snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.preprocessing".replace("
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class PolynomialFeatures(BaseTransformer):
71
64
  r"""Generate polynomial and interaction features
72
65
  For more details on this class, see [sklearn.preprocessing.PolynomialFeatures]
@@ -222,12 +215,7 @@ class PolynomialFeatures(BaseTransformer):
222
215
  )
223
216
  return selected_cols
224
217
 
225
- @telemetry.send_api_usage_telemetry(
226
- project=_PROJECT,
227
- subproject=_SUBPROJECT,
228
- custom_tags=dict([("autogen", True)]),
229
- )
230
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialFeatures":
218
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "PolynomialFeatures":
231
219
  """Compute number of output features
232
220
  For more details on this function, see [sklearn.preprocessing.PolynomialFeatures.fit]
233
221
  (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures.fit)
@@ -254,12 +242,14 @@ class PolynomialFeatures(BaseTransformer):
254
242
 
255
243
  self._snowpark_cols = dataset.select(self.input_cols).columns
256
244
 
257
- # If we are already in a stored procedure, no need to kick off another one.
245
+ # If we are already in a stored procedure, no need to kick off another one.
258
246
  if SNOWML_SPROC_ENV in os.environ:
259
247
  statement_params = telemetry.get_function_usage_statement_params(
260
248
  project=_PROJECT,
261
249
  subproject=_SUBPROJECT,
262
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), PolynomialFeatures.__class__.__name__),
250
+ function_name=telemetry.get_statement_params_full_func_name(
251
+ inspect.currentframe(), PolynomialFeatures.__class__.__name__
252
+ ),
263
253
  api_calls=[Session.call],
264
254
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
265
255
  )
@@ -280,27 +270,24 @@ class PolynomialFeatures(BaseTransformer):
280
270
  )
281
271
  self._sklearn_object = model_trainer.train()
282
272
  self._is_fitted = True
283
- self._get_model_signatures(dataset)
273
+ self._generate_model_signatures(dataset)
284
274
  return self
285
275
 
286
276
  def _batch_inference_validate_snowpark(
287
277
  self,
288
278
  dataset: DataFrame,
289
279
  inference_method: str,
290
- ) -> List[str]:
291
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
292
- return the available package that exists in the snowflake anaconda channel
280
+ ) -> None:
281
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
293
282
 
294
283
  Args:
295
284
  dataset: snowpark dataframe
296
285
  inference_method: the inference method such as predict, score...
297
-
286
+
298
287
  Raises:
299
288
  SnowflakeMLException: If the estimator is not fitted, raise error
300
289
  SnowflakeMLException: If the session is None, raise error
301
290
 
302
- Returns:
303
- A list of available package that exists in the snowflake anaconda channel
304
291
  """
305
292
  if not self._is_fitted:
306
293
  raise exceptions.SnowflakeMLException(
@@ -318,9 +305,7 @@ class PolynomialFeatures(BaseTransformer):
318
305
  "Session must not specified for snowpark dataset."
319
306
  ),
320
307
  )
321
- # Validate that key package version in user workspace are supported in snowflake conda channel
322
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
323
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
308
+
324
309
 
325
310
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
326
311
  @telemetry.send_api_usage_telemetry(
@@ -354,7 +339,9 @@ class PolynomialFeatures(BaseTransformer):
354
339
  # when it is classifier, infer the datatype from label columns
355
340
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
356
341
  # Batch inference takes a single expected output column type. Use the first columns type for now.
357
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
342
+ label_cols_signatures = [
343
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
344
+ ]
358
345
  if len(label_cols_signatures) == 0:
359
346
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
360
347
  raise exceptions.SnowflakeMLException(
@@ -362,25 +349,23 @@ class PolynomialFeatures(BaseTransformer):
362
349
  original_exception=ValueError(error_str),
363
350
  )
364
351
 
365
- expected_type_inferred = convert_sp_to_sf_type(
366
- label_cols_signatures[0].as_snowpark_type()
367
- )
352
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
368
353
 
369
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
370
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
354
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
355
+ self._deps = self._get_dependencies()
356
+ assert isinstance(
357
+ dataset._session, Session
358
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
371
359
 
372
360
  transform_kwargs = dict(
373
- session = dataset._session,
374
- dependencies = self._deps,
375
- drop_input_cols = self._drop_input_cols,
376
- expected_output_cols_type = expected_type_inferred,
361
+ session=dataset._session,
362
+ dependencies=self._deps,
363
+ drop_input_cols=self._drop_input_cols,
364
+ expected_output_cols_type=expected_type_inferred,
377
365
  )
378
366
 
379
367
  elif isinstance(dataset, pd.DataFrame):
380
- transform_kwargs = dict(
381
- snowpark_input_cols = self._snowpark_cols,
382
- drop_input_cols = self._drop_input_cols
383
- )
368
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
384
369
 
385
370
  transform_handlers = ModelTransformerBuilder.build(
386
371
  dataset=dataset,
@@ -422,7 +407,7 @@ class PolynomialFeatures(BaseTransformer):
422
407
  Transformed dataset.
423
408
  """
424
409
  super()._check_dataset_type(dataset)
425
- inference_method="transform"
410
+ inference_method = "transform"
426
411
 
427
412
  # This dictionary contains optional kwargs for batch inference. These kwargs
428
413
  # are specific to the type of dataset used.
@@ -452,24 +437,19 @@ class PolynomialFeatures(BaseTransformer):
452
437
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
453
438
  expected_dtype = convert_sp_to_sf_type(output_types[0])
454
439
 
455
- self._deps = self._batch_inference_validate_snowpark(
456
- dataset=dataset,
457
- inference_method=inference_method,
458
- )
440
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
441
+ self._deps = self._get_dependencies()
459
442
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
460
443
 
461
444
  transform_kwargs = dict(
462
- session = dataset._session,
463
- dependencies = self._deps,
464
- drop_input_cols = self._drop_input_cols,
465
- expected_output_cols_type = expected_dtype,
445
+ session=dataset._session,
446
+ dependencies=self._deps,
447
+ drop_input_cols=self._drop_input_cols,
448
+ expected_output_cols_type=expected_dtype,
466
449
  )
467
450
 
468
451
  elif isinstance(dataset, pd.DataFrame):
469
- transform_kwargs = dict(
470
- snowpark_input_cols = self._snowpark_cols,
471
- drop_input_cols = self._drop_input_cols
472
- )
452
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
473
453
 
474
454
  transform_handlers = ModelTransformerBuilder.build(
475
455
  dataset=dataset,
@@ -488,7 +468,11 @@ class PolynomialFeatures(BaseTransformer):
488
468
  return output_df
489
469
 
490
470
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
491
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
471
+ def fit_predict(
472
+ self,
473
+ dataset: Union[DataFrame, pd.DataFrame],
474
+ output_cols_prefix: str = "fit_predict_",
475
+ ) -> Union[DataFrame, pd.DataFrame]:
492
476
  """ Method not supported for this class.
493
477
 
494
478
 
@@ -513,22 +497,106 @@ class PolynomialFeatures(BaseTransformer):
513
497
  )
514
498
  output_result, fitted_estimator = model_trainer.train_fit_predict(
515
499
  drop_input_cols=self._drop_input_cols,
516
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
500
+ expected_output_cols_list=(
501
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
502
+ ),
517
503
  )
518
504
  self._sklearn_object = fitted_estimator
519
505
  self._is_fitted = True
520
506
  return output_result
521
507
 
508
+
509
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
510
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
511
+ """ Fit to data, then transform it
512
+ For more details on this function, see [sklearn.preprocessing.PolynomialFeatures.fit_transform]
513
+ (https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.PolynomialFeatures.html#sklearn.preprocessing.PolynomialFeatures.fit_transform)
514
+
515
+
516
+ Raises:
517
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
522
518
 
523
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
524
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
525
- """
519
+ Args:
520
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
521
+ Snowpark or Pandas DataFrame.
522
+ output_cols_prefix: Prefix for the response columns
526
523
  Returns:
527
524
  Transformed dataset.
528
525
  """
529
- self.fit(dataset)
530
- assert self._sklearn_object is not None
531
- return self._sklearn_object.embedding_
526
+ self._infer_input_output_cols(dataset)
527
+ super()._check_dataset_type(dataset)
528
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
529
+ estimator=self._sklearn_object,
530
+ dataset=dataset,
531
+ input_cols=self.input_cols,
532
+ label_cols=self.label_cols,
533
+ sample_weight_col=self.sample_weight_col,
534
+ autogenerated=self._autogenerated,
535
+ subproject=_SUBPROJECT,
536
+ )
537
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
538
+ drop_input_cols=self._drop_input_cols,
539
+ expected_output_cols_list=self.output_cols,
540
+ )
541
+ self._sklearn_object = fitted_estimator
542
+ self._is_fitted = True
543
+ return output_result
544
+
545
+
546
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
547
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
548
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
549
+ """
550
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
551
+ # The following condition is introduced for kneighbors methods, and not used in other methods
552
+ if output_cols:
553
+ output_cols = [
554
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
555
+ for c in output_cols
556
+ ]
557
+ elif getattr(self._sklearn_object, "classes_", None) is None:
558
+ output_cols = [output_cols_prefix]
559
+ elif self._sklearn_object is not None:
560
+ classes = self._sklearn_object.classes_
561
+ if isinstance(classes, numpy.ndarray):
562
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
563
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
564
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
565
+ output_cols = []
566
+ for i, cl in enumerate(classes):
567
+ # For binary classification, there is only one output column for each class
568
+ # ndarray as the two classes are complementary.
569
+ if len(cl) == 2:
570
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
571
+ else:
572
+ output_cols.extend([
573
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
574
+ ])
575
+ else:
576
+ output_cols = []
577
+
578
+ # Make sure column names are valid snowflake identifiers.
579
+ assert output_cols is not None # Make MyPy happy
580
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
581
+
582
+ return rv
583
+
584
+ def _align_expected_output_names(
585
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
586
+ ) -> List[str]:
587
+ # in case the inferred output column names dimension is different
588
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
589
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
590
+ output_df_columns = list(output_df_pd.columns)
591
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
592
+ if self.sample_weight_col:
593
+ output_df_columns_set -= set(self.sample_weight_col)
594
+ # if the dimension of inferred output column names is correct; use it
595
+ if len(expected_output_cols_list) == len(output_df_columns_set):
596
+ return expected_output_cols_list
597
+ # otherwise, use the sklearn estimator's output
598
+ else:
599
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
532
600
 
533
601
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
534
602
  @telemetry.send_api_usage_telemetry(
@@ -560,24 +628,26 @@ class PolynomialFeatures(BaseTransformer):
560
628
  # are specific to the type of dataset used.
561
629
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
562
630
 
631
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
632
+
563
633
  if isinstance(dataset, DataFrame):
564
- self._deps = self._batch_inference_validate_snowpark(
565
- dataset=dataset,
566
- inference_method=inference_method,
567
- )
568
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
635
+ self._deps = self._get_dependencies()
636
+ assert isinstance(
637
+ dataset._session, Session
638
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
569
639
  transform_kwargs = dict(
570
640
  session=dataset._session,
571
641
  dependencies=self._deps,
572
- drop_input_cols = self._drop_input_cols,
642
+ drop_input_cols=self._drop_input_cols,
573
643
  expected_output_cols_type="float",
574
644
  )
645
+ expected_output_cols = self._align_expected_output_names(
646
+ inference_method, dataset, expected_output_cols, output_cols_prefix
647
+ )
575
648
 
576
649
  elif isinstance(dataset, pd.DataFrame):
577
- transform_kwargs = dict(
578
- snowpark_input_cols = self._snowpark_cols,
579
- drop_input_cols = self._drop_input_cols
580
- )
650
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
581
651
 
582
652
  transform_handlers = ModelTransformerBuilder.build(
583
653
  dataset=dataset,
@@ -589,7 +659,7 @@ class PolynomialFeatures(BaseTransformer):
589
659
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
590
660
  inference_method=inference_method,
591
661
  input_cols=self.input_cols,
592
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
662
+ expected_output_cols=expected_output_cols,
593
663
  **transform_kwargs
594
664
  )
595
665
  return output_df
@@ -619,29 +689,30 @@ class PolynomialFeatures(BaseTransformer):
619
689
  Output dataset with log probability of the sample for each class in the model.
620
690
  """
621
691
  super()._check_dataset_type(dataset)
622
- inference_method="predict_log_proba"
692
+ inference_method = "predict_log_proba"
693
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
623
694
 
624
695
  # This dictionary contains optional kwargs for batch inference. These kwargs
625
696
  # are specific to the type of dataset used.
626
697
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
627
698
 
628
699
  if isinstance(dataset, DataFrame):
629
- self._deps = self._batch_inference_validate_snowpark(
630
- dataset=dataset,
631
- inference_method=inference_method,
632
- )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
700
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
701
+ self._deps = self._get_dependencies()
702
+ assert isinstance(
703
+ dataset._session, Session
704
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
705
  transform_kwargs = dict(
635
706
  session=dataset._session,
636
707
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
708
+ drop_input_cols=self._drop_input_cols,
638
709
  expected_output_cols_type="float",
639
710
  )
711
+ expected_output_cols = self._align_expected_output_names(
712
+ inference_method, dataset, expected_output_cols, output_cols_prefix
713
+ )
640
714
  elif isinstance(dataset, pd.DataFrame):
641
- transform_kwargs = dict(
642
- snowpark_input_cols = self._snowpark_cols,
643
- drop_input_cols = self._drop_input_cols
644
- )
715
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
645
716
 
646
717
  transform_handlers = ModelTransformerBuilder.build(
647
718
  dataset=dataset,
@@ -654,7 +725,7 @@ class PolynomialFeatures(BaseTransformer):
654
725
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
726
  inference_method=inference_method,
656
727
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
728
+ expected_output_cols=expected_output_cols,
658
729
  **transform_kwargs
659
730
  )
660
731
  return output_df
@@ -680,30 +751,32 @@ class PolynomialFeatures(BaseTransformer):
680
751
  Output dataset with results of the decision function for the samples in input dataset.
681
752
  """
682
753
  super()._check_dataset_type(dataset)
683
- inference_method="decision_function"
754
+ inference_method = "decision_function"
684
755
 
685
756
  # This dictionary contains optional kwargs for batch inference. These kwargs
686
757
  # are specific to the type of dataset used.
687
758
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
688
759
 
760
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
761
+
689
762
  if isinstance(dataset, DataFrame):
690
- self._deps = self._batch_inference_validate_snowpark(
691
- dataset=dataset,
692
- inference_method=inference_method,
693
- )
694
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
763
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
764
+ self._deps = self._get_dependencies()
765
+ assert isinstance(
766
+ dataset._session, Session
767
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
768
  transform_kwargs = dict(
696
769
  session=dataset._session,
697
770
  dependencies=self._deps,
698
- drop_input_cols = self._drop_input_cols,
771
+ drop_input_cols=self._drop_input_cols,
699
772
  expected_output_cols_type="float",
700
773
  )
774
+ expected_output_cols = self._align_expected_output_names(
775
+ inference_method, dataset, expected_output_cols, output_cols_prefix
776
+ )
701
777
 
702
778
  elif isinstance(dataset, pd.DataFrame):
703
- transform_kwargs = dict(
704
- snowpark_input_cols = self._snowpark_cols,
705
- drop_input_cols = self._drop_input_cols
706
- )
779
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
707
780
 
708
781
  transform_handlers = ModelTransformerBuilder.build(
709
782
  dataset=dataset,
@@ -716,7 +789,7 @@ class PolynomialFeatures(BaseTransformer):
716
789
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
717
790
  inference_method=inference_method,
718
791
  input_cols=self.input_cols,
719
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
792
+ expected_output_cols=expected_output_cols,
720
793
  **transform_kwargs
721
794
  )
722
795
  return output_df
@@ -745,17 +818,17 @@ class PolynomialFeatures(BaseTransformer):
745
818
  Output dataset with probability of the sample for each class in the model.
746
819
  """
747
820
  super()._check_dataset_type(dataset)
748
- inference_method="score_samples"
821
+ inference_method = "score_samples"
749
822
 
750
823
  # This dictionary contains optional kwargs for batch inference. These kwargs
751
824
  # are specific to the type of dataset used.
752
825
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
753
826
 
827
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
828
+
754
829
  if isinstance(dataset, DataFrame):
755
- self._deps = self._batch_inference_validate_snowpark(
756
- dataset=dataset,
757
- inference_method=inference_method,
758
- )
830
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
831
+ self._deps = self._get_dependencies()
759
832
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
760
833
  transform_kwargs = dict(
761
834
  session=dataset._session,
@@ -763,6 +836,9 @@ class PolynomialFeatures(BaseTransformer):
763
836
  drop_input_cols = self._drop_input_cols,
764
837
  expected_output_cols_type="float",
765
838
  )
839
+ expected_output_cols = self._align_expected_output_names(
840
+ inference_method, dataset, expected_output_cols, output_cols_prefix
841
+ )
766
842
 
767
843
  elif isinstance(dataset, pd.DataFrame):
768
844
  transform_kwargs = dict(
@@ -781,7 +857,7 @@ class PolynomialFeatures(BaseTransformer):
781
857
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
782
858
  inference_method=inference_method,
783
859
  input_cols=self.input_cols,
784
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
860
+ expected_output_cols=expected_output_cols,
785
861
  **transform_kwargs
786
862
  )
787
863
  return output_df
@@ -814,17 +890,15 @@ class PolynomialFeatures(BaseTransformer):
814
890
  transform_kwargs: ScoreKwargsTypedDict = dict()
815
891
 
816
892
  if isinstance(dataset, DataFrame):
817
- self._deps = self._batch_inference_validate_snowpark(
818
- dataset=dataset,
819
- inference_method="score",
820
- )
893
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
894
+ self._deps = self._get_dependencies()
821
895
  selected_cols = self._get_active_columns()
822
896
  if len(selected_cols) > 0:
823
897
  dataset = dataset.select(selected_cols)
824
898
  assert isinstance(dataset._session, Session) # keep mypy happy
825
899
  transform_kwargs = dict(
826
900
  session=dataset._session,
827
- dependencies=["snowflake-snowpark-python"] + self._deps,
901
+ dependencies=self._deps,
828
902
  score_sproc_imports=['sklearn'],
829
903
  )
830
904
  elif isinstance(dataset, pd.DataFrame):
@@ -889,11 +963,8 @@ class PolynomialFeatures(BaseTransformer):
889
963
 
890
964
  if isinstance(dataset, DataFrame):
891
965
 
892
- self._deps = self._batch_inference_validate_snowpark(
893
- dataset=dataset,
894
- inference_method=inference_method,
895
-
896
- )
966
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
967
+ self._deps = self._get_dependencies()
897
968
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
898
969
  transform_kwargs = dict(
899
970
  session = dataset._session,
@@ -926,50 +997,84 @@ class PolynomialFeatures(BaseTransformer):
926
997
  )
927
998
  return output_df
928
999
 
1000
+
1001
+
1002
+ def to_sklearn(self) -> Any:
1003
+ """Get sklearn.preprocessing.PolynomialFeatures object.
1004
+ """
1005
+ if self._sklearn_object is None:
1006
+ self._sklearn_object = self._create_sklearn_object()
1007
+ return self._sklearn_object
1008
+
1009
+ def to_xgboost(self) -> Any:
1010
+ raise exceptions.SnowflakeMLException(
1011
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1012
+ original_exception=AttributeError(
1013
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1014
+ "to_xgboost()",
1015
+ "to_sklearn()"
1016
+ )
1017
+ ),
1018
+ )
929
1019
 
930
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1020
+ def to_lightgbm(self) -> Any:
1021
+ raise exceptions.SnowflakeMLException(
1022
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1023
+ original_exception=AttributeError(
1024
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1025
+ "to_lightgbm()",
1026
+ "to_sklearn()"
1027
+ )
1028
+ ),
1029
+ )
1030
+
1031
+ def _get_dependencies(self) -> List[str]:
1032
+ return self._deps
1033
+
1034
+
1035
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
931
1036
  self._model_signature_dict = dict()
932
1037
 
933
1038
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
934
1039
 
935
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1040
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
936
1041
  outputs: List[BaseFeatureSpec] = []
937
1042
  if hasattr(self, "predict"):
938
1043
  # keep mypy happy
939
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1044
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
940
1045
  # For classifier, the type of predict is the same as the type of label
941
- if self._sklearn_object._estimator_type == 'classifier':
942
- # label columns is the desired type for output
1046
+ if self._sklearn_object._estimator_type == "classifier":
1047
+ # label columns is the desired type for output
943
1048
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
944
1049
  # rename the output columns
945
1050
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
946
- self._model_signature_dict["predict"] = ModelSignature(inputs,
947
- ([] if self._drop_input_cols else inputs)
948
- + outputs)
1051
+ self._model_signature_dict["predict"] = ModelSignature(
1052
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1053
+ )
949
1054
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
950
1055
  # For outlier models, returns -1 for outliers and 1 for inliers.
951
- # Clusterer returns int64 cluster labels.
1056
+ # Clusterer returns int64 cluster labels.
952
1057
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
953
1058
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
954
- self._model_signature_dict["predict"] = ModelSignature(inputs,
955
- ([] if self._drop_input_cols else inputs)
956
- + outputs)
957
-
1059
+ self._model_signature_dict["predict"] = ModelSignature(
1060
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1061
+ )
1062
+
958
1063
  # For regressor, the type of predict is float64
959
- elif self._sklearn_object._estimator_type == 'regressor':
1064
+ elif self._sklearn_object._estimator_type == "regressor":
960
1065
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
961
- self._model_signature_dict["predict"] = ModelSignature(inputs,
962
- ([] if self._drop_input_cols else inputs)
963
- + outputs)
964
-
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
1069
+
965
1070
  for prob_func in PROB_FUNCTIONS:
966
1071
  if hasattr(self, prob_func):
967
1072
  output_cols_prefix: str = f"{prob_func}_"
968
1073
  output_column_names = self._get_output_column_names(output_cols_prefix)
969
1074
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
970
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
971
- ([] if self._drop_input_cols else inputs)
972
- + outputs)
1075
+ self._model_signature_dict[prob_func] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
973
1078
 
974
1079
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
975
1080
  items = list(self._model_signature_dict.items())
@@ -982,10 +1087,10 @@ class PolynomialFeatures(BaseTransformer):
982
1087
  """Returns model signature of current class.
983
1088
 
984
1089
  Raises:
985
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1090
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
986
1091
 
987
1092
  Returns:
988
- Dict[str, ModelSignature]: each method and its input output signature
1093
+ Dict with each method and its input output signature
989
1094
  """
990
1095
  if self._model_signature_dict is None:
991
1096
  raise exceptions.SnowflakeMLException(
@@ -993,35 +1098,3 @@ class PolynomialFeatures(BaseTransformer):
993
1098
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
994
1099
  )
995
1100
  return self._model_signature_dict
996
-
997
- def to_sklearn(self) -> Any:
998
- """Get sklearn.preprocessing.PolynomialFeatures object.
999
- """
1000
- if self._sklearn_object is None:
1001
- self._sklearn_object = self._create_sklearn_object()
1002
- return self._sklearn_object
1003
-
1004
- def to_xgboost(self) -> Any:
1005
- raise exceptions.SnowflakeMLException(
1006
- error_code=error_codes.METHOD_NOT_ALLOWED,
1007
- original_exception=AttributeError(
1008
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1009
- "to_xgboost()",
1010
- "to_sklearn()"
1011
- )
1012
- ),
1013
- )
1014
-
1015
- def to_lightgbm(self) -> Any:
1016
- raise exceptions.SnowflakeMLException(
1017
- error_code=error_codes.METHOD_NOT_ALLOWED,
1018
- original_exception=AttributeError(
1019
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1020
- "to_lightgbm()",
1021
- "to_sklearn()"
1022
- )
1023
- ),
1024
- )
1025
-
1026
- def _get_dependencies(self) -> List[str]:
1027
- return self._deps