snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class AgglomerativeClustering(BaseTransformer):
|
71
64
|
r"""Agglomerative Clustering
|
72
65
|
For more details on this class, see [sklearn.cluster.AgglomerativeClustering]
|
@@ -275,12 +268,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
275
268
|
)
|
276
269
|
return selected_cols
|
277
270
|
|
278
|
-
|
279
|
-
project=_PROJECT,
|
280
|
-
subproject=_SUBPROJECT,
|
281
|
-
custom_tags=dict([("autogen", True)]),
|
282
|
-
)
|
283
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AgglomerativeClustering":
|
271
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "AgglomerativeClustering":
|
284
272
|
"""Fit the hierarchical clustering from features, or distance matrix
|
285
273
|
For more details on this function, see [sklearn.cluster.AgglomerativeClustering.fit]
|
286
274
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering.fit)
|
@@ -307,12 +295,14 @@ class AgglomerativeClustering(BaseTransformer):
|
|
307
295
|
|
308
296
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
309
297
|
|
310
|
-
|
298
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
311
299
|
if SNOWML_SPROC_ENV in os.environ:
|
312
300
|
statement_params = telemetry.get_function_usage_statement_params(
|
313
301
|
project=_PROJECT,
|
314
302
|
subproject=_SUBPROJECT,
|
315
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
303
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
304
|
+
inspect.currentframe(), AgglomerativeClustering.__class__.__name__
|
305
|
+
),
|
316
306
|
api_calls=[Session.call],
|
317
307
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
318
308
|
)
|
@@ -333,27 +323,24 @@ class AgglomerativeClustering(BaseTransformer):
|
|
333
323
|
)
|
334
324
|
self._sklearn_object = model_trainer.train()
|
335
325
|
self._is_fitted = True
|
336
|
-
self.
|
326
|
+
self._generate_model_signatures(dataset)
|
337
327
|
return self
|
338
328
|
|
339
329
|
def _batch_inference_validate_snowpark(
|
340
330
|
self,
|
341
331
|
dataset: DataFrame,
|
342
332
|
inference_method: str,
|
343
|
-
) ->
|
344
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
345
|
-
return the available package that exists in the snowflake anaconda channel
|
333
|
+
) -> None:
|
334
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
346
335
|
|
347
336
|
Args:
|
348
337
|
dataset: snowpark dataframe
|
349
338
|
inference_method: the inference method such as predict, score...
|
350
|
-
|
339
|
+
|
351
340
|
Raises:
|
352
341
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
353
342
|
SnowflakeMLException: If the session is None, raise error
|
354
343
|
|
355
|
-
Returns:
|
356
|
-
A list of available package that exists in the snowflake anaconda channel
|
357
344
|
"""
|
358
345
|
if not self._is_fitted:
|
359
346
|
raise exceptions.SnowflakeMLException(
|
@@ -371,9 +358,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
371
358
|
"Session must not specified for snowpark dataset."
|
372
359
|
),
|
373
360
|
)
|
374
|
-
|
375
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
376
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
361
|
+
|
377
362
|
|
378
363
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
379
364
|
@telemetry.send_api_usage_telemetry(
|
@@ -407,7 +392,9 @@ class AgglomerativeClustering(BaseTransformer):
|
|
407
392
|
# when it is classifier, infer the datatype from label columns
|
408
393
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
409
394
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
410
|
-
label_cols_signatures = [
|
395
|
+
label_cols_signatures = [
|
396
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
397
|
+
]
|
411
398
|
if len(label_cols_signatures) == 0:
|
412
399
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
413
400
|
raise exceptions.SnowflakeMLException(
|
@@ -415,25 +402,23 @@ class AgglomerativeClustering(BaseTransformer):
|
|
415
402
|
original_exception=ValueError(error_str),
|
416
403
|
)
|
417
404
|
|
418
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
419
|
-
label_cols_signatures[0].as_snowpark_type()
|
420
|
-
)
|
405
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
421
406
|
|
422
|
-
self.
|
423
|
-
|
407
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
408
|
+
self._deps = self._get_dependencies()
|
409
|
+
assert isinstance(
|
410
|
+
dataset._session, Session
|
411
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
424
412
|
|
425
413
|
transform_kwargs = dict(
|
426
|
-
session
|
427
|
-
dependencies
|
428
|
-
drop_input_cols
|
429
|
-
expected_output_cols_type
|
414
|
+
session=dataset._session,
|
415
|
+
dependencies=self._deps,
|
416
|
+
drop_input_cols=self._drop_input_cols,
|
417
|
+
expected_output_cols_type=expected_type_inferred,
|
430
418
|
)
|
431
419
|
|
432
420
|
elif isinstance(dataset, pd.DataFrame):
|
433
|
-
transform_kwargs = dict(
|
434
|
-
snowpark_input_cols = self._snowpark_cols,
|
435
|
-
drop_input_cols = self._drop_input_cols
|
436
|
-
)
|
421
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
437
422
|
|
438
423
|
transform_handlers = ModelTransformerBuilder.build(
|
439
424
|
dataset=dataset,
|
@@ -473,7 +458,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
473
458
|
Transformed dataset.
|
474
459
|
"""
|
475
460
|
super()._check_dataset_type(dataset)
|
476
|
-
inference_method="transform"
|
461
|
+
inference_method = "transform"
|
477
462
|
|
478
463
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
479
464
|
# are specific to the type of dataset used.
|
@@ -503,24 +488,19 @@ class AgglomerativeClustering(BaseTransformer):
|
|
503
488
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
504
489
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
505
490
|
|
506
|
-
self.
|
507
|
-
|
508
|
-
inference_method=inference_method,
|
509
|
-
)
|
491
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
492
|
+
self._deps = self._get_dependencies()
|
510
493
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
511
494
|
|
512
495
|
transform_kwargs = dict(
|
513
|
-
session
|
514
|
-
dependencies
|
515
|
-
drop_input_cols
|
516
|
-
expected_output_cols_type
|
496
|
+
session=dataset._session,
|
497
|
+
dependencies=self._deps,
|
498
|
+
drop_input_cols=self._drop_input_cols,
|
499
|
+
expected_output_cols_type=expected_dtype,
|
517
500
|
)
|
518
501
|
|
519
502
|
elif isinstance(dataset, pd.DataFrame):
|
520
|
-
transform_kwargs = dict(
|
521
|
-
snowpark_input_cols = self._snowpark_cols,
|
522
|
-
drop_input_cols = self._drop_input_cols
|
523
|
-
)
|
503
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
524
504
|
|
525
505
|
transform_handlers = ModelTransformerBuilder.build(
|
526
506
|
dataset=dataset,
|
@@ -539,7 +519,11 @@ class AgglomerativeClustering(BaseTransformer):
|
|
539
519
|
return output_df
|
540
520
|
|
541
521
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
542
|
-
def fit_predict(
|
522
|
+
def fit_predict(
|
523
|
+
self,
|
524
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
525
|
+
output_cols_prefix: str = "fit_predict_",
|
526
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
543
527
|
""" Fit and return the result of each sample's clustering assignment
|
544
528
|
For more details on this function, see [sklearn.cluster.AgglomerativeClustering.fit_predict]
|
545
529
|
(https://scikit-learn.org/stable/modules/generated/sklearn.cluster.AgglomerativeClustering.html#sklearn.cluster.AgglomerativeClustering.fit_predict)
|
@@ -566,22 +550,104 @@ class AgglomerativeClustering(BaseTransformer):
|
|
566
550
|
)
|
567
551
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
568
552
|
drop_input_cols=self._drop_input_cols,
|
569
|
-
expected_output_cols_list=
|
553
|
+
expected_output_cols_list=(
|
554
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
555
|
+
),
|
570
556
|
)
|
571
557
|
self._sklearn_object = fitted_estimator
|
572
558
|
self._is_fitted = True
|
573
559
|
return output_result
|
574
560
|
|
561
|
+
|
562
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
563
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
564
|
+
""" Method not supported for this class.
|
565
|
+
|
566
|
+
|
567
|
+
Raises:
|
568
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
575
569
|
|
576
|
-
|
577
|
-
|
578
|
-
|
570
|
+
Args:
|
571
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
572
|
+
Snowpark or Pandas DataFrame.
|
573
|
+
output_cols_prefix: Prefix for the response columns
|
579
574
|
Returns:
|
580
575
|
Transformed dataset.
|
581
576
|
"""
|
582
|
-
self.
|
583
|
-
|
584
|
-
|
577
|
+
self._infer_input_output_cols(dataset)
|
578
|
+
super()._check_dataset_type(dataset)
|
579
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
580
|
+
estimator=self._sklearn_object,
|
581
|
+
dataset=dataset,
|
582
|
+
input_cols=self.input_cols,
|
583
|
+
label_cols=self.label_cols,
|
584
|
+
sample_weight_col=self.sample_weight_col,
|
585
|
+
autogenerated=self._autogenerated,
|
586
|
+
subproject=_SUBPROJECT,
|
587
|
+
)
|
588
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
589
|
+
drop_input_cols=self._drop_input_cols,
|
590
|
+
expected_output_cols_list=self.output_cols,
|
591
|
+
)
|
592
|
+
self._sklearn_object = fitted_estimator
|
593
|
+
self._is_fitted = True
|
594
|
+
return output_result
|
595
|
+
|
596
|
+
|
597
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
598
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
599
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
600
|
+
"""
|
601
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
602
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
603
|
+
if output_cols:
|
604
|
+
output_cols = [
|
605
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
606
|
+
for c in output_cols
|
607
|
+
]
|
608
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
609
|
+
output_cols = [output_cols_prefix]
|
610
|
+
elif self._sklearn_object is not None:
|
611
|
+
classes = self._sklearn_object.classes_
|
612
|
+
if isinstance(classes, numpy.ndarray):
|
613
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
614
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
615
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
616
|
+
output_cols = []
|
617
|
+
for i, cl in enumerate(classes):
|
618
|
+
# For binary classification, there is only one output column for each class
|
619
|
+
# ndarray as the two classes are complementary.
|
620
|
+
if len(cl) == 2:
|
621
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
622
|
+
else:
|
623
|
+
output_cols.extend([
|
624
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
625
|
+
])
|
626
|
+
else:
|
627
|
+
output_cols = []
|
628
|
+
|
629
|
+
# Make sure column names are valid snowflake identifiers.
|
630
|
+
assert output_cols is not None # Make MyPy happy
|
631
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
632
|
+
|
633
|
+
return rv
|
634
|
+
|
635
|
+
def _align_expected_output_names(
|
636
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
637
|
+
) -> List[str]:
|
638
|
+
# in case the inferred output column names dimension is different
|
639
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
640
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
641
|
+
output_df_columns = list(output_df_pd.columns)
|
642
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
643
|
+
if self.sample_weight_col:
|
644
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
645
|
+
# if the dimension of inferred output column names is correct; use it
|
646
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
647
|
+
return expected_output_cols_list
|
648
|
+
# otherwise, use the sklearn estimator's output
|
649
|
+
else:
|
650
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
585
651
|
|
586
652
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
587
653
|
@telemetry.send_api_usage_telemetry(
|
@@ -613,24 +679,26 @@ class AgglomerativeClustering(BaseTransformer):
|
|
613
679
|
# are specific to the type of dataset used.
|
614
680
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
615
681
|
|
682
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
683
|
+
|
616
684
|
if isinstance(dataset, DataFrame):
|
617
|
-
self.
|
618
|
-
|
619
|
-
|
620
|
-
|
621
|
-
|
685
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
686
|
+
self._deps = self._get_dependencies()
|
687
|
+
assert isinstance(
|
688
|
+
dataset._session, Session
|
689
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
622
690
|
transform_kwargs = dict(
|
623
691
|
session=dataset._session,
|
624
692
|
dependencies=self._deps,
|
625
|
-
drop_input_cols
|
693
|
+
drop_input_cols=self._drop_input_cols,
|
626
694
|
expected_output_cols_type="float",
|
627
695
|
)
|
696
|
+
expected_output_cols = self._align_expected_output_names(
|
697
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
698
|
+
)
|
628
699
|
|
629
700
|
elif isinstance(dataset, pd.DataFrame):
|
630
|
-
transform_kwargs = dict(
|
631
|
-
snowpark_input_cols = self._snowpark_cols,
|
632
|
-
drop_input_cols = self._drop_input_cols
|
633
|
-
)
|
701
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
634
702
|
|
635
703
|
transform_handlers = ModelTransformerBuilder.build(
|
636
704
|
dataset=dataset,
|
@@ -642,7 +710,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
642
710
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
643
711
|
inference_method=inference_method,
|
644
712
|
input_cols=self.input_cols,
|
645
|
-
expected_output_cols=
|
713
|
+
expected_output_cols=expected_output_cols,
|
646
714
|
**transform_kwargs
|
647
715
|
)
|
648
716
|
return output_df
|
@@ -672,29 +740,30 @@ class AgglomerativeClustering(BaseTransformer):
|
|
672
740
|
Output dataset with log probability of the sample for each class in the model.
|
673
741
|
"""
|
674
742
|
super()._check_dataset_type(dataset)
|
675
|
-
inference_method="predict_log_proba"
|
743
|
+
inference_method = "predict_log_proba"
|
744
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
676
745
|
|
677
746
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
678
747
|
# are specific to the type of dataset used.
|
679
748
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
680
749
|
|
681
750
|
if isinstance(dataset, DataFrame):
|
682
|
-
self.
|
683
|
-
|
684
|
-
|
685
|
-
|
686
|
-
|
751
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
752
|
+
self._deps = self._get_dependencies()
|
753
|
+
assert isinstance(
|
754
|
+
dataset._session, Session
|
755
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
687
756
|
transform_kwargs = dict(
|
688
757
|
session=dataset._session,
|
689
758
|
dependencies=self._deps,
|
690
|
-
drop_input_cols
|
759
|
+
drop_input_cols=self._drop_input_cols,
|
691
760
|
expected_output_cols_type="float",
|
692
761
|
)
|
762
|
+
expected_output_cols = self._align_expected_output_names(
|
763
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
764
|
+
)
|
693
765
|
elif isinstance(dataset, pd.DataFrame):
|
694
|
-
transform_kwargs = dict(
|
695
|
-
snowpark_input_cols = self._snowpark_cols,
|
696
|
-
drop_input_cols = self._drop_input_cols
|
697
|
-
)
|
766
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
698
767
|
|
699
768
|
transform_handlers = ModelTransformerBuilder.build(
|
700
769
|
dataset=dataset,
|
@@ -707,7 +776,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
707
776
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
708
777
|
inference_method=inference_method,
|
709
778
|
input_cols=self.input_cols,
|
710
|
-
expected_output_cols=
|
779
|
+
expected_output_cols=expected_output_cols,
|
711
780
|
**transform_kwargs
|
712
781
|
)
|
713
782
|
return output_df
|
@@ -733,30 +802,32 @@ class AgglomerativeClustering(BaseTransformer):
|
|
733
802
|
Output dataset with results of the decision function for the samples in input dataset.
|
734
803
|
"""
|
735
804
|
super()._check_dataset_type(dataset)
|
736
|
-
inference_method="decision_function"
|
805
|
+
inference_method = "decision_function"
|
737
806
|
|
738
807
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
739
808
|
# are specific to the type of dataset used.
|
740
809
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
741
810
|
|
811
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
812
|
+
|
742
813
|
if isinstance(dataset, DataFrame):
|
743
|
-
self.
|
744
|
-
|
745
|
-
|
746
|
-
|
747
|
-
|
814
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
815
|
+
self._deps = self._get_dependencies()
|
816
|
+
assert isinstance(
|
817
|
+
dataset._session, Session
|
818
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
748
819
|
transform_kwargs = dict(
|
749
820
|
session=dataset._session,
|
750
821
|
dependencies=self._deps,
|
751
|
-
drop_input_cols
|
822
|
+
drop_input_cols=self._drop_input_cols,
|
752
823
|
expected_output_cols_type="float",
|
753
824
|
)
|
825
|
+
expected_output_cols = self._align_expected_output_names(
|
826
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
827
|
+
)
|
754
828
|
|
755
829
|
elif isinstance(dataset, pd.DataFrame):
|
756
|
-
transform_kwargs = dict(
|
757
|
-
snowpark_input_cols = self._snowpark_cols,
|
758
|
-
drop_input_cols = self._drop_input_cols
|
759
|
-
)
|
830
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
760
831
|
|
761
832
|
transform_handlers = ModelTransformerBuilder.build(
|
762
833
|
dataset=dataset,
|
@@ -769,7 +840,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
769
840
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
770
841
|
inference_method=inference_method,
|
771
842
|
input_cols=self.input_cols,
|
772
|
-
expected_output_cols=
|
843
|
+
expected_output_cols=expected_output_cols,
|
773
844
|
**transform_kwargs
|
774
845
|
)
|
775
846
|
return output_df
|
@@ -798,17 +869,17 @@ class AgglomerativeClustering(BaseTransformer):
|
|
798
869
|
Output dataset with probability of the sample for each class in the model.
|
799
870
|
"""
|
800
871
|
super()._check_dataset_type(dataset)
|
801
|
-
inference_method="score_samples"
|
872
|
+
inference_method = "score_samples"
|
802
873
|
|
803
874
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
804
875
|
# are specific to the type of dataset used.
|
805
876
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
806
877
|
|
878
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
879
|
+
|
807
880
|
if isinstance(dataset, DataFrame):
|
808
|
-
self.
|
809
|
-
|
810
|
-
inference_method=inference_method,
|
811
|
-
)
|
881
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
882
|
+
self._deps = self._get_dependencies()
|
812
883
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
813
884
|
transform_kwargs = dict(
|
814
885
|
session=dataset._session,
|
@@ -816,6 +887,9 @@ class AgglomerativeClustering(BaseTransformer):
|
|
816
887
|
drop_input_cols = self._drop_input_cols,
|
817
888
|
expected_output_cols_type="float",
|
818
889
|
)
|
890
|
+
expected_output_cols = self._align_expected_output_names(
|
891
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
892
|
+
)
|
819
893
|
|
820
894
|
elif isinstance(dataset, pd.DataFrame):
|
821
895
|
transform_kwargs = dict(
|
@@ -834,7 +908,7 @@ class AgglomerativeClustering(BaseTransformer):
|
|
834
908
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
835
909
|
inference_method=inference_method,
|
836
910
|
input_cols=self.input_cols,
|
837
|
-
expected_output_cols=
|
911
|
+
expected_output_cols=expected_output_cols,
|
838
912
|
**transform_kwargs
|
839
913
|
)
|
840
914
|
return output_df
|
@@ -867,17 +941,15 @@ class AgglomerativeClustering(BaseTransformer):
|
|
867
941
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
868
942
|
|
869
943
|
if isinstance(dataset, DataFrame):
|
870
|
-
self.
|
871
|
-
|
872
|
-
inference_method="score",
|
873
|
-
)
|
944
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
945
|
+
self._deps = self._get_dependencies()
|
874
946
|
selected_cols = self._get_active_columns()
|
875
947
|
if len(selected_cols) > 0:
|
876
948
|
dataset = dataset.select(selected_cols)
|
877
949
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
878
950
|
transform_kwargs = dict(
|
879
951
|
session=dataset._session,
|
880
|
-
dependencies=
|
952
|
+
dependencies=self._deps,
|
881
953
|
score_sproc_imports=['sklearn'],
|
882
954
|
)
|
883
955
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -942,11 +1014,8 @@ class AgglomerativeClustering(BaseTransformer):
|
|
942
1014
|
|
943
1015
|
if isinstance(dataset, DataFrame):
|
944
1016
|
|
945
|
-
self.
|
946
|
-
|
947
|
-
inference_method=inference_method,
|
948
|
-
|
949
|
-
)
|
1017
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1018
|
+
self._deps = self._get_dependencies()
|
950
1019
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
951
1020
|
transform_kwargs = dict(
|
952
1021
|
session = dataset._session,
|
@@ -979,50 +1048,84 @@ class AgglomerativeClustering(BaseTransformer):
|
|
979
1048
|
)
|
980
1049
|
return output_df
|
981
1050
|
|
1051
|
+
|
1052
|
+
|
1053
|
+
def to_sklearn(self) -> Any:
|
1054
|
+
"""Get sklearn.cluster.AgglomerativeClustering object.
|
1055
|
+
"""
|
1056
|
+
if self._sklearn_object is None:
|
1057
|
+
self._sklearn_object = self._create_sklearn_object()
|
1058
|
+
return self._sklearn_object
|
1059
|
+
|
1060
|
+
def to_xgboost(self) -> Any:
|
1061
|
+
raise exceptions.SnowflakeMLException(
|
1062
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1063
|
+
original_exception=AttributeError(
|
1064
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1065
|
+
"to_xgboost()",
|
1066
|
+
"to_sklearn()"
|
1067
|
+
)
|
1068
|
+
),
|
1069
|
+
)
|
982
1070
|
|
983
|
-
def
|
1071
|
+
def to_lightgbm(self) -> Any:
|
1072
|
+
raise exceptions.SnowflakeMLException(
|
1073
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1074
|
+
original_exception=AttributeError(
|
1075
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1076
|
+
"to_lightgbm()",
|
1077
|
+
"to_sklearn()"
|
1078
|
+
)
|
1079
|
+
),
|
1080
|
+
)
|
1081
|
+
|
1082
|
+
def _get_dependencies(self) -> List[str]:
|
1083
|
+
return self._deps
|
1084
|
+
|
1085
|
+
|
1086
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
984
1087
|
self._model_signature_dict = dict()
|
985
1088
|
|
986
1089
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
987
1090
|
|
988
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1091
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
989
1092
|
outputs: List[BaseFeatureSpec] = []
|
990
1093
|
if hasattr(self, "predict"):
|
991
1094
|
# keep mypy happy
|
992
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1095
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
993
1096
|
# For classifier, the type of predict is the same as the type of label
|
994
|
-
if self._sklearn_object._estimator_type ==
|
995
|
-
|
1097
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1098
|
+
# label columns is the desired type for output
|
996
1099
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
997
1100
|
# rename the output columns
|
998
1101
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
999
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1000
|
-
|
1001
|
-
|
1102
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1103
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1104
|
+
)
|
1002
1105
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
1003
1106
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
1004
|
-
# Clusterer returns int64 cluster labels.
|
1107
|
+
# Clusterer returns int64 cluster labels.
|
1005
1108
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1006
1109
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1007
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1008
|
-
|
1009
|
-
|
1010
|
-
|
1110
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1111
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1112
|
+
)
|
1113
|
+
|
1011
1114
|
# For regressor, the type of predict is float64
|
1012
|
-
elif self._sklearn_object._estimator_type ==
|
1115
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1013
1116
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1014
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1015
|
-
|
1016
|
-
|
1017
|
-
|
1117
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1118
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1119
|
+
)
|
1120
|
+
|
1018
1121
|
for prob_func in PROB_FUNCTIONS:
|
1019
1122
|
if hasattr(self, prob_func):
|
1020
1123
|
output_cols_prefix: str = f"{prob_func}_"
|
1021
1124
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1022
1125
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1023
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1024
|
-
|
1025
|
-
|
1126
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1127
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1128
|
+
)
|
1026
1129
|
|
1027
1130
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1028
1131
|
items = list(self._model_signature_dict.items())
|
@@ -1035,10 +1138,10 @@ class AgglomerativeClustering(BaseTransformer):
|
|
1035
1138
|
"""Returns model signature of current class.
|
1036
1139
|
|
1037
1140
|
Raises:
|
1038
|
-
|
1141
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1039
1142
|
|
1040
1143
|
Returns:
|
1041
|
-
Dict
|
1144
|
+
Dict with each method and its input output signature
|
1042
1145
|
"""
|
1043
1146
|
if self._model_signature_dict is None:
|
1044
1147
|
raise exceptions.SnowflakeMLException(
|
@@ -1046,35 +1149,3 @@ class AgglomerativeClustering(BaseTransformer):
|
|
1046
1149
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1047
1150
|
)
|
1048
1151
|
return self._model_signature_dict
|
1049
|
-
|
1050
|
-
def to_sklearn(self) -> Any:
|
1051
|
-
"""Get sklearn.cluster.AgglomerativeClustering object.
|
1052
|
-
"""
|
1053
|
-
if self._sklearn_object is None:
|
1054
|
-
self._sklearn_object = self._create_sklearn_object()
|
1055
|
-
return self._sklearn_object
|
1056
|
-
|
1057
|
-
def to_xgboost(self) -> Any:
|
1058
|
-
raise exceptions.SnowflakeMLException(
|
1059
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1060
|
-
original_exception=AttributeError(
|
1061
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1062
|
-
"to_xgboost()",
|
1063
|
-
"to_sklearn()"
|
1064
|
-
)
|
1065
|
-
),
|
1066
|
-
)
|
1067
|
-
|
1068
|
-
def to_lightgbm(self) -> Any:
|
1069
|
-
raise exceptions.SnowflakeMLException(
|
1070
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1071
|
-
original_exception=AttributeError(
|
1072
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1073
|
-
"to_lightgbm()",
|
1074
|
-
"to_sklearn()"
|
1075
|
-
)
|
1076
|
-
),
|
1077
|
-
)
|
1078
|
-
|
1079
|
-
def _get_dependencies(self) -> List[str]:
|
1080
|
-
return self._deps
|