snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.linear_model".replace("s
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class LogisticRegression(BaseTransformer):
71
64
  r"""Logistic Regression (aka logit, MaxEnt) classifier
72
65
  For more details on this class, see [sklearn.linear_model.LogisticRegression]
@@ -333,12 +326,7 @@ class LogisticRegression(BaseTransformer):
333
326
  )
334
327
  return selected_cols
335
328
 
336
- @telemetry.send_api_usage_telemetry(
337
- project=_PROJECT,
338
- subproject=_SUBPROJECT,
339
- custom_tags=dict([("autogen", True)]),
340
- )
341
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegression":
329
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "LogisticRegression":
342
330
  """Fit the model according to the given training data
343
331
  For more details on this function, see [sklearn.linear_model.LogisticRegression.fit]
344
332
  (https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression.fit)
@@ -365,12 +353,14 @@ class LogisticRegression(BaseTransformer):
365
353
 
366
354
  self._snowpark_cols = dataset.select(self.input_cols).columns
367
355
 
368
- # If we are already in a stored procedure, no need to kick off another one.
356
+ # If we are already in a stored procedure, no need to kick off another one.
369
357
  if SNOWML_SPROC_ENV in os.environ:
370
358
  statement_params = telemetry.get_function_usage_statement_params(
371
359
  project=_PROJECT,
372
360
  subproject=_SUBPROJECT,
373
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), LogisticRegression.__class__.__name__),
361
+ function_name=telemetry.get_statement_params_full_func_name(
362
+ inspect.currentframe(), LogisticRegression.__class__.__name__
363
+ ),
374
364
  api_calls=[Session.call],
375
365
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
376
366
  )
@@ -391,27 +381,24 @@ class LogisticRegression(BaseTransformer):
391
381
  )
392
382
  self._sklearn_object = model_trainer.train()
393
383
  self._is_fitted = True
394
- self._get_model_signatures(dataset)
384
+ self._generate_model_signatures(dataset)
395
385
  return self
396
386
 
397
387
  def _batch_inference_validate_snowpark(
398
388
  self,
399
389
  dataset: DataFrame,
400
390
  inference_method: str,
401
- ) -> List[str]:
402
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
403
- return the available package that exists in the snowflake anaconda channel
391
+ ) -> None:
392
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
404
393
 
405
394
  Args:
406
395
  dataset: snowpark dataframe
407
396
  inference_method: the inference method such as predict, score...
408
-
397
+
409
398
  Raises:
410
399
  SnowflakeMLException: If the estimator is not fitted, raise error
411
400
  SnowflakeMLException: If the session is None, raise error
412
401
 
413
- Returns:
414
- A list of available package that exists in the snowflake anaconda channel
415
402
  """
416
403
  if not self._is_fitted:
417
404
  raise exceptions.SnowflakeMLException(
@@ -429,9 +416,7 @@ class LogisticRegression(BaseTransformer):
429
416
  "Session must not specified for snowpark dataset."
430
417
  ),
431
418
  )
432
- # Validate that key package version in user workspace are supported in snowflake conda channel
433
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
434
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
419
+
435
420
 
436
421
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
437
422
  @telemetry.send_api_usage_telemetry(
@@ -467,7 +452,9 @@ class LogisticRegression(BaseTransformer):
467
452
  # when it is classifier, infer the datatype from label columns
468
453
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
469
454
  # Batch inference takes a single expected output column type. Use the first columns type for now.
470
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
455
+ label_cols_signatures = [
456
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
457
+ ]
471
458
  if len(label_cols_signatures) == 0:
472
459
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
473
460
  raise exceptions.SnowflakeMLException(
@@ -475,25 +462,23 @@ class LogisticRegression(BaseTransformer):
475
462
  original_exception=ValueError(error_str),
476
463
  )
477
464
 
478
- expected_type_inferred = convert_sp_to_sf_type(
479
- label_cols_signatures[0].as_snowpark_type()
480
- )
465
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
481
466
 
482
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
483
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
467
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
468
+ self._deps = self._get_dependencies()
469
+ assert isinstance(
470
+ dataset._session, Session
471
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
484
472
 
485
473
  transform_kwargs = dict(
486
- session = dataset._session,
487
- dependencies = self._deps,
488
- drop_input_cols = self._drop_input_cols,
489
- expected_output_cols_type = expected_type_inferred,
474
+ session=dataset._session,
475
+ dependencies=self._deps,
476
+ drop_input_cols=self._drop_input_cols,
477
+ expected_output_cols_type=expected_type_inferred,
490
478
  )
491
479
 
492
480
  elif isinstance(dataset, pd.DataFrame):
493
- transform_kwargs = dict(
494
- snowpark_input_cols = self._snowpark_cols,
495
- drop_input_cols = self._drop_input_cols
496
- )
481
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
497
482
 
498
483
  transform_handlers = ModelTransformerBuilder.build(
499
484
  dataset=dataset,
@@ -533,7 +518,7 @@ class LogisticRegression(BaseTransformer):
533
518
  Transformed dataset.
534
519
  """
535
520
  super()._check_dataset_type(dataset)
536
- inference_method="transform"
521
+ inference_method = "transform"
537
522
 
538
523
  # This dictionary contains optional kwargs for batch inference. These kwargs
539
524
  # are specific to the type of dataset used.
@@ -563,24 +548,19 @@ class LogisticRegression(BaseTransformer):
563
548
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
564
549
  expected_dtype = convert_sp_to_sf_type(output_types[0])
565
550
 
566
- self._deps = self._batch_inference_validate_snowpark(
567
- dataset=dataset,
568
- inference_method=inference_method,
569
- )
551
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
552
+ self._deps = self._get_dependencies()
570
553
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
571
554
 
572
555
  transform_kwargs = dict(
573
- session = dataset._session,
574
- dependencies = self._deps,
575
- drop_input_cols = self._drop_input_cols,
576
- expected_output_cols_type = expected_dtype,
556
+ session=dataset._session,
557
+ dependencies=self._deps,
558
+ drop_input_cols=self._drop_input_cols,
559
+ expected_output_cols_type=expected_dtype,
577
560
  )
578
561
 
579
562
  elif isinstance(dataset, pd.DataFrame):
580
- transform_kwargs = dict(
581
- snowpark_input_cols = self._snowpark_cols,
582
- drop_input_cols = self._drop_input_cols
583
- )
563
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
584
564
 
585
565
  transform_handlers = ModelTransformerBuilder.build(
586
566
  dataset=dataset,
@@ -599,7 +579,11 @@ class LogisticRegression(BaseTransformer):
599
579
  return output_df
600
580
 
601
581
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
602
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
582
+ def fit_predict(
583
+ self,
584
+ dataset: Union[DataFrame, pd.DataFrame],
585
+ output_cols_prefix: str = "fit_predict_",
586
+ ) -> Union[DataFrame, pd.DataFrame]:
603
587
  """ Method not supported for this class.
604
588
 
605
589
 
@@ -624,22 +608,104 @@ class LogisticRegression(BaseTransformer):
624
608
  )
625
609
  output_result, fitted_estimator = model_trainer.train_fit_predict(
626
610
  drop_input_cols=self._drop_input_cols,
627
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
611
+ expected_output_cols_list=(
612
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
613
+ ),
628
614
  )
629
615
  self._sklearn_object = fitted_estimator
630
616
  self._is_fitted = True
631
617
  return output_result
632
618
 
619
+
620
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
621
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
622
+ """ Method not supported for this class.
623
+
633
624
 
634
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
635
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
636
- """
625
+ Raises:
626
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
627
+
628
+ Args:
629
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
630
+ Snowpark or Pandas DataFrame.
631
+ output_cols_prefix: Prefix for the response columns
637
632
  Returns:
638
633
  Transformed dataset.
639
634
  """
640
- self.fit(dataset)
641
- assert self._sklearn_object is not None
642
- return self._sklearn_object.embedding_
635
+ self._infer_input_output_cols(dataset)
636
+ super()._check_dataset_type(dataset)
637
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
638
+ estimator=self._sklearn_object,
639
+ dataset=dataset,
640
+ input_cols=self.input_cols,
641
+ label_cols=self.label_cols,
642
+ sample_weight_col=self.sample_weight_col,
643
+ autogenerated=self._autogenerated,
644
+ subproject=_SUBPROJECT,
645
+ )
646
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
647
+ drop_input_cols=self._drop_input_cols,
648
+ expected_output_cols_list=self.output_cols,
649
+ )
650
+ self._sklearn_object = fitted_estimator
651
+ self._is_fitted = True
652
+ return output_result
653
+
654
+
655
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
656
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
657
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
658
+ """
659
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
660
+ # The following condition is introduced for kneighbors methods, and not used in other methods
661
+ if output_cols:
662
+ output_cols = [
663
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
664
+ for c in output_cols
665
+ ]
666
+ elif getattr(self._sklearn_object, "classes_", None) is None:
667
+ output_cols = [output_cols_prefix]
668
+ elif self._sklearn_object is not None:
669
+ classes = self._sklearn_object.classes_
670
+ if isinstance(classes, numpy.ndarray):
671
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
672
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
673
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
674
+ output_cols = []
675
+ for i, cl in enumerate(classes):
676
+ # For binary classification, there is only one output column for each class
677
+ # ndarray as the two classes are complementary.
678
+ if len(cl) == 2:
679
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
680
+ else:
681
+ output_cols.extend([
682
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
683
+ ])
684
+ else:
685
+ output_cols = []
686
+
687
+ # Make sure column names are valid snowflake identifiers.
688
+ assert output_cols is not None # Make MyPy happy
689
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
690
+
691
+ return rv
692
+
693
+ def _align_expected_output_names(
694
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
695
+ ) -> List[str]:
696
+ # in case the inferred output column names dimension is different
697
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
698
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
699
+ output_df_columns = list(output_df_pd.columns)
700
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
701
+ if self.sample_weight_col:
702
+ output_df_columns_set -= set(self.sample_weight_col)
703
+ # if the dimension of inferred output column names is correct; use it
704
+ if len(expected_output_cols_list) == len(output_df_columns_set):
705
+ return expected_output_cols_list
706
+ # otherwise, use the sklearn estimator's output
707
+ else:
708
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
643
709
 
644
710
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
645
711
  @telemetry.send_api_usage_telemetry(
@@ -673,24 +739,26 @@ class LogisticRegression(BaseTransformer):
673
739
  # are specific to the type of dataset used.
674
740
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
675
741
 
742
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
743
+
676
744
  if isinstance(dataset, DataFrame):
677
- self._deps = self._batch_inference_validate_snowpark(
678
- dataset=dataset,
679
- inference_method=inference_method,
680
- )
681
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
745
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
746
+ self._deps = self._get_dependencies()
747
+ assert isinstance(
748
+ dataset._session, Session
749
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
682
750
  transform_kwargs = dict(
683
751
  session=dataset._session,
684
752
  dependencies=self._deps,
685
- drop_input_cols = self._drop_input_cols,
753
+ drop_input_cols=self._drop_input_cols,
686
754
  expected_output_cols_type="float",
687
755
  )
756
+ expected_output_cols = self._align_expected_output_names(
757
+ inference_method, dataset, expected_output_cols, output_cols_prefix
758
+ )
688
759
 
689
760
  elif isinstance(dataset, pd.DataFrame):
690
- transform_kwargs = dict(
691
- snowpark_input_cols = self._snowpark_cols,
692
- drop_input_cols = self._drop_input_cols
693
- )
761
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
694
762
 
695
763
  transform_handlers = ModelTransformerBuilder.build(
696
764
  dataset=dataset,
@@ -702,7 +770,7 @@ class LogisticRegression(BaseTransformer):
702
770
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
703
771
  inference_method=inference_method,
704
772
  input_cols=self.input_cols,
705
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
773
+ expected_output_cols=expected_output_cols,
706
774
  **transform_kwargs
707
775
  )
708
776
  return output_df
@@ -734,29 +802,30 @@ class LogisticRegression(BaseTransformer):
734
802
  Output dataset with log probability of the sample for each class in the model.
735
803
  """
736
804
  super()._check_dataset_type(dataset)
737
- inference_method="predict_log_proba"
805
+ inference_method = "predict_log_proba"
806
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
738
807
 
739
808
  # This dictionary contains optional kwargs for batch inference. These kwargs
740
809
  # are specific to the type of dataset used.
741
810
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
742
811
 
743
812
  if isinstance(dataset, DataFrame):
744
- self._deps = self._batch_inference_validate_snowpark(
745
- dataset=dataset,
746
- inference_method=inference_method,
747
- )
748
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
813
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
814
+ self._deps = self._get_dependencies()
815
+ assert isinstance(
816
+ dataset._session, Session
817
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
749
818
  transform_kwargs = dict(
750
819
  session=dataset._session,
751
820
  dependencies=self._deps,
752
- drop_input_cols = self._drop_input_cols,
821
+ drop_input_cols=self._drop_input_cols,
753
822
  expected_output_cols_type="float",
754
823
  )
824
+ expected_output_cols = self._align_expected_output_names(
825
+ inference_method, dataset, expected_output_cols, output_cols_prefix
826
+ )
755
827
  elif isinstance(dataset, pd.DataFrame):
756
- transform_kwargs = dict(
757
- snowpark_input_cols = self._snowpark_cols,
758
- drop_input_cols = self._drop_input_cols
759
- )
828
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
760
829
 
761
830
  transform_handlers = ModelTransformerBuilder.build(
762
831
  dataset=dataset,
@@ -769,7 +838,7 @@ class LogisticRegression(BaseTransformer):
769
838
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
770
839
  inference_method=inference_method,
771
840
  input_cols=self.input_cols,
772
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
841
+ expected_output_cols=expected_output_cols,
773
842
  **transform_kwargs
774
843
  )
775
844
  return output_df
@@ -797,30 +866,32 @@ class LogisticRegression(BaseTransformer):
797
866
  Output dataset with results of the decision function for the samples in input dataset.
798
867
  """
799
868
  super()._check_dataset_type(dataset)
800
- inference_method="decision_function"
869
+ inference_method = "decision_function"
801
870
 
802
871
  # This dictionary contains optional kwargs for batch inference. These kwargs
803
872
  # are specific to the type of dataset used.
804
873
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
805
874
 
875
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
876
+
806
877
  if isinstance(dataset, DataFrame):
807
- self._deps = self._batch_inference_validate_snowpark(
808
- dataset=dataset,
809
- inference_method=inference_method,
810
- )
811
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
878
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
879
+ self._deps = self._get_dependencies()
880
+ assert isinstance(
881
+ dataset._session, Session
882
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
812
883
  transform_kwargs = dict(
813
884
  session=dataset._session,
814
885
  dependencies=self._deps,
815
- drop_input_cols = self._drop_input_cols,
886
+ drop_input_cols=self._drop_input_cols,
816
887
  expected_output_cols_type="float",
817
888
  )
889
+ expected_output_cols = self._align_expected_output_names(
890
+ inference_method, dataset, expected_output_cols, output_cols_prefix
891
+ )
818
892
 
819
893
  elif isinstance(dataset, pd.DataFrame):
820
- transform_kwargs = dict(
821
- snowpark_input_cols = self._snowpark_cols,
822
- drop_input_cols = self._drop_input_cols
823
- )
894
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
824
895
 
825
896
  transform_handlers = ModelTransformerBuilder.build(
826
897
  dataset=dataset,
@@ -833,7 +904,7 @@ class LogisticRegression(BaseTransformer):
833
904
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
834
905
  inference_method=inference_method,
835
906
  input_cols=self.input_cols,
836
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
907
+ expected_output_cols=expected_output_cols,
837
908
  **transform_kwargs
838
909
  )
839
910
  return output_df
@@ -862,17 +933,17 @@ class LogisticRegression(BaseTransformer):
862
933
  Output dataset with probability of the sample for each class in the model.
863
934
  """
864
935
  super()._check_dataset_type(dataset)
865
- inference_method="score_samples"
936
+ inference_method = "score_samples"
866
937
 
867
938
  # This dictionary contains optional kwargs for batch inference. These kwargs
868
939
  # are specific to the type of dataset used.
869
940
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
870
941
 
942
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
943
+
871
944
  if isinstance(dataset, DataFrame):
872
- self._deps = self._batch_inference_validate_snowpark(
873
- dataset=dataset,
874
- inference_method=inference_method,
875
- )
945
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
946
+ self._deps = self._get_dependencies()
876
947
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
877
948
  transform_kwargs = dict(
878
949
  session=dataset._session,
@@ -880,6 +951,9 @@ class LogisticRegression(BaseTransformer):
880
951
  drop_input_cols = self._drop_input_cols,
881
952
  expected_output_cols_type="float",
882
953
  )
954
+ expected_output_cols = self._align_expected_output_names(
955
+ inference_method, dataset, expected_output_cols, output_cols_prefix
956
+ )
883
957
 
884
958
  elif isinstance(dataset, pd.DataFrame):
885
959
  transform_kwargs = dict(
@@ -898,7 +972,7 @@ class LogisticRegression(BaseTransformer):
898
972
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
899
973
  inference_method=inference_method,
900
974
  input_cols=self.input_cols,
901
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
975
+ expected_output_cols=expected_output_cols,
902
976
  **transform_kwargs
903
977
  )
904
978
  return output_df
@@ -933,17 +1007,15 @@ class LogisticRegression(BaseTransformer):
933
1007
  transform_kwargs: ScoreKwargsTypedDict = dict()
934
1008
 
935
1009
  if isinstance(dataset, DataFrame):
936
- self._deps = self._batch_inference_validate_snowpark(
937
- dataset=dataset,
938
- inference_method="score",
939
- )
1010
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
1011
+ self._deps = self._get_dependencies()
940
1012
  selected_cols = self._get_active_columns()
941
1013
  if len(selected_cols) > 0:
942
1014
  dataset = dataset.select(selected_cols)
943
1015
  assert isinstance(dataset._session, Session) # keep mypy happy
944
1016
  transform_kwargs = dict(
945
1017
  session=dataset._session,
946
- dependencies=["snowflake-snowpark-python"] + self._deps,
1018
+ dependencies=self._deps,
947
1019
  score_sproc_imports=['sklearn'],
948
1020
  )
949
1021
  elif isinstance(dataset, pd.DataFrame):
@@ -1008,11 +1080,8 @@ class LogisticRegression(BaseTransformer):
1008
1080
 
1009
1081
  if isinstance(dataset, DataFrame):
1010
1082
 
1011
- self._deps = self._batch_inference_validate_snowpark(
1012
- dataset=dataset,
1013
- inference_method=inference_method,
1014
-
1015
- )
1083
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1084
+ self._deps = self._get_dependencies()
1016
1085
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
1017
1086
  transform_kwargs = dict(
1018
1087
  session = dataset._session,
@@ -1045,50 +1114,84 @@ class LogisticRegression(BaseTransformer):
1045
1114
  )
1046
1115
  return output_df
1047
1116
 
1117
+
1118
+
1119
+ def to_sklearn(self) -> Any:
1120
+ """Get sklearn.linear_model.LogisticRegression object.
1121
+ """
1122
+ if self._sklearn_object is None:
1123
+ self._sklearn_object = self._create_sklearn_object()
1124
+ return self._sklearn_object
1125
+
1126
+ def to_xgboost(self) -> Any:
1127
+ raise exceptions.SnowflakeMLException(
1128
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1129
+ original_exception=AttributeError(
1130
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1131
+ "to_xgboost()",
1132
+ "to_sklearn()"
1133
+ )
1134
+ ),
1135
+ )
1136
+
1137
+ def to_lightgbm(self) -> Any:
1138
+ raise exceptions.SnowflakeMLException(
1139
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1140
+ original_exception=AttributeError(
1141
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1142
+ "to_lightgbm()",
1143
+ "to_sklearn()"
1144
+ )
1145
+ ),
1146
+ )
1147
+
1148
+ def _get_dependencies(self) -> List[str]:
1149
+ return self._deps
1150
+
1048
1151
 
1049
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1152
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1050
1153
  self._model_signature_dict = dict()
1051
1154
 
1052
1155
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1053
1156
 
1054
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1157
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1055
1158
  outputs: List[BaseFeatureSpec] = []
1056
1159
  if hasattr(self, "predict"):
1057
1160
  # keep mypy happy
1058
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1161
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1059
1162
  # For classifier, the type of predict is the same as the type of label
1060
- if self._sklearn_object._estimator_type == 'classifier':
1061
- # label columns is the desired type for output
1163
+ if self._sklearn_object._estimator_type == "classifier":
1164
+ # label columns is the desired type for output
1062
1165
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1063
1166
  # rename the output columns
1064
1167
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1065
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1066
- ([] if self._drop_input_cols else inputs)
1067
- + outputs)
1168
+ self._model_signature_dict["predict"] = ModelSignature(
1169
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1170
+ )
1068
1171
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1069
1172
  # For outlier models, returns -1 for outliers and 1 for inliers.
1070
- # Clusterer returns int64 cluster labels.
1173
+ # Clusterer returns int64 cluster labels.
1071
1174
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1072
1175
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1073
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1074
- ([] if self._drop_input_cols else inputs)
1075
- + outputs)
1076
-
1176
+ self._model_signature_dict["predict"] = ModelSignature(
1177
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1178
+ )
1179
+
1077
1180
  # For regressor, the type of predict is float64
1078
- elif self._sklearn_object._estimator_type == 'regressor':
1181
+ elif self._sklearn_object._estimator_type == "regressor":
1079
1182
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1080
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1081
- ([] if self._drop_input_cols else inputs)
1082
- + outputs)
1083
-
1183
+ self._model_signature_dict["predict"] = ModelSignature(
1184
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1185
+ )
1186
+
1084
1187
  for prob_func in PROB_FUNCTIONS:
1085
1188
  if hasattr(self, prob_func):
1086
1189
  output_cols_prefix: str = f"{prob_func}_"
1087
1190
  output_column_names = self._get_output_column_names(output_cols_prefix)
1088
1191
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1089
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1090
- ([] if self._drop_input_cols else inputs)
1091
- + outputs)
1192
+ self._model_signature_dict[prob_func] = ModelSignature(
1193
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1194
+ )
1092
1195
 
1093
1196
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1094
1197
  items = list(self._model_signature_dict.items())
@@ -1101,10 +1204,10 @@ class LogisticRegression(BaseTransformer):
1101
1204
  """Returns model signature of current class.
1102
1205
 
1103
1206
  Raises:
1104
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1207
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1105
1208
 
1106
1209
  Returns:
1107
- Dict[str, ModelSignature]: each method and its input output signature
1210
+ Dict with each method and its input output signature
1108
1211
  """
1109
1212
  if self._model_signature_dict is None:
1110
1213
  raise exceptions.SnowflakeMLException(
@@ -1112,35 +1215,3 @@ class LogisticRegression(BaseTransformer):
1112
1215
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1113
1216
  )
1114
1217
  return self._model_signature_dict
1115
-
1116
- def to_sklearn(self) -> Any:
1117
- """Get sklearn.linear_model.LogisticRegression object.
1118
- """
1119
- if self._sklearn_object is None:
1120
- self._sklearn_object = self._create_sklearn_object()
1121
- return self._sklearn_object
1122
-
1123
- def to_xgboost(self) -> Any:
1124
- raise exceptions.SnowflakeMLException(
1125
- error_code=error_codes.METHOD_NOT_ALLOWED,
1126
- original_exception=AttributeError(
1127
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1128
- "to_xgboost()",
1129
- "to_sklearn()"
1130
- )
1131
- ),
1132
- )
1133
-
1134
- def to_lightgbm(self) -> Any:
1135
- raise exceptions.SnowflakeMLException(
1136
- error_code=error_codes.METHOD_NOT_ALLOWED,
1137
- original_exception=AttributeError(
1138
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1139
- "to_lightgbm()",
1140
- "to_sklearn()"
1141
- )
1142
- ),
1143
- )
1144
-
1145
- def _get_dependencies(self) -> List[str]:
1146
- return self._deps