snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.compose".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class TransformedTargetRegressor(BaseTransformer):
71
64
  r"""Meta-estimator to regress on a transformed target
72
65
  For more details on this class, see [sklearn.compose.TransformedTargetRegressor]
@@ -231,12 +224,7 @@ class TransformedTargetRegressor(BaseTransformer):
231
224
  )
232
225
  return selected_cols
233
226
 
234
- @telemetry.send_api_usage_telemetry(
235
- project=_PROJECT,
236
- subproject=_SUBPROJECT,
237
- custom_tags=dict([("autogen", True)]),
238
- )
239
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
227
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "TransformedTargetRegressor":
240
228
  """Fit the model according to the given training data
241
229
  For more details on this function, see [sklearn.compose.TransformedTargetRegressor.fit]
242
230
  (https://scikit-learn.org/stable/modules/generated/sklearn.compose.TransformedTargetRegressor.html#sklearn.compose.TransformedTargetRegressor.fit)
@@ -263,12 +251,14 @@ class TransformedTargetRegressor(BaseTransformer):
263
251
 
264
252
  self._snowpark_cols = dataset.select(self.input_cols).columns
265
253
 
266
- # If we are already in a stored procedure, no need to kick off another one.
254
+ # If we are already in a stored procedure, no need to kick off another one.
267
255
  if SNOWML_SPROC_ENV in os.environ:
268
256
  statement_params = telemetry.get_function_usage_statement_params(
269
257
  project=_PROJECT,
270
258
  subproject=_SUBPROJECT,
271
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), TransformedTargetRegressor.__class__.__name__),
259
+ function_name=telemetry.get_statement_params_full_func_name(
260
+ inspect.currentframe(), TransformedTargetRegressor.__class__.__name__
261
+ ),
272
262
  api_calls=[Session.call],
273
263
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
274
264
  )
@@ -289,27 +279,24 @@ class TransformedTargetRegressor(BaseTransformer):
289
279
  )
290
280
  self._sklearn_object = model_trainer.train()
291
281
  self._is_fitted = True
292
- self._get_model_signatures(dataset)
282
+ self._generate_model_signatures(dataset)
293
283
  return self
294
284
 
295
285
  def _batch_inference_validate_snowpark(
296
286
  self,
297
287
  dataset: DataFrame,
298
288
  inference_method: str,
299
- ) -> List[str]:
300
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
301
- return the available package that exists in the snowflake anaconda channel
289
+ ) -> None:
290
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
302
291
 
303
292
  Args:
304
293
  dataset: snowpark dataframe
305
294
  inference_method: the inference method such as predict, score...
306
-
295
+
307
296
  Raises:
308
297
  SnowflakeMLException: If the estimator is not fitted, raise error
309
298
  SnowflakeMLException: If the session is None, raise error
310
299
 
311
- Returns:
312
- A list of available package that exists in the snowflake anaconda channel
313
300
  """
314
301
  if not self._is_fitted:
315
302
  raise exceptions.SnowflakeMLException(
@@ -327,9 +314,7 @@ class TransformedTargetRegressor(BaseTransformer):
327
314
  "Session must not specified for snowpark dataset."
328
315
  ),
329
316
  )
330
- # Validate that key package version in user workspace are supported in snowflake conda channel
331
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
332
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
317
+
333
318
 
334
319
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
335
320
  @telemetry.send_api_usage_telemetry(
@@ -365,7 +350,9 @@ class TransformedTargetRegressor(BaseTransformer):
365
350
  # when it is classifier, infer the datatype from label columns
366
351
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
367
352
  # Batch inference takes a single expected output column type. Use the first columns type for now.
368
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
353
+ label_cols_signatures = [
354
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
355
+ ]
369
356
  if len(label_cols_signatures) == 0:
370
357
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
371
358
  raise exceptions.SnowflakeMLException(
@@ -373,25 +360,23 @@ class TransformedTargetRegressor(BaseTransformer):
373
360
  original_exception=ValueError(error_str),
374
361
  )
375
362
 
376
- expected_type_inferred = convert_sp_to_sf_type(
377
- label_cols_signatures[0].as_snowpark_type()
378
- )
363
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
379
364
 
380
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
381
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
365
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
366
+ self._deps = self._get_dependencies()
367
+ assert isinstance(
368
+ dataset._session, Session
369
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
382
370
 
383
371
  transform_kwargs = dict(
384
- session = dataset._session,
385
- dependencies = self._deps,
386
- drop_input_cols = self._drop_input_cols,
387
- expected_output_cols_type = expected_type_inferred,
372
+ session=dataset._session,
373
+ dependencies=self._deps,
374
+ drop_input_cols=self._drop_input_cols,
375
+ expected_output_cols_type=expected_type_inferred,
388
376
  )
389
377
 
390
378
  elif isinstance(dataset, pd.DataFrame):
391
- transform_kwargs = dict(
392
- snowpark_input_cols = self._snowpark_cols,
393
- drop_input_cols = self._drop_input_cols
394
- )
379
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
395
380
 
396
381
  transform_handlers = ModelTransformerBuilder.build(
397
382
  dataset=dataset,
@@ -431,7 +416,7 @@ class TransformedTargetRegressor(BaseTransformer):
431
416
  Transformed dataset.
432
417
  """
433
418
  super()._check_dataset_type(dataset)
434
- inference_method="transform"
419
+ inference_method = "transform"
435
420
 
436
421
  # This dictionary contains optional kwargs for batch inference. These kwargs
437
422
  # are specific to the type of dataset used.
@@ -461,24 +446,19 @@ class TransformedTargetRegressor(BaseTransformer):
461
446
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
462
447
  expected_dtype = convert_sp_to_sf_type(output_types[0])
463
448
 
464
- self._deps = self._batch_inference_validate_snowpark(
465
- dataset=dataset,
466
- inference_method=inference_method,
467
- )
449
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
450
+ self._deps = self._get_dependencies()
468
451
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
469
452
 
470
453
  transform_kwargs = dict(
471
- session = dataset._session,
472
- dependencies = self._deps,
473
- drop_input_cols = self._drop_input_cols,
474
- expected_output_cols_type = expected_dtype,
454
+ session=dataset._session,
455
+ dependencies=self._deps,
456
+ drop_input_cols=self._drop_input_cols,
457
+ expected_output_cols_type=expected_dtype,
475
458
  )
476
459
 
477
460
  elif isinstance(dataset, pd.DataFrame):
478
- transform_kwargs = dict(
479
- snowpark_input_cols = self._snowpark_cols,
480
- drop_input_cols = self._drop_input_cols
481
- )
461
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
482
462
 
483
463
  transform_handlers = ModelTransformerBuilder.build(
484
464
  dataset=dataset,
@@ -497,7 +477,11 @@ class TransformedTargetRegressor(BaseTransformer):
497
477
  return output_df
498
478
 
499
479
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
500
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
480
+ def fit_predict(
481
+ self,
482
+ dataset: Union[DataFrame, pd.DataFrame],
483
+ output_cols_prefix: str = "fit_predict_",
484
+ ) -> Union[DataFrame, pd.DataFrame]:
501
485
  """ Method not supported for this class.
502
486
 
503
487
 
@@ -522,22 +506,104 @@ class TransformedTargetRegressor(BaseTransformer):
522
506
  )
523
507
  output_result, fitted_estimator = model_trainer.train_fit_predict(
524
508
  drop_input_cols=self._drop_input_cols,
525
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
509
+ expected_output_cols_list=(
510
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
511
+ ),
526
512
  )
527
513
  self._sklearn_object = fitted_estimator
528
514
  self._is_fitted = True
529
515
  return output_result
530
516
 
517
+
518
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
519
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
520
+ """ Method not supported for this class.
521
+
531
522
 
532
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
533
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
534
- """
523
+ Raises:
524
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
525
+
526
+ Args:
527
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
528
+ Snowpark or Pandas DataFrame.
529
+ output_cols_prefix: Prefix for the response columns
535
530
  Returns:
536
531
  Transformed dataset.
537
532
  """
538
- self.fit(dataset)
539
- assert self._sklearn_object is not None
540
- return self._sklearn_object.embedding_
533
+ self._infer_input_output_cols(dataset)
534
+ super()._check_dataset_type(dataset)
535
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
536
+ estimator=self._sklearn_object,
537
+ dataset=dataset,
538
+ input_cols=self.input_cols,
539
+ label_cols=self.label_cols,
540
+ sample_weight_col=self.sample_weight_col,
541
+ autogenerated=self._autogenerated,
542
+ subproject=_SUBPROJECT,
543
+ )
544
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
545
+ drop_input_cols=self._drop_input_cols,
546
+ expected_output_cols_list=self.output_cols,
547
+ )
548
+ self._sklearn_object = fitted_estimator
549
+ self._is_fitted = True
550
+ return output_result
551
+
552
+
553
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
554
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
555
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
556
+ """
557
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
558
+ # The following condition is introduced for kneighbors methods, and not used in other methods
559
+ if output_cols:
560
+ output_cols = [
561
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
562
+ for c in output_cols
563
+ ]
564
+ elif getattr(self._sklearn_object, "classes_", None) is None:
565
+ output_cols = [output_cols_prefix]
566
+ elif self._sklearn_object is not None:
567
+ classes = self._sklearn_object.classes_
568
+ if isinstance(classes, numpy.ndarray):
569
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
570
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
571
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
572
+ output_cols = []
573
+ for i, cl in enumerate(classes):
574
+ # For binary classification, there is only one output column for each class
575
+ # ndarray as the two classes are complementary.
576
+ if len(cl) == 2:
577
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
578
+ else:
579
+ output_cols.extend([
580
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
581
+ ])
582
+ else:
583
+ output_cols = []
584
+
585
+ # Make sure column names are valid snowflake identifiers.
586
+ assert output_cols is not None # Make MyPy happy
587
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
588
+
589
+ return rv
590
+
591
+ def _align_expected_output_names(
592
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
593
+ ) -> List[str]:
594
+ # in case the inferred output column names dimension is different
595
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
596
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
597
+ output_df_columns = list(output_df_pd.columns)
598
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
599
+ if self.sample_weight_col:
600
+ output_df_columns_set -= set(self.sample_weight_col)
601
+ # if the dimension of inferred output column names is correct; use it
602
+ if len(expected_output_cols_list) == len(output_df_columns_set):
603
+ return expected_output_cols_list
604
+ # otherwise, use the sklearn estimator's output
605
+ else:
606
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
541
607
 
542
608
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
543
609
  @telemetry.send_api_usage_telemetry(
@@ -569,24 +635,26 @@ class TransformedTargetRegressor(BaseTransformer):
569
635
  # are specific to the type of dataset used.
570
636
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
571
637
 
638
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
639
+
572
640
  if isinstance(dataset, DataFrame):
573
- self._deps = self._batch_inference_validate_snowpark(
574
- dataset=dataset,
575
- inference_method=inference_method,
576
- )
577
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
641
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
642
+ self._deps = self._get_dependencies()
643
+ assert isinstance(
644
+ dataset._session, Session
645
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
578
646
  transform_kwargs = dict(
579
647
  session=dataset._session,
580
648
  dependencies=self._deps,
581
- drop_input_cols = self._drop_input_cols,
649
+ drop_input_cols=self._drop_input_cols,
582
650
  expected_output_cols_type="float",
583
651
  )
652
+ expected_output_cols = self._align_expected_output_names(
653
+ inference_method, dataset, expected_output_cols, output_cols_prefix
654
+ )
584
655
 
585
656
  elif isinstance(dataset, pd.DataFrame):
586
- transform_kwargs = dict(
587
- snowpark_input_cols = self._snowpark_cols,
588
- drop_input_cols = self._drop_input_cols
589
- )
657
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
590
658
 
591
659
  transform_handlers = ModelTransformerBuilder.build(
592
660
  dataset=dataset,
@@ -598,7 +666,7 @@ class TransformedTargetRegressor(BaseTransformer):
598
666
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
599
667
  inference_method=inference_method,
600
668
  input_cols=self.input_cols,
601
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
669
+ expected_output_cols=expected_output_cols,
602
670
  **transform_kwargs
603
671
  )
604
672
  return output_df
@@ -628,29 +696,30 @@ class TransformedTargetRegressor(BaseTransformer):
628
696
  Output dataset with log probability of the sample for each class in the model.
629
697
  """
630
698
  super()._check_dataset_type(dataset)
631
- inference_method="predict_log_proba"
699
+ inference_method = "predict_log_proba"
700
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
632
701
 
633
702
  # This dictionary contains optional kwargs for batch inference. These kwargs
634
703
  # are specific to the type of dataset used.
635
704
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
636
705
 
637
706
  if isinstance(dataset, DataFrame):
638
- self._deps = self._batch_inference_validate_snowpark(
639
- dataset=dataset,
640
- inference_method=inference_method,
641
- )
642
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
707
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
708
+ self._deps = self._get_dependencies()
709
+ assert isinstance(
710
+ dataset._session, Session
711
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
643
712
  transform_kwargs = dict(
644
713
  session=dataset._session,
645
714
  dependencies=self._deps,
646
- drop_input_cols = self._drop_input_cols,
715
+ drop_input_cols=self._drop_input_cols,
647
716
  expected_output_cols_type="float",
648
717
  )
718
+ expected_output_cols = self._align_expected_output_names(
719
+ inference_method, dataset, expected_output_cols, output_cols_prefix
720
+ )
649
721
  elif isinstance(dataset, pd.DataFrame):
650
- transform_kwargs = dict(
651
- snowpark_input_cols = self._snowpark_cols,
652
- drop_input_cols = self._drop_input_cols
653
- )
722
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
654
723
 
655
724
  transform_handlers = ModelTransformerBuilder.build(
656
725
  dataset=dataset,
@@ -663,7 +732,7 @@ class TransformedTargetRegressor(BaseTransformer):
663
732
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
664
733
  inference_method=inference_method,
665
734
  input_cols=self.input_cols,
666
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
735
+ expected_output_cols=expected_output_cols,
667
736
  **transform_kwargs
668
737
  )
669
738
  return output_df
@@ -689,30 +758,32 @@ class TransformedTargetRegressor(BaseTransformer):
689
758
  Output dataset with results of the decision function for the samples in input dataset.
690
759
  """
691
760
  super()._check_dataset_type(dataset)
692
- inference_method="decision_function"
761
+ inference_method = "decision_function"
693
762
 
694
763
  # This dictionary contains optional kwargs for batch inference. These kwargs
695
764
  # are specific to the type of dataset used.
696
765
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
697
766
 
767
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
768
+
698
769
  if isinstance(dataset, DataFrame):
699
- self._deps = self._batch_inference_validate_snowpark(
700
- dataset=dataset,
701
- inference_method=inference_method,
702
- )
703
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
770
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
771
+ self._deps = self._get_dependencies()
772
+ assert isinstance(
773
+ dataset._session, Session
774
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
704
775
  transform_kwargs = dict(
705
776
  session=dataset._session,
706
777
  dependencies=self._deps,
707
- drop_input_cols = self._drop_input_cols,
778
+ drop_input_cols=self._drop_input_cols,
708
779
  expected_output_cols_type="float",
709
780
  )
781
+ expected_output_cols = self._align_expected_output_names(
782
+ inference_method, dataset, expected_output_cols, output_cols_prefix
783
+ )
710
784
 
711
785
  elif isinstance(dataset, pd.DataFrame):
712
- transform_kwargs = dict(
713
- snowpark_input_cols = self._snowpark_cols,
714
- drop_input_cols = self._drop_input_cols
715
- )
786
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
716
787
 
717
788
  transform_handlers = ModelTransformerBuilder.build(
718
789
  dataset=dataset,
@@ -725,7 +796,7 @@ class TransformedTargetRegressor(BaseTransformer):
725
796
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
726
797
  inference_method=inference_method,
727
798
  input_cols=self.input_cols,
728
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
799
+ expected_output_cols=expected_output_cols,
729
800
  **transform_kwargs
730
801
  )
731
802
  return output_df
@@ -754,17 +825,17 @@ class TransformedTargetRegressor(BaseTransformer):
754
825
  Output dataset with probability of the sample for each class in the model.
755
826
  """
756
827
  super()._check_dataset_type(dataset)
757
- inference_method="score_samples"
828
+ inference_method = "score_samples"
758
829
 
759
830
  # This dictionary contains optional kwargs for batch inference. These kwargs
760
831
  # are specific to the type of dataset used.
761
832
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
762
833
 
834
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
835
+
763
836
  if isinstance(dataset, DataFrame):
764
- self._deps = self._batch_inference_validate_snowpark(
765
- dataset=dataset,
766
- inference_method=inference_method,
767
- )
837
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
838
+ self._deps = self._get_dependencies()
768
839
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
769
840
  transform_kwargs = dict(
770
841
  session=dataset._session,
@@ -772,6 +843,9 @@ class TransformedTargetRegressor(BaseTransformer):
772
843
  drop_input_cols = self._drop_input_cols,
773
844
  expected_output_cols_type="float",
774
845
  )
846
+ expected_output_cols = self._align_expected_output_names(
847
+ inference_method, dataset, expected_output_cols, output_cols_prefix
848
+ )
775
849
 
776
850
  elif isinstance(dataset, pd.DataFrame):
777
851
  transform_kwargs = dict(
@@ -790,7 +864,7 @@ class TransformedTargetRegressor(BaseTransformer):
790
864
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
791
865
  inference_method=inference_method,
792
866
  input_cols=self.input_cols,
793
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
867
+ expected_output_cols=expected_output_cols,
794
868
  **transform_kwargs
795
869
  )
796
870
  return output_df
@@ -825,17 +899,15 @@ class TransformedTargetRegressor(BaseTransformer):
825
899
  transform_kwargs: ScoreKwargsTypedDict = dict()
826
900
 
827
901
  if isinstance(dataset, DataFrame):
828
- self._deps = self._batch_inference_validate_snowpark(
829
- dataset=dataset,
830
- inference_method="score",
831
- )
902
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
903
+ self._deps = self._get_dependencies()
832
904
  selected_cols = self._get_active_columns()
833
905
  if len(selected_cols) > 0:
834
906
  dataset = dataset.select(selected_cols)
835
907
  assert isinstance(dataset._session, Session) # keep mypy happy
836
908
  transform_kwargs = dict(
837
909
  session=dataset._session,
838
- dependencies=["snowflake-snowpark-python"] + self._deps,
910
+ dependencies=self._deps,
839
911
  score_sproc_imports=['sklearn'],
840
912
  )
841
913
  elif isinstance(dataset, pd.DataFrame):
@@ -900,11 +972,8 @@ class TransformedTargetRegressor(BaseTransformer):
900
972
 
901
973
  if isinstance(dataset, DataFrame):
902
974
 
903
- self._deps = self._batch_inference_validate_snowpark(
904
- dataset=dataset,
905
- inference_method=inference_method,
906
-
907
- )
975
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
976
+ self._deps = self._get_dependencies()
908
977
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
909
978
  transform_kwargs = dict(
910
979
  session = dataset._session,
@@ -937,50 +1006,84 @@ class TransformedTargetRegressor(BaseTransformer):
937
1006
  )
938
1007
  return output_df
939
1008
 
1009
+
1010
+
1011
+ def to_sklearn(self) -> Any:
1012
+ """Get sklearn.compose.TransformedTargetRegressor object.
1013
+ """
1014
+ if self._sklearn_object is None:
1015
+ self._sklearn_object = self._create_sklearn_object()
1016
+ return self._sklearn_object
1017
+
1018
+ def to_xgboost(self) -> Any:
1019
+ raise exceptions.SnowflakeMLException(
1020
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1021
+ original_exception=AttributeError(
1022
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1023
+ "to_xgboost()",
1024
+ "to_sklearn()"
1025
+ )
1026
+ ),
1027
+ )
1028
+
1029
+ def to_lightgbm(self) -> Any:
1030
+ raise exceptions.SnowflakeMLException(
1031
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1032
+ original_exception=AttributeError(
1033
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1034
+ "to_lightgbm()",
1035
+ "to_sklearn()"
1036
+ )
1037
+ ),
1038
+ )
1039
+
1040
+ def _get_dependencies(self) -> List[str]:
1041
+ return self._deps
1042
+
940
1043
 
941
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1044
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
942
1045
  self._model_signature_dict = dict()
943
1046
 
944
1047
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
945
1048
 
946
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1049
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
947
1050
  outputs: List[BaseFeatureSpec] = []
948
1051
  if hasattr(self, "predict"):
949
1052
  # keep mypy happy
950
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1053
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
951
1054
  # For classifier, the type of predict is the same as the type of label
952
- if self._sklearn_object._estimator_type == 'classifier':
953
- # label columns is the desired type for output
1055
+ if self._sklearn_object._estimator_type == "classifier":
1056
+ # label columns is the desired type for output
954
1057
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
955
1058
  # rename the output columns
956
1059
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
957
- self._model_signature_dict["predict"] = ModelSignature(inputs,
958
- ([] if self._drop_input_cols else inputs)
959
- + outputs)
1060
+ self._model_signature_dict["predict"] = ModelSignature(
1061
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1062
+ )
960
1063
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
961
1064
  # For outlier models, returns -1 for outliers and 1 for inliers.
962
- # Clusterer returns int64 cluster labels.
1065
+ # Clusterer returns int64 cluster labels.
963
1066
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
964
1067
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
965
- self._model_signature_dict["predict"] = ModelSignature(inputs,
966
- ([] if self._drop_input_cols else inputs)
967
- + outputs)
968
-
1068
+ self._model_signature_dict["predict"] = ModelSignature(
1069
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1070
+ )
1071
+
969
1072
  # For regressor, the type of predict is float64
970
- elif self._sklearn_object._estimator_type == 'regressor':
1073
+ elif self._sklearn_object._estimator_type == "regressor":
971
1074
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
972
- self._model_signature_dict["predict"] = ModelSignature(inputs,
973
- ([] if self._drop_input_cols else inputs)
974
- + outputs)
975
-
1075
+ self._model_signature_dict["predict"] = ModelSignature(
1076
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1077
+ )
1078
+
976
1079
  for prob_func in PROB_FUNCTIONS:
977
1080
  if hasattr(self, prob_func):
978
1081
  output_cols_prefix: str = f"{prob_func}_"
979
1082
  output_column_names = self._get_output_column_names(output_cols_prefix)
980
1083
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
981
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
982
- ([] if self._drop_input_cols else inputs)
983
- + outputs)
1084
+ self._model_signature_dict[prob_func] = ModelSignature(
1085
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1086
+ )
984
1087
 
985
1088
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
986
1089
  items = list(self._model_signature_dict.items())
@@ -993,10 +1096,10 @@ class TransformedTargetRegressor(BaseTransformer):
993
1096
  """Returns model signature of current class.
994
1097
 
995
1098
  Raises:
996
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1099
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
997
1100
 
998
1101
  Returns:
999
- Dict[str, ModelSignature]: each method and its input output signature
1102
+ Dict with each method and its input output signature
1000
1103
  """
1001
1104
  if self._model_signature_dict is None:
1002
1105
  raise exceptions.SnowflakeMLException(
@@ -1004,35 +1107,3 @@ class TransformedTargetRegressor(BaseTransformer):
1004
1107
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1005
1108
  )
1006
1109
  return self._model_signature_dict
1007
-
1008
- def to_sklearn(self) -> Any:
1009
- """Get sklearn.compose.TransformedTargetRegressor object.
1010
- """
1011
- if self._sklearn_object is None:
1012
- self._sklearn_object = self._create_sklearn_object()
1013
- return self._sklearn_object
1014
-
1015
- def to_xgboost(self) -> Any:
1016
- raise exceptions.SnowflakeMLException(
1017
- error_code=error_codes.METHOD_NOT_ALLOWED,
1018
- original_exception=AttributeError(
1019
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1020
- "to_xgboost()",
1021
- "to_sklearn()"
1022
- )
1023
- ),
1024
- )
1025
-
1026
- def to_lightgbm(self) -> Any:
1027
- raise exceptions.SnowflakeMLException(
1028
- error_code=error_codes.METHOD_NOT_ALLOWED,
1029
- original_exception=AttributeError(
1030
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1031
- "to_lightgbm()",
1032
- "to_sklearn()"
1033
- )
1034
- ),
1035
- )
1036
-
1037
- def _get_dependencies(self) -> List[str]:
1038
- return self._deps