output_cols=expected_output_cols,
741
814
  **transform_kwargs
742
815
  )
743
816
  return output_df
@@ -766,17 +839,17 @@ class VotingClassifier(BaseTransformer):
766
839
  Output dataset with probability of the sample for each class in the model.
767
840
  """
768
841
  super()._check_dataset_type(dataset)
769
- inference_method="score_samples"
842
+ inference_method = "score_samples"
770
843
 
771
844
  # This dictionary contains optional kwargs for batch inference. These kwargs
772
845
  # are specific to the type of dataset used.
773
846
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
774
847
 
848
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
849
+
775
850
  if isinstance(dataset, DataFrame):
776
- self._deps = self._batch_inference_validate_snowpark(
777
- dataset=dataset,
778
- inference_method=inference_method,
779
- )
851
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
852
+ self._deps = self._get_dependencies()
780
853
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
781
854
  transform_kwargs = dict(
782
855
  session=dataset._session,
@@ -784,6 +857,9 @@ class VotingClassifier(BaseTransformer):
784
857
  drop_input_cols = self._drop_input_cols,
785
858
  expected_output_cols_type="float",
786
859
  )
860
+ expected_output_cols = self._align_expected_output_names(
861
+ inference_method, dataset, expected_output_cols, output_cols_prefix
862
+ )
787
863
 
788
864
  elif isinstance(dataset, pd.DataFrame):
789
865
  transform_kwargs = dict(
@@ -802,7 +878,7 @@ class VotingClassifier(BaseTransformer):
802
878
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
803
879
  inference_method=inference_method,
804
880
  input_cols=self.input_cols,
805
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
881
+ expected_output_cols=expected_output_cols,
806
882
  **transform_kwargs
807
883
  )
808
884
  return output_df
@@ -837,17 +913,15 @@ class VotingClassifier(BaseTransformer):
837
913
  transform_kwargs: ScoreKwargsTypedDict = dict()
838
914
 
839
915
  if isinstance(dataset, DataFrame):
840
- self._deps = self._batch_inference_validate_snowpark(
841
- dataset=dataset,
842
- inference_method="score",
843
- )
916
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
917
+ self._deps = self._get_dependencies()
844
918
  selected_cols = self._get_active_columns()
845
919
  if len(selected_cols) > 0:
846
920
  dataset = dataset.select(selected_cols)
847
921
  assert isinstance(dataset._session, Session) # keep mypy happy
848
922
  transform_kwargs = dict(
849
923
  session=dataset._session,
850
- dependencies=["snowflake-snowpark-python"] + self._deps,
924
+ dependencies=self._deps,
851
925
  score_sproc_imports=['sklearn'],
852
926
  )
853
927
  elif isinstance(dataset, pd.DataFrame):
@@ -912,11 +986,8 @@ class VotingClassifier(BaseTransformer):
912
986
 
913
987
  if isinstance(dataset, DataFrame):
914
988
 
915
- self._deps = self._batch_inference_validate_snowpark(
916
- dataset=dataset,
917
- inference_method=inference_method,
918
-
919
- )
989
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
990
+ self._deps = self._get_dependencies()
920
991
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
921
992
  transform_kwargs = dict(
922
993
  session = dataset._session,
@@ -949,50 +1020,84 @@ class VotingClassifier(BaseTransformer):
949
1020
  )
950
1021
  return output_df
951
1022
 
1023
+
1024
+
1025
+ def to_sklearn(self) -> Any:
1026
+ """Get sklearn.ensemble.VotingClassifier object.
1027
+ """
1028
+ if self._sklearn_object is None:
1029
+ self._sklearn_object = self._create_sklearn_object()
1030
+ return self._sklearn_object
1031
+
1032
+ def to_xgboost(self) -> Any:
1033
+ raise exceptions.SnowflakeMLException(
1034
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1035
+ original_exception=AttributeError(
1036
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1037
+ "to_xgboost()",
1038
+ "to_sklearn()"
1039
+ )
1040
+ ),
1041
+ )
952
1042
 
953
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1043
+ def to_lightgbm(self) -> Any:
1044
+ raise exceptions.SnowflakeMLException(
1045
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1046
+ original_exception=AttributeError(
1047
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1048
+ "to_lightgbm()",
1049
+ "to_sklearn()"
1050
+ )
1051
+ ),
1052
+ )
1053
+
1054
+ def _get_dependencies(self) -> List[str]:
1055
+ return self._deps
1056
+
1057
+
1058
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
954
1059
  self._model_signature_dict = dict()
955
1060
 
956
1061
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
957
1062
 
958
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1063
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
959
1064
  outputs: List[BaseFeatureSpec] = []
960
1065
  if hasattr(self, "predict"):
961
1066
  # keep mypy happy
962
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1067
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
963
1068
  # For classifier, the type of predict is the same as the type of label
964
- if self._sklearn_object._estimator_type == 'classifier':
965
- # label columns is the desired type for output
1069
+ if self._sklearn_object._estimator_type == "classifier":
1070
+ # label columns is the desired type for output
966
1071
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
967
1072
  # rename the output columns
968
1073
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
969
- self._model_signature_dict["predict"] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
1074
+ self._model_signature_dict["predict"] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
972
1077
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
973
1078
  # For outlier models, returns -1 for outliers and 1 for inliers.
974
- # Clusterer returns int64 cluster labels.
1079
+ # Clusterer returns int64 cluster labels.
975
1080
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
976
1081
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
977
- self._model_signature_dict["predict"] = ModelSignature(inputs,
978
- ([] if self._drop_input_cols else inputs)
979
- + outputs)
980
-
1082
+ self._model_signature_dict["predict"] = ModelSignature(
1083
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1084
+ )
1085
+
981
1086
  # For regressor, the type of predict is float64
982
- elif self._sklearn_object._estimator_type == 'regressor':
1087
+ elif self._sklearn_object._estimator_type == "regressor":
983
1088
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
984
- self._model_signature_dict["predict"] = ModelSignature(inputs,
985
- ([] if self._drop_input_cols else inputs)
986
- + outputs)
987
-
1089
+ self._model_signature_dict["predict"] = ModelSignature(
1090
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1091
+ )
1092
+
988
1093
  for prob_func in PROB_FUNCTIONS:
989
1094
  if hasattr(self, prob_func):
990
1095
  output_cols_prefix: str = f"{prob_func}_"
991
1096
  output_column_names = self._get_output_column_names(output_cols_prefix)
992
1097
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
993
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
1098
+ self._model_signature_dict[prob_func] = ModelSignature(
1099
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1100
+ )
996
1101
 
997
1102
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
998
1103
  items = list(self._model_signature_dict.items())
@@ -1005,10 +1110,10 @@ class VotingClassifier(BaseTransformer):
1005
1110
  """Returns model signature of current class.
1006
1111
 
1007
1112
  Raises:
1008
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1113
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1009
1114
 
1010
1115
  Returns:
1011
- Dict[str, ModelSignature]: each method and its input output signature
1116
+ Dict with each method and its input output signature
1012
1117
  """
1013
1118
  if self._model_signature_dict is None:
1014
1119
  raise exceptions.SnowflakeMLException(
@@ -1016,35 +1121,3 @@ class VotingClassifier(BaseTransformer):
1016
1121
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1017
1122
  )
1018
1123
  return self._model_signature_dict
1019
-
1020
- def to_sklearn(self) -> Any:
1021
- """Get sklearn.ensemble.VotingClassifier object.
1022
- """
1023
- if self._sklearn_object is None:
1024
- self._sklearn_object = self._create_sklearn_object()
1025
- return self._sklearn_object
1026
-
1027
- def to_xgboost(self) -> Any:
1028
- raise exceptions.SnowflakeMLException(
1029
- error_code=error_codes.METHOD_NOT_ALLOWED,
1030
- original_exception=AttributeError(
1031
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1032
- "to_xgboost()",
1033
- "to_sklearn()"
1034
- )
1035
- ),
1036
- )
1037
-
1038
- def to_lightgbm(self) -> Any:
1039
- raise exceptions.SnowflakeMLException(
1040
- error_code=error_codes.METHOD_NOT_ALLOWED,
1041
- original_exception=AttributeError(
1042
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1043
- "to_lightgbm()",
1044
- "to_sklearn()"
1045
- )
1046
- ),
1047
- )
1048
-
1049
- def _get_dependencies(self) -> List[str]:
1050
- return self._deps