snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class TransformedTargetRegressor(BaseTransformer):
|
71
64
|
r"""Meta-estimator to regress on a transformed target
|
72
65
|
For more details on this class, see [sklearn.compose.TransformedTargetRegressor]
|
@@ -231,12 +224,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
231
224
|
)
|
232
225
|
return selected_cols
|
233
226
|
|
234
|
-
|
235
|
-
project=_PROJECT,
|
236
|
-
subproject=_SUBPROJECT,
|
237
|
-
custom_tags=dict([("autogen", True)]),
|
238
|
-
)
|
239
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
|
227
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
|
240
228
|
"""Fit the model according to the given training data
|
241
229
|
For more details on this function, see [sklearn.compose.TransformedTargetRegressor.fit]
|
242
230
|
(https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor.fit)
|
@@ -263,12 +251,14 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
263
251
|
|
264
252
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
265
253
|
|
266
|
-
|
254
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
267
255
|
if SNOWML_SPROC_ENV in os.environ:
|
268
256
|
statement_params = telemetry.get_function_usage_statement_params(
|
269
257
|
project=_PROJECT,
|
270
258
|
subproject=_SUBPROJECT,
|
271
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
259
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
260
|
+
inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
|
261
|
+
),
|
272
262
|
api_calls=[Session.call],
|
273
263
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
274
264
|
)
|
@@ -289,27 +279,24 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
289
279
|
)
|
290
280
|
self._sklearn_object = model_trainer.train()
|
291
281
|
self._is_fitted = True
|
292
|
-
self.
|
282
|
+
self._generate_model_signatures(dataset)
|
293
283
|
return self
|
294
284
|
|
295
285
|
def _batch_inference_validate_snowpark(
|
296
286
|
self,
|
297
287
|
dataset: DataFrame,
|
298
288
|
inference_method: str,
|
299
|
-
) ->
|
300
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
301
|
-
return the available package that exists in the snowflake anaconda channel
|
289
|
+
) -> None:
|
290
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
302
291
|
|
303
292
|
Args:
|
304
293
|
dataset: snowpark dataframe
|
305
294
|
inference_method: the inference method such as predict, score...
|
306
|
-
|
295
|
+
|
307
296
|
Raises:
|
308
297
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
309
298
|
SnowflakeMLException: If the session is None, raise error
|
310
299
|
|
311
|
-
Returns:
|
312
|
-
A list of available package that exists in the snowflake anaconda channel
|
313
300
|
"""
|
314
301
|
if not self._is_fitted:
|
315
302
|
raise exceptions.SnowflakeMLException(
|
@@ -327,9 +314,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
327
314
|
"Session must not specified for snowpark dataset."
|
328
315
|
),
|
329
316
|
)
|
330
|
-
|
331
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
332
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
317
|
+
|
333
318
|
|
334
319
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
335
320
|
@telemetry.send_api_usage_telemetry(
|
@@ -365,7 +350,9 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
365
350
|
# when it is classifier, infer the datatype from label columns
|
366
351
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
367
352
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
368
|
-
label_cols_signatures = [
|
353
|
+
label_cols_signatures = [
|
354
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
355
|
+
]
|
369
356
|
if len(label_cols_signatures) == 0:
|
370
357
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
371
358
|
raise exceptions.SnowflakeMLException(
|
@@ -373,25 +360,23 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
373
360
|
original_exception=ValueError(error_str),
|
374
361
|
)
|
375
362
|
|
376
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
377
|
-
label_cols_signatures[0].as_snowpark_type()
|
378
|
-
)
|
363
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
379
364
|
|
380
|
-
self.
|
381
|
-
|
365
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
366
|
+
self._deps = self._get_dependencies()
|
367
|
+
assert isinstance(
|
368
|
+
dataset._session, Session
|
369
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
382
370
|
|
383
371
|
transform_kwargs = dict(
|
384
|
-
session
|
385
|
-
dependencies
|
386
|
-
drop_input_cols
|
387
|
-
expected_output_cols_type
|
372
|
+
session=dataset._session,
|
373
|
+
dependencies=self._deps,
|
374
|
+
drop_input_cols=self._drop_input_cols,
|
375
|
+
expected_output_cols_type=expected_type_inferred,
|
388
376
|
)
|
389
377
|
|
390
378
|
elif isinstance(dataset, pd.DataFrame):
|
391
|
-
transform_kwargs = dict(
|
392
|
-
snowpark_input_cols = self._snowpark_cols,
|
393
|
-
drop_input_cols = self._drop_input_cols
|
394
|
-
)
|
379
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
395
380
|
|
396
381
|
transform_handlers = ModelTransformerBuilder.build(
|
397
382
|
dataset=dataset,
|
@@ -431,7 +416,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
431
416
|
Transformed dataset.
|
432
417
|
"""
|
433
418
|
super()._check_dataset_type(dataset)
|
434
|
-
inference_method="transform"
|
419
|
+
inference_method = "transform"
|
435
420
|
|
436
421
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
437
422
|
# are specific to the type of dataset used.
|
@@ -461,24 +446,19 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
461
446
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
462
447
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
463
448
|
|
464
|
-
self.
|
465
|
-
|
466
|
-
inference_method=inference_method,
|
467
|
-
)
|
449
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
450
|
+
self._deps = self._get_dependencies()
|
468
451
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
469
452
|
|
470
453
|
transform_kwargs = dict(
|
471
|
-
session
|
472
|
-
dependencies
|
473
|
-
drop_input_cols
|
474
|
-
expected_output_cols_type
|
454
|
+
session=dataset._session,
|
455
|
+
dependencies=self._deps,
|
456
|
+
drop_input_cols=self._drop_input_cols,
|
457
|
+
expected_output_cols_type=expected_dtype,
|
475
458
|
)
|
476
459
|
|
477
460
|
elif isinstance(dataset, pd.DataFrame):
|
478
|
-
transform_kwargs = dict(
|
479
|
-
snowpark_input_cols = self._snowpark_cols,
|
480
|
-
drop_input_cols = self._drop_input_cols
|
481
|
-
)
|
461
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
482
462
|
|
483
463
|
transform_handlers = ModelTransformerBuilder.build(
|
484
464
|
dataset=dataset,
|
@@ -497,7 +477,11 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
497
477
|
return output_df
|
498
478
|
|
499
479
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
500
|
-
def fit_predict(
|
480
|
+
def fit_predict(
|
481
|
+
self,
|
482
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
483
|
+
output_cols_prefix: str = "fit_predict_",
|
484
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
501
485
|
""" Method not supported for this class.
|
502
486
|
|
503
487
|
|
@@ -522,22 +506,104 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
522
506
|
)
|
523
507
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
524
508
|
drop_input_cols=self._drop_input_cols,
|
525
|
-
expected_output_cols_list=
|
509
|
+
expected_output_cols_list=(
|
510
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
511
|
+
),
|
526
512
|
)
|
527
513
|
self._sklearn_object = fitted_estimator
|
528
514
|
self._is_fitted = True
|
529
515
|
return output_result
|
530
516
|
|
517
|
+
|
518
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
519
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
520
|
+
""" Method not supported for this class.
|
521
|
+
|
531
522
|
|
532
|
-
|
533
|
-
|
534
|
-
|
523
|
+
Raises:
|
524
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
525
|
+
|
526
|
+
Args:
|
527
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
528
|
+
Snowpark or Pandas DataFrame.
|
529
|
+
output_cols_prefix: Prefix for the response columns
|
535
530
|
Returns:
|
536
531
|
Transformed dataset.
|
537
532
|
"""
|
538
|
-
self.
|
539
|
-
|
540
|
-
|
533
|
+
self._infer_input_output_cols(dataset)
|
534
|
+
super()._check_dataset_type(dataset)
|
535
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
536
|
+
estimator=self._sklearn_object,
|
537
|
+
dataset=dataset,
|
538
|
+
input_cols=self.input_cols,
|
539
|
+
label_cols=self.label_cols,
|
540
|
+
sample_weight_col=self.sample_weight_col,
|
541
|
+
autogenerated=self._autogenerated,
|
542
|
+
subproject=_SUBPROJECT,
|
543
|
+
)
|
544
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
545
|
+
drop_input_cols=self._drop_input_cols,
|
546
|
+
expected_output_cols_list=self.output_cols,
|
547
|
+
)
|
548
|
+
self._sklearn_object = fitted_estimator
|
549
|
+
self._is_fitted = True
|
550
|
+
return output_result
|
551
|
+
|
552
|
+
|
553
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
554
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
555
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
556
|
+
"""
|
557
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
558
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
559
|
+
if output_cols:
|
560
|
+
output_cols = [
|
561
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
562
|
+
for c in output_cols
|
563
|
+
]
|
564
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
565
|
+
output_cols = [output_cols_prefix]
|
566
|
+
elif self._sklearn_object is not None:
|
567
|
+
classes = self._sklearn_object.classes_
|
568
|
+
if isinstance(classes, numpy.ndarray):
|
569
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
570
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
571
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
572
|
+
output_cols = []
|
573
|
+
for i, cl in enumerate(classes):
|
574
|
+
# For binary classification, there is only one output column for each class
|
575
|
+
# ndarray as the two classes are complementary.
|
576
|
+
if len(cl) == 2:
|
577
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
578
|
+
else:
|
579
|
+
output_cols.extend([
|
580
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
581
|
+
])
|
582
|
+
else:
|
583
|
+
output_cols = []
|
584
|
+
|
585
|
+
# Make sure column names are valid snowflake identifiers.
|
586
|
+
assert output_cols is not None # Make MyPy happy
|
587
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
588
|
+
|
589
|
+
return rv
|
590
|
+
|
591
|
+
def _align_expected_output_names(
|
592
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
593
|
+
) -> List[str]:
|
594
|
+
# in case the inferred output column names dimension is different
|
595
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
596
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
597
|
+
output_df_columns = list(output_df_pd.columns)
|
598
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
599
|
+
if self.sample_weight_col:
|
600
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
601
|
+
# if the dimension of inferred output column names is correct; use it
|
602
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
603
|
+
return expected_output_cols_list
|
604
|
+
# otherwise, use the sklearn estimator's output
|
605
|
+
else:
|
606
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
541
607
|
|
542
608
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
543
609
|
@telemetry.send_api_usage_telemetry(
|
@@ -569,24 +635,26 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
569
635
|
# are specific to the type of dataset used.
|
570
636
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
571
637
|
|
638
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
639
|
+
|
572
640
|
if isinstance(dataset, DataFrame):
|
573
|
-
self.
|
574
|
-
|
575
|
-
|
576
|
-
|
577
|
-
|
641
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
642
|
+
self._deps = self._get_dependencies()
|
643
|
+
assert isinstance(
|
644
|
+
dataset._session, Session
|
645
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
578
646
|
transform_kwargs = dict(
|
579
647
|
session=dataset._session,
|
580
648
|
dependencies=self._deps,
|
581
|
-
drop_input_cols
|
649
|
+
drop_input_cols=self._drop_input_cols,
|
582
650
|
expected_output_cols_type="float",
|
583
651
|
)
|
652
|
+
expected_output_cols = self._align_expected_output_names(
|
653
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
654
|
+
)
|
584
655
|
|
585
656
|
elif isinstance(dataset, pd.DataFrame):
|
586
|
-
transform_kwargs = dict(
|
587
|
-
snowpark_input_cols = self._snowpark_cols,
|
588
|
-
drop_input_cols = self._drop_input_cols
|
589
|
-
)
|
657
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
590
658
|
|
591
659
|
transform_handlers = ModelTransformerBuilder.build(
|
592
660
|
dataset=dataset,
|
@@ -598,7 +666,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
598
666
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
599
667
|
inference_method=inference_method,
|
600
668
|
input_cols=self.input_cols,
|
601
|
-
expected_output_cols=
|
669
|
+
expected_output_cols=expected_output_cols,
|
602
670
|
**transform_kwargs
|
603
671
|
)
|
604
672
|
return output_df
|
@@ -628,29 +696,30 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
628
696
|
Output dataset with log probability of the sample for each class in the model.
|
629
697
|
"""
|
630
698
|
super()._check_dataset_type(dataset)
|
631
|
-
inference_method="predict_log_proba"
|
699
|
+
inference_method = "predict_log_proba"
|
700
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
632
701
|
|
633
702
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
634
703
|
# are specific to the type of dataset used.
|
635
704
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
636
705
|
|
637
706
|
if isinstance(dataset, DataFrame):
|
638
|
-
self.
|
639
|
-
|
640
|
-
|
641
|
-
|
642
|
-
|
707
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
708
|
+
self._deps = self._get_dependencies()
|
709
|
+
assert isinstance(
|
710
|
+
dataset._session, Session
|
711
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
643
712
|
transform_kwargs = dict(
|
644
713
|
session=dataset._session,
|
645
714
|
dependencies=self._deps,
|
646
|
-
drop_input_cols
|
715
|
+
drop_input_cols=self._drop_input_cols,
|
647
716
|
expected_output_cols_type="float",
|
648
717
|
)
|
718
|
+
expected_output_cols = self._align_expected_output_names(
|
719
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
720
|
+
)
|
649
721
|
elif isinstance(dataset, pd.DataFrame):
|
650
|
-
transform_kwargs = dict(
|
651
|
-
snowpark_input_cols = self._snowpark_cols,
|
652
|
-
drop_input_cols = self._drop_input_cols
|
653
|
-
)
|
722
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
654
723
|
|
655
724
|
transform_handlers = ModelTransformerBuilder.build(
|
656
725
|
dataset=dataset,
|
@@ -663,7 +732,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
663
732
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
664
733
|
inference_method=inference_method,
|
665
734
|
input_cols=self.input_cols,
|
666
|
-
expected_output_cols=
|
735
|
+
expected_output_cols=expected_output_cols,
|
667
736
|
**transform_kwargs
|
668
737
|
)
|
669
738
|
return output_df
|
@@ -689,30 +758,32 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
689
758
|
Output dataset with results of the decision function for the samples in input dataset.
|
690
759
|
"""
|
691
760
|
super()._check_dataset_type(dataset)
|
692
|
-
inference_method="decision_function"
|
761
|
+
inference_method = "decision_function"
|
693
762
|
|
694
763
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
695
764
|
# are specific to the type of dataset used.
|
696
765
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
697
766
|
|
767
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
768
|
+
|
698
769
|
if isinstance(dataset, DataFrame):
|
699
|
-
self.
|
700
|
-
|
701
|
-
|
702
|
-
|
703
|
-
|
770
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
771
|
+
self._deps = self._get_dependencies()
|
772
|
+
assert isinstance(
|
773
|
+
dataset._session, Session
|
774
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
704
775
|
transform_kwargs = dict(
|
705
776
|
session=dataset._session,
|
706
777
|
dependencies=self._deps,
|
707
|
-
drop_input_cols
|
778
|
+
drop_input_cols=self._drop_input_cols,
|
708
779
|
expected_output_cols_type="float",
|
709
780
|
)
|
781
|
+
expected_output_cols = self._align_expected_output_names(
|
782
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
783
|
+
)
|
710
784
|
|
711
785
|
elif isinstance(dataset, pd.DataFrame):
|
712
|
-
transform_kwargs = dict(
|
713
|
-
snowpark_input_cols = self._snowpark_cols,
|
714
|
-
drop_input_cols = self._drop_input_cols
|
715
|
-
)
|
786
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
716
787
|
|
717
788
|
transform_handlers = ModelTransformerBuilder.build(
|
718
789
|
dataset=dataset,
|
@@ -725,7 +796,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
725
796
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
726
797
|
inference_method=inference_method,
|
727
798
|
input_cols=self.input_cols,
|
728
|
-
expected_output_cols=
|
799
|
+
expected_output_cols=expected_output_cols,
|
729
800
|
**transform_kwargs
|
730
801
|
)
|
731
802
|
return output_df
|
@@ -754,17 +825,17 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
754
825
|
Output dataset with probability of the sample for each class in the model.
|
755
826
|
"""
|
756
827
|
super()._check_dataset_type(dataset)
|
757
|
-
inference_method="score_samples"
|
828
|
+
inference_method = "score_samples"
|
758
829
|
|
759
830
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
760
831
|
# are specific to the type of dataset used.
|
761
832
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
762
833
|
|
834
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
835
|
+
|
763
836
|
if isinstance(dataset, DataFrame):
|
764
|
-
self.
|
765
|
-
|
766
|
-
inference_method=inference_method,
|
767
|
-
)
|
837
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
838
|
+
self._deps = self._get_dependencies()
|
768
839
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
769
840
|
transform_kwargs = dict(
|
770
841
|
session=dataset._session,
|
@@ -772,6 +843,9 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
772
843
|
drop_input_cols = self._drop_input_cols,
|
773
844
|
expected_output_cols_type="float",
|
774
845
|
)
|
846
|
+
expected_output_cols = self._align_expected_output_names(
|
847
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
848
|
+
)
|
775
849
|
|
776
850
|
elif isinstance(dataset, pd.DataFrame):
|
777
851
|
transform_kwargs = dict(
|
@@ -790,7 +864,7 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
790
864
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
791
865
|
inference_method=inference_method,
|
792
866
|
input_cols=self.input_cols,
|
793
|
-
expected_output_cols=
|
867
|
+
expected_output_cols=expected_output_cols,
|
794
868
|
**transform_kwargs
|
795
869
|
)
|
796
870
|
return output_df
|
@@ -825,17 +899,15 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
825
899
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
826
900
|
|
827
901
|
if isinstance(dataset, DataFrame):
|
828
|
-
self.
|
829
|
-
|
830
|
-
inference_method="score",
|
831
|
-
)
|
902
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
903
|
+
self._deps = self._get_dependencies()
|
832
904
|
selected_cols = self._get_active_columns()
|
833
905
|
if len(selected_cols) > 0:
|
834
906
|
dataset = dataset.select(selected_cols)
|
835
907
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
836
908
|
transform_kwargs = dict(
|
837
909
|
session=dataset._session,
|
838
|
-
dependencies=
|
910
|
+
dependencies=self._deps,
|
839
911
|
score_sproc_imports=['sklearn'],
|
840
912
|
)
|
841
913
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -900,11 +972,8 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
900
972
|
|
901
973
|
if isinstance(dataset, DataFrame):
|
902
974
|
|
903
|
-
self.
|
904
|
-
|
905
|
-
inference_method=inference_method,
|
906
|
-
|
907
|
-
)
|
975
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
976
|
+
self._deps = self._get_dependencies()
|
908
977
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
909
978
|
transform_kwargs = dict(
|
910
979
|
session = dataset._session,
|
@@ -937,50 +1006,84 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
937
1006
|
)
|
938
1007
|
return output_df
|
939
1008
|
|
1009
|
+
|
1010
|
+
|
1011
|
+
def to_sklearn(self) -> Any:
|
1012
|
+
"""Get sklearn.compose.TransformedTargetRegressor object.
|
1013
|
+
"""
|
1014
|
+
if self._sklearn_object is None:
|
1015
|
+
self._sklearn_object = self._create_sklearn_object()
|
1016
|
+
return self._sklearn_object
|
1017
|
+
|
1018
|
+
def to_xgboost(self) -> Any:
|
1019
|
+
raise exceptions.SnowflakeMLException(
|
1020
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1021
|
+
original_exception=AttributeError(
|
1022
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1023
|
+
"to_xgboost()",
|
1024
|
+
"to_sklearn()"
|
1025
|
+
)
|
1026
|
+
),
|
1027
|
+
)
|
1028
|
+
|
1029
|
+
def to_lightgbm(self) -> Any:
|
1030
|
+
raise exceptions.SnowflakeMLException(
|
1031
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1032
|
+
original_exception=AttributeError(
|
1033
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1034
|
+
"to_lightgbm()",
|
1035
|
+
"to_sklearn()"
|
1036
|
+
)
|
1037
|
+
),
|
1038
|
+
)
|
1039
|
+
|
1040
|
+
def _get_dependencies(self) -> List[str]:
|
1041
|
+
return self._deps
|
1042
|
+
|
940
1043
|
|
941
|
-
def
|
1044
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
942
1045
|
self._model_signature_dict = dict()
|
943
1046
|
|
944
1047
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
945
1048
|
|
946
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1049
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
947
1050
|
outputs: List[BaseFeatureSpec] = []
|
948
1051
|
if hasattr(self, "predict"):
|
949
1052
|
# keep mypy happy
|
950
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1053
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
951
1054
|
# For classifier, the type of predict is the same as the type of label
|
952
|
-
if self._sklearn_object._estimator_type ==
|
953
|
-
|
1055
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1056
|
+
# label columns is the desired type for output
|
954
1057
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
955
1058
|
# rename the output columns
|
956
1059
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
957
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
958
|
-
|
959
|
-
|
1060
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1061
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1062
|
+
)
|
960
1063
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
961
1064
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
962
|
-
# Clusterer returns int64 cluster labels.
|
1065
|
+
# Clusterer returns int64 cluster labels.
|
963
1066
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
964
1067
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
965
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
966
|
-
|
967
|
-
|
968
|
-
|
1068
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1069
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1070
|
+
)
|
1071
|
+
|
969
1072
|
# For regressor, the type of predict is float64
|
970
|
-
elif self._sklearn_object._estimator_type ==
|
1073
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
971
1074
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
972
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
973
|
-
|
974
|
-
|
975
|
-
|
1075
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1076
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1077
|
+
)
|
1078
|
+
|
976
1079
|
for prob_func in PROB_FUNCTIONS:
|
977
1080
|
if hasattr(self, prob_func):
|
978
1081
|
output_cols_prefix: str = f"{prob_func}_"
|
979
1082
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
980
1083
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
981
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
982
|
-
|
983
|
-
|
1084
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1085
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1086
|
+
)
|
984
1087
|
|
985
1088
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
986
1089
|
items = list(self._model_signature_dict.items())
|
@@ -993,10 +1096,10 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
993
1096
|
"""Returns model signature of current class.
|
994
1097
|
|
995
1098
|
Raises:
|
996
|
-
|
1099
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
997
1100
|
|
998
1101
|
Returns:
|
999
|
-
Dict
|
1102
|
+
Dict with each method and its input output signature
|
1000
1103
|
"""
|
1001
1104
|
if self._model_signature_dict is None:
|
1002
1105
|
raise exceptions.SnowflakeMLException(
|
@@ -1004,35 +1107,3 @@ class TransformedTargetRegressor(BaseTransformer):
|
|
1004
1107
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1005
1108
|
)
|
1006
1109
|
return self._model_signature_dict
|
1007
|
-
|
1008
|
-
def to_sklearn(self) -> Any:
|
1009
|
-
"""Get sklearn.compose.TransformedTargetRegressor object.
|
1010
|
-
"""
|
1011
|
-
if self._sklearn_object is None:
|
1012
|
-
self._sklearn_object = self._create_sklearn_object()
|
1013
|
-
return self._sklearn_object
|
1014
|
-
|
1015
|
-
def to_xgboost(self) -> Any:
|
1016
|
-
raise exceptions.SnowflakeMLException(
|
1017
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1018
|
-
original_exception=AttributeError(
|
1019
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1020
|
-
"to_xgboost()",
|
1021
|
-
"to_sklearn()"
|
1022
|
-
)
|
1023
|
-
),
|
1024
|
-
)
|
1025
|
-
|
1026
|
-
def to_lightgbm(self) -> Any:
|
1027
|
-
raise exceptions.SnowflakeMLException(
|
1028
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1029
|
-
original_exception=AttributeError(
|
1030
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1031
|
-
"to_lightgbm()",
|
1032
|
-
"to_sklearn()"
|
1033
|
-
)
|
1034
|
-
),
|
1035
|
-
)
|
1036
|
-
|
1037
|
-
def _get_dependencies(self) -> List[str]:
|
1038
|
-
return self._deps
|