snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.gaussian_process".replac
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class GaussianProcessRegressor(BaseTransformer):
|
71
64
|
r"""Gaussian process regression (GPR)
|
72
65
|
For more details on this class, see [sklearn.gaussian_process.GaussianProcessRegressor]
|
@@ -282,12 +275,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
282
275
|
)
|
283
276
|
return selected_cols
|
284
277
|
|
285
|
-
|
286
|
-
project=_PROJECT,
|
287
|
-
subproject=_SUBPROJECT,
|
288
|
-
custom_tags=dict([("autogen", True)]),
|
289
|
-
)
|
290
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianProcessRegressor":
|
278
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "GaussianProcessRegressor":
|
291
279
|
"""Fit Gaussian process regression model
|
292
280
|
For more details on this function, see [sklearn.gaussian_process.GaussianProcessRegressor.fit]
|
293
281
|
(https://scikit-learn.org/stable/modules/generated/sklearn.gaussian_process.GaussianProcessRegressor.html#sklearn.gaussian_process.GaussianProcessRegressor.fit)
|
@@ -314,12 +302,14 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
314
302
|
|
315
303
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
316
304
|
|
317
|
-
|
305
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
318
306
|
if SNOWML_SPROC_ENV in os.environ:
|
319
307
|
statement_params = telemetry.get_function_usage_statement_params(
|
320
308
|
project=_PROJECT,
|
321
309
|
subproject=_SUBPROJECT,
|
322
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
310
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
311
|
+
inspect.currentframe(), GaussianProcessRegressor.__class__.__name__
|
312
|
+
),
|
323
313
|
api_calls=[Session.call],
|
324
314
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
325
315
|
)
|
@@ -340,27 +330,24 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
340
330
|
)
|
341
331
|
self._sklearn_object = model_trainer.train()
|
342
332
|
self._is_fitted = True
|
343
|
-
self.
|
333
|
+
self._generate_model_signatures(dataset)
|
344
334
|
return self
|
345
335
|
|
346
336
|
def _batch_inference_validate_snowpark(
|
347
337
|
self,
|
348
338
|
dataset: DataFrame,
|
349
339
|
inference_method: str,
|
350
|
-
) ->
|
351
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
352
|
-
return the available package that exists in the snowflake anaconda channel
|
340
|
+
) -> None:
|
341
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
353
342
|
|
354
343
|
Args:
|
355
344
|
dataset: snowpark dataframe
|
356
345
|
inference_method: the inference method such as predict, score...
|
357
|
-
|
346
|
+
|
358
347
|
Raises:
|
359
348
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
360
349
|
SnowflakeMLException: If the session is None, raise error
|
361
350
|
|
362
|
-
Returns:
|
363
|
-
A list of available package that exists in the snowflake anaconda channel
|
364
351
|
"""
|
365
352
|
if not self._is_fitted:
|
366
353
|
raise exceptions.SnowflakeMLException(
|
@@ -378,9 +365,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
378
365
|
"Session must not specified for snowpark dataset."
|
379
366
|
),
|
380
367
|
)
|
381
|
-
|
382
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
383
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
368
|
+
|
384
369
|
|
385
370
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
386
371
|
@telemetry.send_api_usage_telemetry(
|
@@ -416,7 +401,9 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
416
401
|
# when it is classifier, infer the datatype from label columns
|
417
402
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
418
403
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
419
|
-
label_cols_signatures = [
|
404
|
+
label_cols_signatures = [
|
405
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
406
|
+
]
|
420
407
|
if len(label_cols_signatures) == 0:
|
421
408
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
422
409
|
raise exceptions.SnowflakeMLException(
|
@@ -424,25 +411,23 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
424
411
|
original_exception=ValueError(error_str),
|
425
412
|
)
|
426
413
|
|
427
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
428
|
-
label_cols_signatures[0].as_snowpark_type()
|
429
|
-
)
|
414
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
430
415
|
|
431
|
-
self.
|
432
|
-
|
416
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
417
|
+
self._deps = self._get_dependencies()
|
418
|
+
assert isinstance(
|
419
|
+
dataset._session, Session
|
420
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
433
421
|
|
434
422
|
transform_kwargs = dict(
|
435
|
-
session
|
436
|
-
dependencies
|
437
|
-
drop_input_cols
|
438
|
-
expected_output_cols_type
|
423
|
+
session=dataset._session,
|
424
|
+
dependencies=self._deps,
|
425
|
+
drop_input_cols=self._drop_input_cols,
|
426
|
+
expected_output_cols_type=expected_type_inferred,
|
439
427
|
)
|
440
428
|
|
441
429
|
elif isinstance(dataset, pd.DataFrame):
|
442
|
-
transform_kwargs = dict(
|
443
|
-
snowpark_input_cols = self._snowpark_cols,
|
444
|
-
drop_input_cols = self._drop_input_cols
|
445
|
-
)
|
430
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
446
431
|
|
447
432
|
transform_handlers = ModelTransformerBuilder.build(
|
448
433
|
dataset=dataset,
|
@@ -482,7 +467,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
482
467
|
Transformed dataset.
|
483
468
|
"""
|
484
469
|
super()._check_dataset_type(dataset)
|
485
|
-
inference_method="transform"
|
470
|
+
inference_method = "transform"
|
486
471
|
|
487
472
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
488
473
|
# are specific to the type of dataset used.
|
@@ -512,24 +497,19 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
512
497
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
513
498
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
514
499
|
|
515
|
-
self.
|
516
|
-
|
517
|
-
inference_method=inference_method,
|
518
|
-
)
|
500
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
501
|
+
self._deps = self._get_dependencies()
|
519
502
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
520
503
|
|
521
504
|
transform_kwargs = dict(
|
522
|
-
session
|
523
|
-
dependencies
|
524
|
-
drop_input_cols
|
525
|
-
expected_output_cols_type
|
505
|
+
session=dataset._session,
|
506
|
+
dependencies=self._deps,
|
507
|
+
drop_input_cols=self._drop_input_cols,
|
508
|
+
expected_output_cols_type=expected_dtype,
|
526
509
|
)
|
527
510
|
|
528
511
|
elif isinstance(dataset, pd.DataFrame):
|
529
|
-
transform_kwargs = dict(
|
530
|
-
snowpark_input_cols = self._snowpark_cols,
|
531
|
-
drop_input_cols = self._drop_input_cols
|
532
|
-
)
|
512
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
533
513
|
|
534
514
|
transform_handlers = ModelTransformerBuilder.build(
|
535
515
|
dataset=dataset,
|
@@ -548,7 +528,11 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
548
528
|
return output_df
|
549
529
|
|
550
530
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
551
|
-
def fit_predict(
|
531
|
+
def fit_predict(
|
532
|
+
self,
|
533
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
534
|
+
output_cols_prefix: str = "fit_predict_",
|
535
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
552
536
|
""" Method not supported for this class.
|
553
537
|
|
554
538
|
|
@@ -573,22 +557,104 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
573
557
|
)
|
574
558
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
575
559
|
drop_input_cols=self._drop_input_cols,
|
576
|
-
expected_output_cols_list=
|
560
|
+
expected_output_cols_list=(
|
561
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
562
|
+
),
|
577
563
|
)
|
578
564
|
self._sklearn_object = fitted_estimator
|
579
565
|
self._is_fitted = True
|
580
566
|
return output_result
|
581
567
|
|
568
|
+
|
569
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
570
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
571
|
+
""" Method not supported for this class.
|
572
|
+
|
582
573
|
|
583
|
-
|
584
|
-
|
585
|
-
|
574
|
+
Raises:
|
575
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
576
|
+
|
577
|
+
Args:
|
578
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
579
|
+
Snowpark or Pandas DataFrame.
|
580
|
+
output_cols_prefix: Prefix for the response columns
|
586
581
|
Returns:
|
587
582
|
Transformed dataset.
|
588
583
|
"""
|
589
|
-
self.
|
590
|
-
|
591
|
-
|
584
|
+
self._infer_input_output_cols(dataset)
|
585
|
+
super()._check_dataset_type(dataset)
|
586
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
587
|
+
estimator=self._sklearn_object,
|
588
|
+
dataset=dataset,
|
589
|
+
input_cols=self.input_cols,
|
590
|
+
label_cols=self.label_cols,
|
591
|
+
sample_weight_col=self.sample_weight_col,
|
592
|
+
autogenerated=self._autogenerated,
|
593
|
+
subproject=_SUBPROJECT,
|
594
|
+
)
|
595
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
596
|
+
drop_input_cols=self._drop_input_cols,
|
597
|
+
expected_output_cols_list=self.output_cols,
|
598
|
+
)
|
599
|
+
self._sklearn_object = fitted_estimator
|
600
|
+
self._is_fitted = True
|
601
|
+
return output_result
|
602
|
+
|
603
|
+
|
604
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
605
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
606
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
607
|
+
"""
|
608
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
609
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
610
|
+
if output_cols:
|
611
|
+
output_cols = [
|
612
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
613
|
+
for c in output_cols
|
614
|
+
]
|
615
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
616
|
+
output_cols = [output_cols_prefix]
|
617
|
+
elif self._sklearn_object is not None:
|
618
|
+
classes = self._sklearn_object.classes_
|
619
|
+
if isinstance(classes, numpy.ndarray):
|
620
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
621
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
622
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
623
|
+
output_cols = []
|
624
|
+
for i, cl in enumerate(classes):
|
625
|
+
# For binary classification, there is only one output column for each class
|
626
|
+
# ndarray as the two classes are complementary.
|
627
|
+
if len(cl) == 2:
|
628
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
629
|
+
else:
|
630
|
+
output_cols.extend([
|
631
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
632
|
+
])
|
633
|
+
else:
|
634
|
+
output_cols = []
|
635
|
+
|
636
|
+
# Make sure column names are valid snowflake identifiers.
|
637
|
+
assert output_cols is not None # Make MyPy happy
|
638
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
639
|
+
|
640
|
+
return rv
|
641
|
+
|
642
|
+
def _align_expected_output_names(
|
643
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
644
|
+
) -> List[str]:
|
645
|
+
# in case the inferred output column names dimension is different
|
646
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
647
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
648
|
+
output_df_columns = list(output_df_pd.columns)
|
649
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
650
|
+
if self.sample_weight_col:
|
651
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
652
|
+
# if the dimension of inferred output column names is correct; use it
|
653
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
654
|
+
return expected_output_cols_list
|
655
|
+
# otherwise, use the sklearn estimator's output
|
656
|
+
else:
|
657
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
592
658
|
|
593
659
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
594
660
|
@telemetry.send_api_usage_telemetry(
|
@@ -620,24 +686,26 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
620
686
|
# are specific to the type of dataset used.
|
621
687
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
622
688
|
|
689
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
690
|
+
|
623
691
|
if isinstance(dataset, DataFrame):
|
624
|
-
self.
|
625
|
-
|
626
|
-
|
627
|
-
|
628
|
-
|
692
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
693
|
+
self._deps = self._get_dependencies()
|
694
|
+
assert isinstance(
|
695
|
+
dataset._session, Session
|
696
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
629
697
|
transform_kwargs = dict(
|
630
698
|
session=dataset._session,
|
631
699
|
dependencies=self._deps,
|
632
|
-
drop_input_cols
|
700
|
+
drop_input_cols=self._drop_input_cols,
|
633
701
|
expected_output_cols_type="float",
|
634
702
|
)
|
703
|
+
expected_output_cols = self._align_expected_output_names(
|
704
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
705
|
+
)
|
635
706
|
|
636
707
|
elif isinstance(dataset, pd.DataFrame):
|
637
|
-
transform_kwargs = dict(
|
638
|
-
snowpark_input_cols = self._snowpark_cols,
|
639
|
-
drop_input_cols = self._drop_input_cols
|
640
|
-
)
|
708
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
641
709
|
|
642
710
|
transform_handlers = ModelTransformerBuilder.build(
|
643
711
|
dataset=dataset,
|
@@ -649,7 +717,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
649
717
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
650
718
|
inference_method=inference_method,
|
651
719
|
input_cols=self.input_cols,
|
652
|
-
expected_output_cols=
|
720
|
+
expected_output_cols=expected_output_cols,
|
653
721
|
**transform_kwargs
|
654
722
|
)
|
655
723
|
return output_df
|
@@ -679,29 +747,30 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
679
747
|
Output dataset with log probability of the sample for each class in the model.
|
680
748
|
"""
|
681
749
|
super()._check_dataset_type(dataset)
|
682
|
-
inference_method="predict_log_proba"
|
750
|
+
inference_method = "predict_log_proba"
|
751
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
683
752
|
|
684
753
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
685
754
|
# are specific to the type of dataset used.
|
686
755
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
687
756
|
|
688
757
|
if isinstance(dataset, DataFrame):
|
689
|
-
self.
|
690
|
-
|
691
|
-
|
692
|
-
|
693
|
-
|
758
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
759
|
+
self._deps = self._get_dependencies()
|
760
|
+
assert isinstance(
|
761
|
+
dataset._session, Session
|
762
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
694
763
|
transform_kwargs = dict(
|
695
764
|
session=dataset._session,
|
696
765
|
dependencies=self._deps,
|
697
|
-
drop_input_cols
|
766
|
+
drop_input_cols=self._drop_input_cols,
|
698
767
|
expected_output_cols_type="float",
|
699
768
|
)
|
769
|
+
expected_output_cols = self._align_expected_output_names(
|
770
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
771
|
+
)
|
700
772
|
elif isinstance(dataset, pd.DataFrame):
|
701
|
-
transform_kwargs = dict(
|
702
|
-
snowpark_input_cols = self._snowpark_cols,
|
703
|
-
drop_input_cols = self._drop_input_cols
|
704
|
-
)
|
773
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
705
774
|
|
706
775
|
transform_handlers = ModelTransformerBuilder.build(
|
707
776
|
dataset=dataset,
|
@@ -714,7 +783,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
714
783
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
715
784
|
inference_method=inference_method,
|
716
785
|
input_cols=self.input_cols,
|
717
|
-
expected_output_cols=
|
786
|
+
expected_output_cols=expected_output_cols,
|
718
787
|
**transform_kwargs
|
719
788
|
)
|
720
789
|
return output_df
|
@@ -740,30 +809,32 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
740
809
|
Output dataset with results of the decision function for the samples in input dataset.
|
741
810
|
"""
|
742
811
|
super()._check_dataset_type(dataset)
|
743
|
-
inference_method="decision_function"
|
812
|
+
inference_method = "decision_function"
|
744
813
|
|
745
814
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
746
815
|
# are specific to the type of dataset used.
|
747
816
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
748
817
|
|
818
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
819
|
+
|
749
820
|
if isinstance(dataset, DataFrame):
|
750
|
-
self.
|
751
|
-
|
752
|
-
|
753
|
-
|
754
|
-
|
821
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
822
|
+
self._deps = self._get_dependencies()
|
823
|
+
assert isinstance(
|
824
|
+
dataset._session, Session
|
825
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
755
826
|
transform_kwargs = dict(
|
756
827
|
session=dataset._session,
|
757
828
|
dependencies=self._deps,
|
758
|
-
drop_input_cols
|
829
|
+
drop_input_cols=self._drop_input_cols,
|
759
830
|
expected_output_cols_type="float",
|
760
831
|
)
|
832
|
+
expected_output_cols = self._align_expected_output_names(
|
833
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
834
|
+
)
|
761
835
|
|
762
836
|
elif isinstance(dataset, pd.DataFrame):
|
763
|
-
transform_kwargs = dict(
|
764
|
-
snowpark_input_cols = self._snowpark_cols,
|
765
|
-
drop_input_cols = self._drop_input_cols
|
766
|
-
)
|
837
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
767
838
|
|
768
839
|
transform_handlers = ModelTransformerBuilder.build(
|
769
840
|
dataset=dataset,
|
@@ -776,7 +847,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
776
847
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
777
848
|
inference_method=inference_method,
|
778
849
|
input_cols=self.input_cols,
|
779
|
-
expected_output_cols=
|
850
|
+
expected_output_cols=expected_output_cols,
|
780
851
|
**transform_kwargs
|
781
852
|
)
|
782
853
|
return output_df
|
@@ -805,17 +876,17 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
805
876
|
Output dataset with probability of the sample for each class in the model.
|
806
877
|
"""
|
807
878
|
super()._check_dataset_type(dataset)
|
808
|
-
inference_method="score_samples"
|
879
|
+
inference_method = "score_samples"
|
809
880
|
|
810
881
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
811
882
|
# are specific to the type of dataset used.
|
812
883
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
813
884
|
|
885
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
886
|
+
|
814
887
|
if isinstance(dataset, DataFrame):
|
815
|
-
self.
|
816
|
-
|
817
|
-
inference_method=inference_method,
|
818
|
-
)
|
888
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
889
|
+
self._deps = self._get_dependencies()
|
819
890
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
820
891
|
transform_kwargs = dict(
|
821
892
|
session=dataset._session,
|
@@ -823,6 +894,9 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
823
894
|
drop_input_cols = self._drop_input_cols,
|
824
895
|
expected_output_cols_type="float",
|
825
896
|
)
|
897
|
+
expected_output_cols = self._align_expected_output_names(
|
898
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
899
|
+
)
|
826
900
|
|
827
901
|
elif isinstance(dataset, pd.DataFrame):
|
828
902
|
transform_kwargs = dict(
|
@@ -841,7 +915,7 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
841
915
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
842
916
|
inference_method=inference_method,
|
843
917
|
input_cols=self.input_cols,
|
844
|
-
expected_output_cols=
|
918
|
+
expected_output_cols=expected_output_cols,
|
845
919
|
**transform_kwargs
|
846
920
|
)
|
847
921
|
return output_df
|
@@ -876,17 +950,15 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
876
950
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
877
951
|
|
878
952
|
if isinstance(dataset, DataFrame):
|
879
|
-
self.
|
880
|
-
|
881
|
-
inference_method="score",
|
882
|
-
)
|
953
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
954
|
+
self._deps = self._get_dependencies()
|
883
955
|
selected_cols = self._get_active_columns()
|
884
956
|
if len(selected_cols) > 0:
|
885
957
|
dataset = dataset.select(selected_cols)
|
886
958
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
887
959
|
transform_kwargs = dict(
|
888
960
|
session=dataset._session,
|
889
|
-
dependencies=
|
961
|
+
dependencies=self._deps,
|
890
962
|
score_sproc_imports=['sklearn'],
|
891
963
|
)
|
892
964
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -951,11 +1023,8 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
951
1023
|
|
952
1024
|
if isinstance(dataset, DataFrame):
|
953
1025
|
|
954
|
-
self.
|
955
|
-
|
956
|
-
inference_method=inference_method,
|
957
|
-
|
958
|
-
)
|
1026
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1027
|
+
self._deps = self._get_dependencies()
|
959
1028
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
960
1029
|
transform_kwargs = dict(
|
961
1030
|
session = dataset._session,
|
@@ -988,50 +1057,84 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
988
1057
|
)
|
989
1058
|
return output_df
|
990
1059
|
|
1060
|
+
|
1061
|
+
|
1062
|
+
def to_sklearn(self) -> Any:
|
1063
|
+
"""Get sklearn.gaussian_process.GaussianProcessRegressor object.
|
1064
|
+
"""
|
1065
|
+
if self._sklearn_object is None:
|
1066
|
+
self._sklearn_object = self._create_sklearn_object()
|
1067
|
+
return self._sklearn_object
|
1068
|
+
|
1069
|
+
def to_xgboost(self) -> Any:
|
1070
|
+
raise exceptions.SnowflakeMLException(
|
1071
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1072
|
+
original_exception=AttributeError(
|
1073
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1074
|
+
"to_xgboost()",
|
1075
|
+
"to_sklearn()"
|
1076
|
+
)
|
1077
|
+
),
|
1078
|
+
)
|
1079
|
+
|
1080
|
+
def to_lightgbm(self) -> Any:
|
1081
|
+
raise exceptions.SnowflakeMLException(
|
1082
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1083
|
+
original_exception=AttributeError(
|
1084
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1085
|
+
"to_lightgbm()",
|
1086
|
+
"to_sklearn()"
|
1087
|
+
)
|
1088
|
+
),
|
1089
|
+
)
|
1090
|
+
|
1091
|
+
def _get_dependencies(self) -> List[str]:
|
1092
|
+
return self._deps
|
1093
|
+
|
991
1094
|
|
992
|
-
def
|
1095
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
993
1096
|
self._model_signature_dict = dict()
|
994
1097
|
|
995
1098
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
996
1099
|
|
997
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1100
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
998
1101
|
outputs: List[BaseFeatureSpec] = []
|
999
1102
|
if hasattr(self, "predict"):
|
1000
1103
|
# keep mypy happy
|
1001
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1104
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1002
1105
|
# For classifier, the type of predict is the same as the type of label
|
1003
|
-
if self._sklearn_object._estimator_type ==
|
1004
|
-
|
1106
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1107
|
+
# label columns is the desired type for output
|
1005
1108
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
1006
1109
|
# rename the output columns
|
1007
1110
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
1008
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1009
|
-
|
1010
|
-
|
1111
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1112
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1113
|
+
)
|
1011
1114
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1012
1115
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1013
|
-
# Clusterer returns int64 cluster labels.
|
1116
|
+
# Clusterer returns int64 cluster labels.
|
1014
1117
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1015
1118
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1016
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1017
|
-
|
1018
|
-
|
1019
|
-
|
1119
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1120
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1121
|
+
)
|
1122
|
+
|
1020
1123
|
# For regressor, the type of predict is float64
|
1021
|
-
elif self._sklearn_object._estimator_type ==
|
1124
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1022
1125
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1023
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1024
|
-
|
1025
|
-
|
1026
|
-
|
1126
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1127
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1128
|
+
)
|
1129
|
+
|
1027
1130
|
for prob_func in PROB_FUNCTIONS:
|
1028
1131
|
if hasattr(self, prob_func):
|
1029
1132
|
output_cols_prefix: str = f"{prob_func}_"
|
1030
1133
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1031
1134
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1032
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1033
|
-
|
1034
|
-
|
1135
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1136
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1137
|
+
)
|
1035
1138
|
|
1036
1139
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1037
1140
|
items = list(self._model_signature_dict.items())
|
@@ -1044,10 +1147,10 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
1044
1147
|
"""Returns model signature of current class.
|
1045
1148
|
|
1046
1149
|
Raises:
|
1047
|
-
|
1150
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1048
1151
|
|
1049
1152
|
Returns:
|
1050
|
-
Dict
|
1153
|
+
Dict with each method and its input output signature
|
1051
1154
|
"""
|
1052
1155
|
if self._model_signature_dict is None:
|
1053
1156
|
raise exceptions.SnowflakeMLException(
|
@@ -1055,35 +1158,3 @@ class GaussianProcessRegressor(BaseTransformer):
|
|
1055
1158
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1056
1159
|
)
|
1057
1160
|
return self._model_signature_dict
|
1058
|
-
|
1059
|
-
def to_sklearn(self) -> Any:
|
1060
|
-
"""Get sklearn.gaussian_process.GaussianProcessRegressor object.
|
1061
|
-
"""
|
1062
|
-
if self._sklearn_object is None:
|
1063
|
-
self._sklearn_object = self._create_sklearn_object()
|
1064
|
-
return self._sklearn_object
|
1065
|
-
|
1066
|
-
def to_xgboost(self) -> Any:
|
1067
|
-
raise exceptions.SnowflakeMLException(
|
1068
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1069
|
-
original_exception=AttributeError(
|
1070
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1071
|
-
"to_xgboost()",
|
1072
|
-
"to_sklearn()"
|
1073
|
-
)
|
1074
|
-
),
|
1075
|
-
)
|
1076
|
-
|
1077
|
-
def to_lightgbm(self) -> Any:
|
1078
|
-
raise exceptions.SnowflakeMLException(
|
1079
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1080
|
-
original_exception=AttributeError(
|
1081
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1082
|
-
"to_lightgbm()",
|
1083
|
-
"to_sklearn()"
|
1084
|
-
)
|
1085
|
-
),
|
1086
|
-
)
|
1087
|
-
|
1088
|
-
def _get_dependencies(self) -> List[str]:
|
1089
|
-
return self._deps
|