snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.cluster".replace("sklear
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class Birch(BaseTransformer):
71
64
  r"""Implements the BIRCH clustering algorithm
72
65
  For more details on this class, see [sklearn.cluster.Birch]
@@ -233,12 +226,7 @@ class Birch(BaseTransformer):
233
226
  )
234
227
  return selected_cols
235
228
 
236
- @telemetry.send_api_usage_telemetry(
237
- project=_PROJECT,
238
- subproject=_SUBPROJECT,
239
- custom_tags=dict([("autogen", True)]),
240
- )
241
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Birch":
229
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Birch":
242
230
  """Build a CF Tree for the input data
243
231
  For more details on this function, see [sklearn.cluster.Birch.fit]
244
232
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch.fit)
@@ -265,12 +253,14 @@ class Birch(BaseTransformer):
265
253
 
266
254
  self._snowpark_cols = dataset.select(self.input_cols).columns
267
255
 
268
- # If we are already in a stored procedure, no need to kick off another one.
256
+ # If we are already in a stored procedure, no need to kick off another one.
269
257
  if SNOWML_SPROC_ENV in os.environ:
270
258
  statement_params = telemetry.get_function_usage_statement_params(
271
259
  project=_PROJECT,
272
260
  subproject=_SUBPROJECT,
273
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Birch.__class__.__name__),
261
+ function_name=telemetry.get_statement_params_full_func_name(
262
+ inspect.currentframe(), Birch.__class__.__name__
263
+ ),
274
264
  api_calls=[Session.call],
275
265
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
276
266
  )
@@ -291,27 +281,24 @@ class Birch(BaseTransformer):
291
281
  )
292
282
  self._sklearn_object = model_trainer.train()
293
283
  self._is_fitted = True
294
- self._get_model_signatures(dataset)
284
+ self._generate_model_signatures(dataset)
295
285
  return self
296
286
 
297
287
  def _batch_inference_validate_snowpark(
298
288
  self,
299
289
  dataset: DataFrame,
300
290
  inference_method: str,
301
- ) -> List[str]:
302
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
303
- return the available package that exists in the snowflake anaconda channel
291
+ ) -> None:
292
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
304
293
 
305
294
  Args:
306
295
  dataset: snowpark dataframe
307
296
  inference_method: the inference method such as predict, score...
308
-
297
+
309
298
  Raises:
310
299
  SnowflakeMLException: If the estimator is not fitted, raise error
311
300
  SnowflakeMLException: If the session is None, raise error
312
301
 
313
- Returns:
314
- A list of available package that exists in the snowflake anaconda channel
315
302
  """
316
303
  if not self._is_fitted:
317
304
  raise exceptions.SnowflakeMLException(
@@ -329,9 +316,7 @@ class Birch(BaseTransformer):
329
316
  "Session must not specified for snowpark dataset."
330
317
  ),
331
318
  )
332
- # Validate that key package version in user workspace are supported in snowflake conda channel
333
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
334
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
319
+
335
320
 
336
321
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
337
322
  @telemetry.send_api_usage_telemetry(
@@ -367,7 +352,9 @@ class Birch(BaseTransformer):
367
352
  # when it is classifier, infer the datatype from label columns
368
353
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
369
354
  # Batch inference takes a single expected output column type. Use the first columns type for now.
370
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
355
+ label_cols_signatures = [
356
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
357
+ ]
371
358
  if len(label_cols_signatures) == 0:
372
359
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
373
360
  raise exceptions.SnowflakeMLException(
@@ -375,25 +362,23 @@ class Birch(BaseTransformer):
375
362
  original_exception=ValueError(error_str),
376
363
  )
377
364
 
378
- expected_type_inferred = convert_sp_to_sf_type(
379
- label_cols_signatures[0].as_snowpark_type()
380
- )
365
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
381
366
 
382
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
383
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
367
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
368
+ self._deps = self._get_dependencies()
369
+ assert isinstance(
370
+ dataset._session, Session
371
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
384
372
 
385
373
  transform_kwargs = dict(
386
- session = dataset._session,
387
- dependencies = self._deps,
388
- drop_input_cols = self._drop_input_cols,
389
- expected_output_cols_type = expected_type_inferred,
374
+ session=dataset._session,
375
+ dependencies=self._deps,
376
+ drop_input_cols=self._drop_input_cols,
377
+ expected_output_cols_type=expected_type_inferred,
390
378
  )
391
379
 
392
380
  elif isinstance(dataset, pd.DataFrame):
393
- transform_kwargs = dict(
394
- snowpark_input_cols = self._snowpark_cols,
395
- drop_input_cols = self._drop_input_cols
396
- )
381
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
397
382
 
398
383
  transform_handlers = ModelTransformerBuilder.build(
399
384
  dataset=dataset,
@@ -435,7 +420,7 @@ class Birch(BaseTransformer):
435
420
  Transformed dataset.
436
421
  """
437
422
  super()._check_dataset_type(dataset)
438
- inference_method="transform"
423
+ inference_method = "transform"
439
424
 
440
425
  # This dictionary contains optional kwargs for batch inference. These kwargs
441
426
  # are specific to the type of dataset used.
@@ -465,24 +450,19 @@ class Birch(BaseTransformer):
465
450
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
466
451
  expected_dtype = convert_sp_to_sf_type(output_types[0])
467
452
 
468
- self._deps = self._batch_inference_validate_snowpark(
469
- dataset=dataset,
470
- inference_method=inference_method,
471
- )
453
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
454
+ self._deps = self._get_dependencies()
472
455
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
473
456
 
474
457
  transform_kwargs = dict(
475
- session = dataset._session,
476
- dependencies = self._deps,
477
- drop_input_cols = self._drop_input_cols,
478
- expected_output_cols_type = expected_dtype,
458
+ session=dataset._session,
459
+ dependencies=self._deps,
460
+ drop_input_cols=self._drop_input_cols,
461
+ expected_output_cols_type=expected_dtype,
479
462
  )
480
463
 
481
464
  elif isinstance(dataset, pd.DataFrame):
482
- transform_kwargs = dict(
483
- snowpark_input_cols = self._snowpark_cols,
484
- drop_input_cols = self._drop_input_cols
485
- )
465
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
486
466
 
487
467
  transform_handlers = ModelTransformerBuilder.build(
488
468
  dataset=dataset,
@@ -501,7 +481,11 @@ class Birch(BaseTransformer):
501
481
  return output_df
502
482
 
503
483
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
504
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
484
+ def fit_predict(
485
+ self,
486
+ dataset: Union[DataFrame, pd.DataFrame],
487
+ output_cols_prefix: str = "fit_predict_",
488
+ ) -> Union[DataFrame, pd.DataFrame]:
505
489
  """ Perform clustering on `X` and returns cluster labels
506
490
  For more details on this function, see [sklearn.cluster.Birch.fit_predict]
507
491
  (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch.fit_predict)
@@ -528,22 +512,106 @@ class Birch(BaseTransformer):
528
512
  )
529
513
  output_result, fitted_estimator = model_trainer.train_fit_predict(
530
514
  drop_input_cols=self._drop_input_cols,
531
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
515
+ expected_output_cols_list=(
516
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
517
+ ),
532
518
  )
533
519
  self._sklearn_object = fitted_estimator
534
520
  self._is_fitted = True
535
521
  return output_result
536
522
 
523
+
524
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
525
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
526
+ """ Fit to data, then transform it
527
+ For more details on this function, see [sklearn.cluster.Birch.fit_transform]
528
+ (https://scikit-learn.org/stable/modules/generated/sklearn.cluster.Birch.html#sklearn.cluster.Birch.fit_transform)
529
+
530
+
531
+ Raises:
532
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
537
533
 
538
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
539
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
540
- """
534
+ Args:
535
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
536
+ Snowpark or Pandas DataFrame.
537
+ output_cols_prefix: Prefix for the response columns
541
538
  Returns:
542
539
  Transformed dataset.
543
540
  """
544
- self.fit(dataset)
545
- assert self._sklearn_object is not None
546
- return self._sklearn_object.embedding_
541
+ self._infer_input_output_cols(dataset)
542
+ super()._check_dataset_type(dataset)
543
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
544
+ estimator=self._sklearn_object,
545
+ dataset=dataset,
546
+ input_cols=self.input_cols,
547
+ label_cols=self.label_cols,
548
+ sample_weight_col=self.sample_weight_col,
549
+ autogenerated=self._autogenerated,
550
+ subproject=_SUBPROJECT,
551
+ )
552
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
553
+ drop_input_cols=self._drop_input_cols,
554
+ expected_output_cols_list=self.output_cols,
555
+ )
556
+ self._sklearn_object = fitted_estimator
557
+ self._is_fitted = True
558
+ return output_result
559
+
560
+
561
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
562
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
563
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
564
+ """
565
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
566
+ # The following condition is introduced for kneighbors methods, and not used in other methods
567
+ if output_cols:
568
+ output_cols = [
569
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
570
+ for c in output_cols
571
+ ]
572
+ elif getattr(self._sklearn_object, "classes_", None) is None:
573
+ output_cols = [output_cols_prefix]
574
+ elif self._sklearn_object is not None:
575
+ classes = self._sklearn_object.classes_
576
+ if isinstance(classes, numpy.ndarray):
577
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
578
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
579
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
580
+ output_cols = []
581
+ for i, cl in enumerate(classes):
582
+ # For binary classification, there is only one output column for each class
583
+ # ndarray as the two classes are complementary.
584
+ if len(cl) == 2:
585
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
586
+ else:
587
+ output_cols.extend([
588
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
589
+ ])
590
+ else:
591
+ output_cols = []
592
+
593
+ # Make sure column names are valid snowflake identifiers.
594
+ assert output_cols is not None # Make MyPy happy
595
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
596
+
597
+ return rv
598
+
599
+ def _align_expected_output_names(
600
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
601
+ ) -> List[str]:
602
+ # in case the inferred output column names dimension is different
603
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
604
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
605
+ output_df_columns = list(output_df_pd.columns)
606
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
607
+ if self.sample_weight_col:
608
+ output_df_columns_set -= set(self.sample_weight_col)
609
+ # if the dimension of inferred output column names is correct; use it
610
+ if len(expected_output_cols_list) == len(output_df_columns_set):
611
+ return expected_output_cols_list
612
+ # otherwise, use the sklearn estimator's output
613
+ else:
614
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
547
615
 
548
616
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
549
617
  @telemetry.send_api_usage_telemetry(
@@ -575,24 +643,26 @@ class Birch(BaseTransformer):
575
643
  # are specific to the type of dataset used.
576
644
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
577
645
 
646
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
647
+
578
648
  if isinstance(dataset, DataFrame):
579
- self._deps = self._batch_inference_validate_snowpark(
580
- dataset=dataset,
581
- inference_method=inference_method,
582
- )
583
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
650
+ self._deps = self._get_dependencies()
651
+ assert isinstance(
652
+ dataset._session, Session
653
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
584
654
  transform_kwargs = dict(
585
655
  session=dataset._session,
586
656
  dependencies=self._deps,
587
- drop_input_cols = self._drop_input_cols,
657
+ drop_input_cols=self._drop_input_cols,
588
658
  expected_output_cols_type="float",
589
659
  )
660
+ expected_output_cols = self._align_expected_output_names(
661
+ inference_method, dataset, expected_output_cols, output_cols_prefix
662
+ )
590
663
 
591
664
  elif isinstance(dataset, pd.DataFrame):
592
- transform_kwargs = dict(
593
- snowpark_input_cols = self._snowpark_cols,
594
- drop_input_cols = self._drop_input_cols
595
- )
665
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
596
666
 
597
667
  transform_handlers = ModelTransformerBuilder.build(
598
668
  dataset=dataset,
@@ -604,7 +674,7 @@ class Birch(BaseTransformer):
604
674
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
605
675
  inference_method=inference_method,
606
676
  input_cols=self.input_cols,
607
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
677
+ expected_output_cols=expected_output_cols,
608
678
  **transform_kwargs
609
679
  )
610
680
  return output_df
@@ -634,29 +704,30 @@ class Birch(BaseTransformer):
634
704
  Output dataset with log probability of the sample for each class in the model.
635
705
  """
636
706
  super()._check_dataset_type(dataset)
637
- inference_method="predict_log_proba"
707
+ inference_method = "predict_log_proba"
708
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
638
709
 
639
710
  # This dictionary contains optional kwargs for batch inference. These kwargs
640
711
  # are specific to the type of dataset used.
641
712
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
642
713
 
643
714
  if isinstance(dataset, DataFrame):
644
- self._deps = self._batch_inference_validate_snowpark(
645
- dataset=dataset,
646
- inference_method=inference_method,
647
- )
648
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
715
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
716
+ self._deps = self._get_dependencies()
717
+ assert isinstance(
718
+ dataset._session, Session
719
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
649
720
  transform_kwargs = dict(
650
721
  session=dataset._session,
651
722
  dependencies=self._deps,
652
- drop_input_cols = self._drop_input_cols,
723
+ drop_input_cols=self._drop_input_cols,
653
724
  expected_output_cols_type="float",
654
725
  )
726
+ expected_output_cols = self._align_expected_output_names(
727
+ inference_method, dataset, expected_output_cols, output_cols_prefix
728
+ )
655
729
  elif isinstance(dataset, pd.DataFrame):
656
- transform_kwargs = dict(
657
- snowpark_input_cols = self._snowpark_cols,
658
- drop_input_cols = self._drop_input_cols
659
- )
730
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
660
731
 
661
732
  transform_handlers = ModelTransformerBuilder.build(
662
733
  dataset=dataset,
@@ -669,7 +740,7 @@ class Birch(BaseTransformer):
669
740
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
670
741
  inference_method=inference_method,
671
742
  input_cols=self.input_cols,
672
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
743
+ expected_output_cols=expected_output_cols,
673
744
  **transform_kwargs
674
745
  )
675
746
  return output_df
@@ -695,30 +766,32 @@ class Birch(BaseTransformer):
695
766
  Output dataset with results of the decision function for the samples in input dataset.
696
767
  """
697
768
  super()._check_dataset_type(dataset)
698
- inference_method="decision_function"
769
+ inference_method = "decision_function"
699
770
 
700
771
  # This dictionary contains optional kwargs for batch inference. These kwargs
701
772
  # are specific to the type of dataset used.
702
773
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
703
774
 
775
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
776
+
704
777
  if isinstance(dataset, DataFrame):
705
- self._deps = self._batch_inference_validate_snowpark(
706
- dataset=dataset,
707
- inference_method=inference_method,
708
- )
709
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
778
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
779
+ self._deps = self._get_dependencies()
780
+ assert isinstance(
781
+ dataset._session, Session
782
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
783
  transform_kwargs = dict(
711
784
  session=dataset._session,
712
785
  dependencies=self._deps,
713
- drop_input_cols = self._drop_input_cols,
786
+ drop_input_cols=self._drop_input_cols,
714
787
  expected_output_cols_type="float",
715
788
  )
789
+ expected_output_cols = self._align_expected_output_names(
790
+ inference_method, dataset, expected_output_cols, output_cols_prefix
791
+ )
716
792
 
717
793
  elif isinstance(dataset, pd.DataFrame):
718
- transform_kwargs = dict(
719
- snowpark_input_cols = self._snowpark_cols,
720
- drop_input_cols = self._drop_input_cols
721
- )
794
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
722
795
 
723
796
  transform_handlers = ModelTransformerBuilder.build(
724
797
  dataset=dataset,
@@ -731,7 +804,7 @@ class Birch(BaseTransformer):
731
804
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
732
805
  inference_method=inference_method,
733
806
  input_cols=self.input_cols,
734
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
807
+ expected_output_cols=expected_output_cols,
735
808
  **transform_kwargs
736
809
  )
737
810
  return output_df
@@ -760,17 +833,17 @@ class Birch(BaseTransformer):
760
833
  Output dataset with probability of the sample for each class in the model.
761
834
  """
762
835
  super()._check_dataset_type(dataset)
763
- inference_method="score_samples"
836
+ inference_method = "score_samples"
764
837
 
765
838
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
839
  # are specific to the type of dataset used.
767
840
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
841
 
842
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
843
+
769
844
  if isinstance(dataset, DataFrame):
770
- self._deps = self._batch_inference_validate_snowpark(
771
- dataset=dataset,
772
- inference_method=inference_method,
773
- )
845
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
846
+ self._deps = self._get_dependencies()
774
847
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
848
  transform_kwargs = dict(
776
849
  session=dataset._session,
@@ -778,6 +851,9 @@ class Birch(BaseTransformer):
778
851
  drop_input_cols = self._drop_input_cols,
779
852
  expected_output_cols_type="float",
780
853
  )
854
+ expected_output_cols = self._align_expected_output_names(
855
+ inference_method, dataset, expected_output_cols, output_cols_prefix
856
+ )
781
857
 
782
858
  elif isinstance(dataset, pd.DataFrame):
783
859
  transform_kwargs = dict(
@@ -796,7 +872,7 @@ class Birch(BaseTransformer):
796
872
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
797
873
  inference_method=inference_method,
798
874
  input_cols=self.input_cols,
799
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
875
+ expected_output_cols=expected_output_cols,
800
876
  **transform_kwargs
801
877
  )
802
878
  return output_df
@@ -829,17 +905,15 @@ class Birch(BaseTransformer):
829
905
  transform_kwargs: ScoreKwargsTypedDict = dict()
830
906
 
831
907
  if isinstance(dataset, DataFrame):
832
- self._deps = self._batch_inference_validate_snowpark(
833
- dataset=dataset,
834
- inference_method="score",
835
- )
908
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
909
+ self._deps = self._get_dependencies()
836
910
  selected_cols = self._get_active_columns()
837
911
  if len(selected_cols) > 0:
838
912
  dataset = dataset.select(selected_cols)
839
913
  assert isinstance(dataset._session, Session) # keep mypy happy
840
914
  transform_kwargs = dict(
841
915
  session=dataset._session,
842
- dependencies=["snowflake-snowpark-python"] + self._deps,
916
+ dependencies=self._deps,
843
917
  score_sproc_imports=['sklearn'],
844
918
  )
845
919
  elif isinstance(dataset, pd.DataFrame):
@@ -904,11 +978,8 @@ class Birch(BaseTransformer):
904
978
 
905
979
  if isinstance(dataset, DataFrame):
906
980
 
907
- self._deps = self._batch_inference_validate_snowpark(
908
- dataset=dataset,
909
- inference_method=inference_method,
910
-
911
- )
981
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
982
+ self._deps = self._get_dependencies()
912
983
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
913
984
  transform_kwargs = dict(
914
985
  session = dataset._session,
@@ -941,50 +1012,84 @@ class Birch(BaseTransformer):
941
1012
  )
942
1013
  return output_df
943
1014
 
1015
+
1016
+
1017
+ def to_sklearn(self) -> Any:
1018
+ """Get sklearn.cluster.Birch object.
1019
+ """
1020
+ if self._sklearn_object is None:
1021
+ self._sklearn_object = self._create_sklearn_object()
1022
+ return self._sklearn_object
1023
+
1024
+ def to_xgboost(self) -> Any:
1025
+ raise exceptions.SnowflakeMLException(
1026
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1027
+ original_exception=AttributeError(
1028
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1029
+ "to_xgboost()",
1030
+ "to_sklearn()"
1031
+ )
1032
+ ),
1033
+ )
944
1034
 
945
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1035
+ def to_lightgbm(self) -> Any:
1036
+ raise exceptions.SnowflakeMLException(
1037
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1038
+ original_exception=AttributeError(
1039
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1040
+ "to_lightgbm()",
1041
+ "to_sklearn()"
1042
+ )
1043
+ ),
1044
+ )
1045
+
1046
+ def _get_dependencies(self) -> List[str]:
1047
+ return self._deps
1048
+
1049
+
1050
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
946
1051
  self._model_signature_dict = dict()
947
1052
 
948
1053
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
949
1054
 
950
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1055
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
951
1056
  outputs: List[BaseFeatureSpec] = []
952
1057
  if hasattr(self, "predict"):
953
1058
  # keep mypy happy
954
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1059
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
955
1060
  # For classifier, the type of predict is the same as the type of label
956
- if self._sklearn_object._estimator_type == 'classifier':
957
- # label columns is the desired type for output
1061
+ if self._sklearn_object._estimator_type == "classifier":
1062
+ # label columns is the desired type for output
958
1063
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
959
1064
  # rename the output columns
960
1065
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
961
- self._model_signature_dict["predict"] = ModelSignature(inputs,
962
- ([] if self._drop_input_cols else inputs)
963
- + outputs)
1066
+ self._model_signature_dict["predict"] = ModelSignature(
1067
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1068
+ )
964
1069
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
965
1070
  # For outlier models, returns -1 for outliers and 1 for inliers.
966
- # Clusterer returns int64 cluster labels.
1071
+ # Clusterer returns int64 cluster labels.
967
1072
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
968
1073
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
969
- self._model_signature_dict["predict"] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
972
-
1074
+ self._model_signature_dict["predict"] = ModelSignature(
1075
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1076
+ )
1077
+
973
1078
  # For regressor, the type of predict is float64
974
- elif self._sklearn_object._estimator_type == 'regressor':
1079
+ elif self._sklearn_object._estimator_type == "regressor":
975
1080
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
976
- self._model_signature_dict["predict"] = ModelSignature(inputs,
977
- ([] if self._drop_input_cols else inputs)
978
- + outputs)
979
-
1081
+ self._model_signature_dict["predict"] = ModelSignature(
1082
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1083
+ )
1084
+
980
1085
  for prob_func in PROB_FUNCTIONS:
981
1086
  if hasattr(self, prob_func):
982
1087
  output_cols_prefix: str = f"{prob_func}_"
983
1088
  output_column_names = self._get_output_column_names(output_cols_prefix)
984
1089
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
985
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
986
- ([] if self._drop_input_cols else inputs)
987
- + outputs)
1090
+ self._model_signature_dict[prob_func] = ModelSignature(
1091
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1092
+ )
988
1093
 
989
1094
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
990
1095
  items = list(self._model_signature_dict.items())
@@ -997,10 +1102,10 @@ class Birch(BaseTransformer):
997
1102
  """Returns model signature of current class.
998
1103
 
999
1104
  Raises:
1000
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1105
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1001
1106
 
1002
1107
  Returns:
1003
- Dict[str, ModelSignature]: each method and its input output signature
1108
+ Dict with each method and its input output signature
1004
1109
  """
1005
1110
  if self._model_signature_dict is None:
1006
1111
  raise exceptions.SnowflakeMLException(
@@ -1008,35 +1113,3 @@ class Birch(BaseTransformer):
1008
1113
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1009
1114
  )
1010
1115
  return self._model_signature_dict
1011
-
1012
- def to_sklearn(self) -> Any:
1013
- """Get sklearn.cluster.Birch object.
1014
- """
1015
- if self._sklearn_object is None:
1016
- self._sklearn_object = self._create_sklearn_object()
1017
- return self._sklearn_object
1018
-
1019
- def to_xgboost(self) -> Any:
1020
- raise exceptions.SnowflakeMLException(
1021
- error_code=error_codes.METHOD_NOT_ALLOWED,
1022
- original_exception=AttributeError(
1023
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1024
- "to_xgboost()",
1025
- "to_sklearn()"
1026
- )
1027
- ),
1028
- )
1029
-
1030
- def to_lightgbm(self) -> Any:
1031
- raise exceptions.SnowflakeMLException(
1032
- error_code=error_codes.METHOD_NOT_ALLOWED,
1033
- original_exception=AttributeError(
1034
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1035
- "to_lightgbm()",
1036
- "to_sklearn()"
1037
- )
1038
- ),
1039
- )
1040
-
1041
- def _get_dependencies(self) -> List[str]:
1042
- return self._deps