snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class Perceptron(BaseTransformer):
71
64
  r"""Linear perceptron classifier
72
65
  For more details on this class, see [sklearn.linear_model.Perceptron]
@@ -300,12 +293,7 @@ class Perceptron(BaseTransformer):
300
293
  )
301
294
  return selected_cols
302
295
 
303
- @telemetry.send_api_usage_telemetry(
304
- project=_PROJECT,
305
- subproject=_SUBPROJECT,
306
- custom_tags=dict([("autogen", True)]),
307
- )
308
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Perceptron":
296
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "Perceptron":
309
297
  """Fit linear model with Stochastic Gradient Descent
310
298
  For more details on this function, see [sklearn.linear_model.Perceptron.fit]
311
299
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Perceptron.html#sklearn.linear_model.Perceptron.fit)
@@ -332,12 +320,14 @@ class Perceptron(BaseTransformer):
332
320
 
333
321
  self._snowpark_cols = dataset.select(self.input_cols).columns
334
322
 
335
- # If we are already in a stored procedure, no need to kick off another one.
323
+ # If we are already in a stored procedure, no need to kick off another one.
336
324
  if SNOWML_SPROC_ENV in os.environ:
337
325
  statement_params = telemetry.get_function_usage_statement_params(
338
326
  project=_PROJECT,
339
327
  subproject=_SUBPROJECT,
340
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), Perceptron.__class__.__name__),
328
+ function_name=telemetry.get_statement_params_full_func_name(
329
+ inspect.currentframe(), Perceptron.__class__.__name__
330
+ ),
341
331
  api_calls=[Session.call],
342
332
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
343
333
  )
@@ -358,27 +348,24 @@ class Perceptron(BaseTransformer):
358
348
  )
359
349
  self._sklearn_object = model_trainer.train()
360
350
  self._is_fitted = True
361
- self._get_model_signatures(dataset)
351
+ self._generate_model_signatures(dataset)
362
352
  return self
363
353
 
364
354
  def _batch_inference_validate_snowpark(
365
355
  self,
366
356
  dataset: DataFrame,
367
357
  inference_method: str,
368
- ) -> List[str]:
369
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
370
- return the available package that exists in the snowflake anaconda channel
358
+ ) -> None:
359
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
371
360
 
372
361
  Args:
373
362
  dataset: snowpark dataframe
374
363
  inference_method: the inference method such as predict, score...
375
-
364
+
376
365
  Raises:
377
366
  SnowflakeMLException: If the estimator is not fitted, raise error
378
367
  SnowflakeMLException: If the session is None, raise error
379
368
 
380
- Returns:
381
- A list of available package that exists in the snowflake anaconda channel
382
369
  """
383
370
  if not self._is_fitted:
384
371
  raise exceptions.SnowflakeMLException(
@@ -396,9 +383,7 @@ class Perceptron(BaseTransformer):
396
383
  "Session must not specified for snowpark dataset."
397
384
  ),
398
385
  )
399
- # Validate that key package version in user workspace are supported in snowflake conda channel
400
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
401
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
386
+
402
387
 
403
388
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
404
389
  @telemetry.send_api_usage_telemetry(
@@ -434,7 +419,9 @@ class Perceptron(BaseTransformer):
434
419
  # when it is classifier, infer the datatype from label columns
435
420
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
436
421
  # Batch inference takes a single expected output column type. Use the first columns type for now.
437
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
422
+ label_cols_signatures = [
423
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
424
+ ]
438
425
  if len(label_cols_signatures) == 0:
439
426
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
440
427
  raise exceptions.SnowflakeMLException(
@@ -442,25 +429,23 @@ class Perceptron(BaseTransformer):
442
429
  original_exception=ValueError(error_str),
443
430
  )
444
431
 
445
- expected_type_inferred = convert_sp_to_sf_type(
446
- label_cols_signatures[0].as_snowpark_type()
447
- )
432
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
448
433
 
449
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
450
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
434
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
435
+ self._deps = self._get_dependencies()
436
+ assert isinstance(
437
+ dataset._session, Session
438
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
451
439
 
452
440
  transform_kwargs = dict(
453
- session = dataset._session,
454
- dependencies = self._deps,
455
- drop_input_cols = self._drop_input_cols,
456
- expected_output_cols_type = expected_type_inferred,
441
+ session=dataset._session,
442
+ dependencies=self._deps,
443
+ drop_input_cols=self._drop_input_cols,
444
+ expected_output_cols_type=expected_type_inferred,
457
445
  )
458
446
 
459
447
  elif isinstance(dataset, pd.DataFrame):
460
- transform_kwargs = dict(
461
- snowpark_input_cols = self._snowpark_cols,
462
- drop_input_cols = self._drop_input_cols
463
- )
448
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
464
449
 
465
450
  transform_handlers = ModelTransformerBuilder.build(
466
451
  dataset=dataset,
@@ -500,7 +485,7 @@ class Perceptron(BaseTransformer):
500
485
  Transformed dataset.
501
486
  """
502
487
  super()._check_dataset_type(dataset)
503
- inference_method="transform"
488
+ inference_method = "transform"
504
489
 
505
490
  # This dictionary contains optional kwargs for batch inference. These kwargs
506
491
  # are specific to the type of dataset used.
@@ -530,24 +515,19 @@ class Perceptron(BaseTransformer):
530
515
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
531
516
  expected_dtype = convert_sp_to_sf_type(output_types[0])
532
517
 
533
- self._deps = self._batch_inference_validate_snowpark(
534
- dataset=dataset,
535
- inference_method=inference_method,
536
- )
518
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
519
+ self._deps = self._get_dependencies()
537
520
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
538
521
 
539
522
  transform_kwargs = dict(
540
- session = dataset._session,
541
- dependencies = self._deps,
542
- drop_input_cols = self._drop_input_cols,
543
- expected_output_cols_type = expected_dtype,
523
+ session=dataset._session,
524
+ dependencies=self._deps,
525
+ drop_input_cols=self._drop_input_cols,
526
+ expected_output_cols_type=expected_dtype,
544
527
  )
545
528
 
546
529
  elif isinstance(dataset, pd.DataFrame):
547
- transform_kwargs = dict(
548
- snowpark_input_cols = self._snowpark_cols,
549
- drop_input_cols = self._drop_input_cols
550
- )
530
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
551
531
 
552
532
  transform_handlers = ModelTransformerBuilder.build(
553
533
  dataset=dataset,
@@ -566,7 +546,11 @@ class Perceptron(BaseTransformer):
566
546
  return output_df
567
547
 
568
548
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
569
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
549
+ def fit_predict(
550
+ self,
551
+ dataset: Union[DataFrame, pd.DataFrame],
552
+ output_cols_prefix: str = "fit_predict_",
553
+ ) -> Union[DataFrame, pd.DataFrame]:
570
554
  """ Method not supported for this class.
571
555
 
572
556
 
@@ -591,22 +575,104 @@ class Perceptron(BaseTransformer):
591
575
  )
592
576
  output_result, fitted_estimator = model_trainer.train_fit_predict(
593
577
  drop_input_cols=self._drop_input_cols,
594
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
578
+ expected_output_cols_list=(
579
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
580
+ ),
595
581
  )
596
582
  self._sklearn_object = fitted_estimator
597
583
  self._is_fitted = True
598
584
  return output_result
599
585
 
586
+
587
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
588
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
589
+ """ Method not supported for this class.
590
+
600
591
 
601
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
602
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
603
- """
592
+ Raises:
593
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
594
+
595
+ Args:
596
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
597
+ Snowpark or Pandas DataFrame.
598
+ output_cols_prefix: Prefix for the response columns
604
599
  Returns:
605
600
  Transformed dataset.
606
601
  """
607
- self.fit(dataset)
608
- assert self._sklearn_object is not None
609
- return self._sklearn_object.embedding_
602
+ self._infer_input_output_cols(dataset)
603
+ super()._check_dataset_type(dataset)
604
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
605
+ estimator=self._sklearn_object,
606
+ dataset=dataset,
607
+ input_cols=self.input_cols,
608
+ label_cols=self.label_cols,
609
+ sample_weight_col=self.sample_weight_col,
610
+ autogenerated=self._autogenerated,
611
+ subproject=_SUBPROJECT,
612
+ )
613
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
614
+ drop_input_cols=self._drop_input_cols,
615
+ expected_output_cols_list=self.output_cols,
616
+ )
617
+ self._sklearn_object = fitted_estimator
618
+ self._is_fitted = True
619
+ return output_result
620
+
621
+
622
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
623
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
624
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
625
+ """
626
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
627
+ # The following condition is introduced for kneighbors methods, and not used in other methods
628
+ if output_cols:
629
+ output_cols = [
630
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
631
+ for c in output_cols
632
+ ]
633
+ elif getattr(self._sklearn_object, "classes_", None) is None:
634
+ output_cols = [output_cols_prefix]
635
+ elif self._sklearn_object is not None:
636
+ classes = self._sklearn_object.classes_
637
+ if isinstance(classes, numpy.ndarray):
638
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
639
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
640
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
641
+ output_cols = []
642
+ for i, cl in enumerate(classes):
643
+ # For binary classification, there is only one output column for each class
644
+ # ndarray as the two classes are complementary.
645
+ if len(cl) == 2:
646
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
647
+ else:
648
+ output_cols.extend([
649
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
650
+ ])
651
+ else:
652
+ output_cols = []
653
+
654
+ # Make sure column names are valid snowflake identifiers.
655
+ assert output_cols is not None # Make MyPy happy
656
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
657
+
658
+ return rv
659
+
660
+ def _align_expected_output_names(
661
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
662
+ ) -> List[str]:
663
+ # in case the inferred output column names dimension is different
664
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
665
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
666
+ output_df_columns = list(output_df_pd.columns)
667
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
668
+ if self.sample_weight_col:
669
+ output_df_columns_set -= set(self.sample_weight_col)
670
+ # if the dimension of inferred output column names is correct; use it
671
+ if len(expected_output_cols_list) == len(output_df_columns_set):
672
+ return expected_output_cols_list
673
+ # otherwise, use the sklearn estimator's output
674
+ else:
675
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
610
676
 
611
677
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
612
678
  @telemetry.send_api_usage_telemetry(
@@ -638,24 +704,26 @@ class Perceptron(BaseTransformer):
638
704
  # are specific to the type of dataset used.
639
705
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
640
706
 
707
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
708
+
641
709
  if isinstance(dataset, DataFrame):
642
- self._deps = self._batch_inference_validate_snowpark(
643
- dataset=dataset,
644
- inference_method=inference_method,
645
- )
646
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
710
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
711
+ self._deps = self._get_dependencies()
712
+ assert isinstance(
713
+ dataset._session, Session
714
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
647
715
  transform_kwargs = dict(
648
716
  session=dataset._session,
649
717
  dependencies=self._deps,
650
- drop_input_cols = self._drop_input_cols,
718
+ drop_input_cols=self._drop_input_cols,
651
719
  expected_output_cols_type="float",
652
720
  )
721
+ expected_output_cols = self._align_expected_output_names(
722
+ inference_method, dataset, expected_output_cols, output_cols_prefix
723
+ )
653
724
 
654
725
  elif isinstance(dataset, pd.DataFrame):
655
- transform_kwargs = dict(
656
- snowpark_input_cols = self._snowpark_cols,
657
- drop_input_cols = self._drop_input_cols
658
- )
726
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
659
727
 
660
728
  transform_handlers = ModelTransformerBuilder.build(
661
729
  dataset=dataset,
@@ -667,7 +735,7 @@ class Perceptron(BaseTransformer):
667
735
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
668
736
  inference_method=inference_method,
669
737
  input_cols=self.input_cols,
670
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
738
+ expected_output_cols=expected_output_cols,
671
739
  **transform_kwargs
672
740
  )
673
741
  return output_df
@@ -697,29 +765,30 @@ class Perceptron(BaseTransformer):
697
765
  Output dataset with log probability of the sample for each class in the model.
698
766
  """
699
767
  super()._check_dataset_type(dataset)
700
- inference_method="predict_log_proba"
768
+ inference_method = "predict_log_proba"
769
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
701
770
 
702
771
  # This dictionary contains optional kwargs for batch inference. These kwargs
703
772
  # are specific to the type of dataset used.
704
773
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
705
774
 
706
775
  if isinstance(dataset, DataFrame):
707
- self._deps = self._batch_inference_validate_snowpark(
708
- dataset=dataset,
709
- inference_method=inference_method,
710
- )
711
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
776
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
777
+ self._deps = self._get_dependencies()
778
+ assert isinstance(
779
+ dataset._session, Session
780
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
712
781
  transform_kwargs = dict(
713
782
  session=dataset._session,
714
783
  dependencies=self._deps,
715
- drop_input_cols = self._drop_input_cols,
784
+ drop_input_cols=self._drop_input_cols,
716
785
  expected_output_cols_type="float",
717
786
  )
787
+ expected_output_cols = self._align_expected_output_names(
788
+ inference_method, dataset, expected_output_cols, output_cols_prefix
789
+ )
718
790
  elif isinstance(dataset, pd.DataFrame):
719
- transform_kwargs = dict(
720
- snowpark_input_cols = self._snowpark_cols,
721
- drop_input_cols = self._drop_input_cols
722
- )
791
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
723
792
 
724
793
  transform_handlers = ModelTransformerBuilder.build(
725
794
  dataset=dataset,
@@ -732,7 +801,7 @@ class Perceptron(BaseTransformer):
732
801
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
733
802
  inference_method=inference_method,
734
803
  input_cols=self.input_cols,
735
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
804
+ expected_output_cols=expected_output_cols,
736
805
  **transform_kwargs
737
806
  )
738
807
  return output_df
@@ -760,30 +829,32 @@ class Perceptron(BaseTransformer):
760
829
  Output dataset with results of the decision function for the samples in input dataset.
761
830
  """
762
831
  super()._check_dataset_type(dataset)
763
- inference_method="decision_function"
832
+ inference_method = "decision_function"
764
833
 
765
834
  # This dictionary contains optional kwargs for batch inference. These kwargs
766
835
  # are specific to the type of dataset used.
767
836
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
768
837
 
838
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
839
+
769
840
  if isinstance(dataset, DataFrame):
770
- self._deps = self._batch_inference_validate_snowpark(
771
- dataset=dataset,
772
- inference_method=inference_method,
773
- )
774
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
841
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
842
+ self._deps = self._get_dependencies()
843
+ assert isinstance(
844
+ dataset._session, Session
845
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
775
846
  transform_kwargs = dict(
776
847
  session=dataset._session,
777
848
  dependencies=self._deps,
778
- drop_input_cols = self._drop_input_cols,
849
+ drop_input_cols=self._drop_input_cols,
779
850
  expected_output_cols_type="float",
780
851
  )
852
+ expected_output_cols = self._align_expected_output_names(
853
+ inference_method, dataset, expected_output_cols, output_cols_prefix
854
+ )
781
855
 
782
856
  elif isinstance(dataset, pd.DataFrame):
783
- transform_kwargs = dict(
784
- snowpark_input_cols = self._snowpark_cols,
785
- drop_input_cols = self._drop_input_cols
786
- )
857
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
787
858
 
788
859
  transform_handlers = ModelTransformerBuilder.build(
789
860
  dataset=dataset,
@@ -796,7 +867,7 @@ class Perceptron(BaseTransformer):
796
867
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
797
868
  inference_method=inference_method,
798
869
  input_cols=self.input_cols,
799
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
870
+ expected_output_cols=expected_output_cols,
800
871
  **transform_kwargs
801
872
  )
802
873
  return output_df
@@ -825,17 +896,17 @@ class Perceptron(BaseTransformer):
825
896
  Output dataset with probability of the sample for each class in the model.
826
897
  """
827
898
  super()._check_dataset_type(dataset)
828
- inference_method="score_samples"
899
+ inference_method = "score_samples"
829
900
 
830
901
  # This dictionary contains optional kwargs for batch inference. These kwargs
831
902
  # are specific to the type of dataset used.
832
903
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
833
904
 
905
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
906
+
834
907
  if isinstance(dataset, DataFrame):
835
- self._deps = self._batch_inference_validate_snowpark(
836
- dataset=dataset,
837
- inference_method=inference_method,
838
- )
908
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
909
+ self._deps = self._get_dependencies()
839
910
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
840
911
  transform_kwargs = dict(
841
912
  session=dataset._session,
@@ -843,6 +914,9 @@ class Perceptron(BaseTransformer):
843
914
  drop_input_cols = self._drop_input_cols,
844
915
  expected_output_cols_type="float",
845
916
  )
917
+ expected_output_cols = self._align_expected_output_names(
918
+ inference_method, dataset, expected_output_cols, output_cols_prefix
919
+ )
846
920
 
847
921
  elif isinstance(dataset, pd.DataFrame):
848
922
  transform_kwargs = dict(
@@ -861,7 +935,7 @@ class Perceptron(BaseTransformer):
861
935
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
862
936
  inference_method=inference_method,
863
937
  input_cols=self.input_cols,
864
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
938
+ expected_output_cols=expected_output_cols,
865
939
  **transform_kwargs
866
940
  )
867
941
  return output_df
@@ -896,17 +970,15 @@ class Perceptron(BaseTransformer):
896
970
  transform_kwargs: ScoreKwargsTypedDict = dict()
897
971
 
898
972
  if isinstance(dataset, DataFrame):
899
- self._deps = self._batch_inference_validate_snowpark(
900
- dataset=dataset,
901
- inference_method="score",
902
- )
973
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
974
+ self._deps = self._get_dependencies()
903
975
  selected_cols = self._get_active_columns()
904
976
  if len(selected_cols) > 0:
905
977
  dataset = dataset.select(selected_cols)
906
978
  assert isinstance(dataset._session, Session) # keep mypy happy
907
979
  transform_kwargs = dict(
908
980
  session=dataset._session,
909
- dependencies=["snowflake-snowpark-python"] + self._deps,
981
+ dependencies=self._deps,
910
982
  score_sproc_imports=['sklearn'],
911
983
  )
912
984
  elif isinstance(dataset, pd.DataFrame):
@@ -971,11 +1043,8 @@ class Perceptron(BaseTransformer):
971
1043
 
972
1044
  if isinstance(dataset, DataFrame):
973
1045
 
974
- self._deps = self._batch_inference_validate_snowpark(
975
- dataset=dataset,
976
- inference_method=inference_method,
977
-
978
- )
1046
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1047
+ self._deps = self._get_dependencies()
979
1048
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
980
1049
  transform_kwargs = dict(
981
1050
  session = dataset._session,
@@ -1008,50 +1077,84 @@ class Perceptron(BaseTransformer):
1008
1077
  )
1009
1078
  return output_df
1010
1079
 
1080
+
1081
+
1082
+ def to_sklearn(self) -> Any:
1083
+ """Get sklearn.linear_model.Perceptron object.
1084
+ """
1085
+ if self._sklearn_object is None:
1086
+ self._sklearn_object = self._create_sklearn_object()
1087
+ return self._sklearn_object
1088
+
1089
+ def to_xgboost(self) -> Any:
1090
+ raise exceptions.SnowflakeMLException(
1091
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1092
+ original_exception=AttributeError(
1093
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1094
+ "to_xgboost()",
1095
+ "to_sklearn()"
1096
+ )
1097
+ ),
1098
+ )
1099
+
1100
+ def to_lightgbm(self) -> Any:
1101
+ raise exceptions.SnowflakeMLException(
1102
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1103
+ original_exception=AttributeError(
1104
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1105
+ "to_lightgbm()",
1106
+ "to_sklearn()"
1107
+ )
1108
+ ),
1109
+ )
1110
+
1111
+ def _get_dependencies(self) -> List[str]:
1112
+ return self._deps
1113
+
1011
1114
 
1012
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1115
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1013
1116
  self._model_signature_dict = dict()
1014
1117
 
1015
1118
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1016
1119
 
1017
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1120
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1018
1121
  outputs: List[BaseFeatureSpec] = []
1019
1122
  if hasattr(self, "predict"):
1020
1123
  # keep mypy happy
1021
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1124
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1022
1125
  # For classifier, the type of predict is the same as the type of label
1023
- if self._sklearn_object._estimator_type == 'classifier':
1024
- # label columns is the desired type for output
1126
+ if self._sklearn_object._estimator_type == "classifier":
1127
+ # label columns is the desired type for output
1025
1128
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1026
1129
  # rename the output columns
1027
1130
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1028
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1029
- ([] if self._drop_input_cols else inputs)
1030
- + outputs)
1131
+ self._model_signature_dict["predict"] = ModelSignature(
1132
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1133
+ )
1031
1134
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1032
1135
  # For outlier models, returns -1 for outliers and 1 for inliers.
1033
- # Clusterer returns int64 cluster labels.
1136
+ # Clusterer returns int64 cluster labels.
1034
1137
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1035
1138
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1036
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1037
- ([] if self._drop_input_cols else inputs)
1038
- + outputs)
1039
-
1139
+ self._model_signature_dict["predict"] = ModelSignature(
1140
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1141
+ )
1142
+
1040
1143
  # For regressor, the type of predict is float64
1041
- elif self._sklearn_object._estimator_type == 'regressor':
1144
+ elif self._sklearn_object._estimator_type == "regressor":
1042
1145
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1043
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1044
- ([] if self._drop_input_cols else inputs)
1045
- + outputs)
1046
-
1146
+ self._model_signature_dict["predict"] = ModelSignature(
1147
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1148
+ )
1149
+
1047
1150
  for prob_func in PROB_FUNCTIONS:
1048
1151
  if hasattr(self, prob_func):
1049
1152
  output_cols_prefix: str = f"{prob_func}_"
1050
1153
  output_column_names = self._get_output_column_names(output_cols_prefix)
1051
1154
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1052
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1053
- ([] if self._drop_input_cols else inputs)
1054
- + outputs)
1155
+ self._model_signature_dict[prob_func] = ModelSignature(
1156
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1157
+ )
1055
1158
 
1056
1159
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1057
1160
  items = list(self._model_signature_dict.items())
@@ -1064,10 +1167,10 @@ class Perceptron(BaseTransformer):
1064
1167
  """Returns model signature of current class.
1065
1168
 
1066
1169
  Raises:
1067
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1170
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1068
1171
 
1069
1172
  Returns:
1070
- Dict[str, ModelSignature]: each method and its input output signature
1173
+ Dict with each method and its input output signature
1071
1174
  """
1072
1175
  if self._model_signature_dict is None:
1073
1176
  raise exceptions.SnowflakeMLException(
@@ -1075,35 +1178,3 @@ class Perceptron(BaseTransformer):
1075
1178
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1076
1179
  )
1077
1180
  return self._model_signature_dict
1078
-
1079
- def to_sklearn(self) -> Any:
1080
- """Get sklearn.linear_model.Perceptron object.
1081
- """
1082
- if self._sklearn_object is None:
1083
- self._sklearn_object = self._create_sklearn_object()
1084
- return self._sklearn_object
1085
-
1086
- def to_xgboost(self) -> Any:
1087
- raise exceptions.SnowflakeMLException(
1088
- error_code=error_codes.METHOD_NOT_ALLOWED,
1089
- original_exception=AttributeError(
1090
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1091
- "to_xgboost()",
1092
- "to_sklearn()"
1093
- )
1094
- ),
1095
- )
1096
-
1097
- def to_lightgbm(self) -> Any:
1098
- raise exceptions.SnowflakeMLException(
1099
- error_code=error_codes.METHOD_NOT_ALLOWED,
1100
- original_exception=AttributeError(
1101
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1102
- "to_lightgbm()",
1103
- "to_sklearn()"
1104
- )
1105
- ),
1106
- )
1107
-
1108
- def _get_dependencies(self) -> List[str]:
1109
- return self._deps