snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.neighbors".replace("skle
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class RadiusNeighborsClassifier(BaseTransformer):
71
64
  r"""Classifier implementing a vote among neighbors within a given radius
72
65
  For more details on this class, see [sklearn.neighbors.RadiusNeighborsClassifier]
@@ -285,12 +278,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
285
278
  )
286
279
  return selected_cols
287
280
 
288
- @telemetry.send_api_usage_telemetry(
289
- project=_PROJECT,
290
- subproject=_SUBPROJECT,
291
- custom_tags=dict([("autogen", True)]),
292
- )
293
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsClassifier":
281
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "RadiusNeighborsClassifier":
294
282
  """Fit the radius neighbors classifier from the training dataset
295
283
  For more details on this function, see [sklearn.neighbors.RadiusNeighborsClassifier.fit]
296
284
  (https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.RadiusNeighborsClassifier.html#sklearn.neighbors.RadiusNeighborsClassifier.fit)
@@ -317,12 +305,14 @@ class RadiusNeighborsClassifier(BaseTransformer):
317
305
 
318
306
  self._snowpark_cols = dataset.select(self.input_cols).columns
319
307
 
320
- # If we are already in a stored procedure, no need to kick off another one.
308
+ # If we are already in a stored procedure, no need to kick off another one.
321
309
  if SNOWML_SPROC_ENV in os.environ:
322
310
  statement_params = telemetry.get_function_usage_statement_params(
323
311
  project=_PROJECT,
324
312
  subproject=_SUBPROJECT,
325
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__),
313
+ function_name=telemetry.get_statement_params_full_func_name(
314
+ inspect.currentframe(), RadiusNeighborsClassifier.__class__.__name__
315
+ ),
326
316
  api_calls=[Session.call],
327
317
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
328
318
  )
@@ -343,27 +333,24 @@ class RadiusNeighborsClassifier(BaseTransformer):
343
333
  )
344
334
  self._sklearn_object = model_trainer.train()
345
335
  self._is_fitted = True
346
- self._get_model_signatures(dataset)
336
+ self._generate_model_signatures(dataset)
347
337
  return self
348
338
 
349
339
  def _batch_inference_validate_snowpark(
350
340
  self,
351
341
  dataset: DataFrame,
352
342
  inference_method: str,
353
- ) -> List[str]:
354
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
355
- return the available package that exists in the snowflake anaconda channel
343
+ ) -> None:
344
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
356
345
 
357
346
  Args:
358
347
  dataset: snowpark dataframe
359
348
  inference_method: the inference method such as predict, score...
360
-
349
+
361
350
  Raises:
362
351
  SnowflakeMLException: If the estimator is not fitted, raise error
363
352
  SnowflakeMLException: If the session is None, raise error
364
353
 
365
- Returns:
366
- A list of available package that exists in the snowflake anaconda channel
367
354
  """
368
355
  if not self._is_fitted:
369
356
  raise exceptions.SnowflakeMLException(
@@ -381,9 +368,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
381
368
  "Session must not specified for snowpark dataset."
382
369
  ),
383
370
  )
384
- # Validate that key package version in user workspace are supported in snowflake conda channel
385
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
386
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
371
+
387
372
 
388
373
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
389
374
  @telemetry.send_api_usage_telemetry(
@@ -419,7 +404,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
419
404
  # when it is classifier, infer the datatype from label columns
420
405
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
421
406
  # Batch inference takes a single expected output column type. Use the first columns type for now.
422
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
407
+ label_cols_signatures = [
408
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
409
+ ]
423
410
  if len(label_cols_signatures) == 0:
424
411
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
425
412
  raise exceptions.SnowflakeMLException(
@@ -427,25 +414,23 @@ class RadiusNeighborsClassifier(BaseTransformer):
427
414
  original_exception=ValueError(error_str),
428
415
  )
429
416
 
430
- expected_type_inferred = convert_sp_to_sf_type(
431
- label_cols_signatures[0].as_snowpark_type()
432
- )
417
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
433
418
 
434
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
435
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
419
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
420
+ self._deps = self._get_dependencies()
421
+ assert isinstance(
422
+ dataset._session, Session
423
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
436
424
 
437
425
  transform_kwargs = dict(
438
- session = dataset._session,
439
- dependencies = self._deps,
440
- drop_input_cols = self._drop_input_cols,
441
- expected_output_cols_type = expected_type_inferred,
426
+ session=dataset._session,
427
+ dependencies=self._deps,
428
+ drop_input_cols=self._drop_input_cols,
429
+ expected_output_cols_type=expected_type_inferred,
442
430
  )
443
431
 
444
432
  elif isinstance(dataset, pd.DataFrame):
445
- transform_kwargs = dict(
446
- snowpark_input_cols = self._snowpark_cols,
447
- drop_input_cols = self._drop_input_cols
448
- )
433
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
449
434
 
450
435
  transform_handlers = ModelTransformerBuilder.build(
451
436
  dataset=dataset,
@@ -485,7 +470,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
485
470
  Transformed dataset.
486
471
  """
487
472
  super()._check_dataset_type(dataset)
488
- inference_method="transform"
473
+ inference_method = "transform"
489
474
 
490
475
  # This dictionary contains optional kwargs for batch inference. These kwargs
491
476
  # are specific to the type of dataset used.
@@ -515,24 +500,19 @@ class RadiusNeighborsClassifier(BaseTransformer):
515
500
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
516
501
  expected_dtype = convert_sp_to_sf_type(output_types[0])
517
502
 
518
- self._deps = self._batch_inference_validate_snowpark(
519
- dataset=dataset,
520
- inference_method=inference_method,
521
- )
503
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
504
+ self._deps = self._get_dependencies()
522
505
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
523
506
 
524
507
  transform_kwargs = dict(
525
- session = dataset._session,
526
- dependencies = self._deps,
527
- drop_input_cols = self._drop_input_cols,
528
- expected_output_cols_type = expected_dtype,
508
+ session=dataset._session,
509
+ dependencies=self._deps,
510
+ drop_input_cols=self._drop_input_cols,
511
+ expected_output_cols_type=expected_dtype,
529
512
  )
530
513
 
531
514
  elif isinstance(dataset, pd.DataFrame):
532
- transform_kwargs = dict(
533
- snowpark_input_cols = self._snowpark_cols,
534
- drop_input_cols = self._drop_input_cols
535
- )
515
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
536
516
 
537
517
  transform_handlers = ModelTransformerBuilder.build(
538
518
  dataset=dataset,
@@ -551,7 +531,11 @@ class RadiusNeighborsClassifier(BaseTransformer):
551
531
  return output_df
552
532
 
553
533
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
554
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
534
+ def fit_predict(
535
+ self,
536
+ dataset: Union[DataFrame, pd.DataFrame],
537
+ output_cols_prefix: str = "fit_predict_",
538
+ ) -> Union[DataFrame, pd.DataFrame]:
555
539
  """ Method not supported for this class.
556
540
 
557
541
 
@@ -576,22 +560,104 @@ class RadiusNeighborsClassifier(BaseTransformer):
576
560
  )
577
561
  output_result, fitted_estimator = model_trainer.train_fit_predict(
578
562
  drop_input_cols=self._drop_input_cols,
579
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
563
+ expected_output_cols_list=(
564
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
565
+ ),
580
566
  )
581
567
  self._sklearn_object = fitted_estimator
582
568
  self._is_fitted = True
583
569
  return output_result
584
570
 
571
+
572
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
573
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
574
+ """ Method not supported for this class.
575
+
585
576
 
586
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
587
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
588
- """
577
+ Raises:
578
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
579
+
580
+ Args:
581
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
582
+ Snowpark or Pandas DataFrame.
583
+ output_cols_prefix: Prefix for the response columns
589
584
  Returns:
590
585
  Transformed dataset.
591
586
  """
592
- self.fit(dataset)
593
- assert self._sklearn_object is not None
594
- return self._sklearn_object.embedding_
587
+ self._infer_input_output_cols(dataset)
588
+ super()._check_dataset_type(dataset)
589
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
590
+ estimator=self._sklearn_object,
591
+ dataset=dataset,
592
+ input_cols=self.input_cols,
593
+ label_cols=self.label_cols,
594
+ sample_weight_col=self.sample_weight_col,
595
+ autogenerated=self._autogenerated,
596
+ subproject=_SUBPROJECT,
597
+ )
598
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
599
+ drop_input_cols=self._drop_input_cols,
600
+ expected_output_cols_list=self.output_cols,
601
+ )
602
+ self._sklearn_object = fitted_estimator
603
+ self._is_fitted = True
604
+ return output_result
605
+
606
+
607
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
608
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
609
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
610
+ """
611
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
612
+ # The following condition is introduced for kneighbors methods, and not used in other methods
613
+ if output_cols:
614
+ output_cols = [
615
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
616
+ for c in output_cols
617
+ ]
618
+ elif getattr(self._sklearn_object, "classes_", None) is None:
619
+ output_cols = [output_cols_prefix]
620
+ elif self._sklearn_object is not None:
621
+ classes = self._sklearn_object.classes_
622
+ if isinstance(classes, numpy.ndarray):
623
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
624
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
625
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
626
+ output_cols = []
627
+ for i, cl in enumerate(classes):
628
+ # For binary classification, there is only one output column for each class
629
+ # ndarray as the two classes are complementary.
630
+ if len(cl) == 2:
631
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
632
+ else:
633
+ output_cols.extend([
634
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
635
+ ])
636
+ else:
637
+ output_cols = []
638
+
639
+ # Make sure column names are valid snowflake identifiers.
640
+ assert output_cols is not None # Make MyPy happy
641
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
642
+
643
+ return rv
644
+
645
+ def _align_expected_output_names(
646
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
647
+ ) -> List[str]:
648
+ # in case the inferred output column names dimension is different
649
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
650
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
651
+ output_df_columns = list(output_df_pd.columns)
652
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
653
+ if self.sample_weight_col:
654
+ output_df_columns_set -= set(self.sample_weight_col)
655
+ # if the dimension of inferred output column names is correct; use it
656
+ if len(expected_output_cols_list) == len(output_df_columns_set):
657
+ return expected_output_cols_list
658
+ # otherwise, use the sklearn estimator's output
659
+ else:
660
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
595
661
 
596
662
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
597
663
  @telemetry.send_api_usage_telemetry(
@@ -625,24 +691,26 @@ class RadiusNeighborsClassifier(BaseTransformer):
625
691
  # are specific to the type of dataset used.
626
692
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
627
693
 
694
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
695
+
628
696
  if isinstance(dataset, DataFrame):
629
- self._deps = self._batch_inference_validate_snowpark(
630
- dataset=dataset,
631
- inference_method=inference_method,
632
- )
633
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
697
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
698
+ self._deps = self._get_dependencies()
699
+ assert isinstance(
700
+ dataset._session, Session
701
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
634
702
  transform_kwargs = dict(
635
703
  session=dataset._session,
636
704
  dependencies=self._deps,
637
- drop_input_cols = self._drop_input_cols,
705
+ drop_input_cols=self._drop_input_cols,
638
706
  expected_output_cols_type="float",
639
707
  )
708
+ expected_output_cols = self._align_expected_output_names(
709
+ inference_method, dataset, expected_output_cols, output_cols_prefix
710
+ )
640
711
 
641
712
  elif isinstance(dataset, pd.DataFrame):
642
- transform_kwargs = dict(
643
- snowpark_input_cols = self._snowpark_cols,
644
- drop_input_cols = self._drop_input_cols
645
- )
713
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
646
714
 
647
715
  transform_handlers = ModelTransformerBuilder.build(
648
716
  dataset=dataset,
@@ -654,7 +722,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
654
722
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
655
723
  inference_method=inference_method,
656
724
  input_cols=self.input_cols,
657
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
725
+ expected_output_cols=expected_output_cols,
658
726
  **transform_kwargs
659
727
  )
660
728
  return output_df
@@ -686,29 +754,30 @@ class RadiusNeighborsClassifier(BaseTransformer):
686
754
  Output dataset with log probability of the sample for each class in the model.
687
755
  """
688
756
  super()._check_dataset_type(dataset)
689
- inference_method="predict_log_proba"
757
+ inference_method = "predict_log_proba"
758
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
690
759
 
691
760
  # This dictionary contains optional kwargs for batch inference. These kwargs
692
761
  # are specific to the type of dataset used.
693
762
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
694
763
 
695
764
  if isinstance(dataset, DataFrame):
696
- self._deps = self._batch_inference_validate_snowpark(
697
- dataset=dataset,
698
- inference_method=inference_method,
699
- )
700
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
765
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
766
+ self._deps = self._get_dependencies()
767
+ assert isinstance(
768
+ dataset._session, Session
769
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
701
770
  transform_kwargs = dict(
702
771
  session=dataset._session,
703
772
  dependencies=self._deps,
704
- drop_input_cols = self._drop_input_cols,
773
+ drop_input_cols=self._drop_input_cols,
705
774
  expected_output_cols_type="float",
706
775
  )
776
+ expected_output_cols = self._align_expected_output_names(
777
+ inference_method, dataset, expected_output_cols, output_cols_prefix
778
+ )
707
779
  elif isinstance(dataset, pd.DataFrame):
708
- transform_kwargs = dict(
709
- snowpark_input_cols = self._snowpark_cols,
710
- drop_input_cols = self._drop_input_cols
711
- )
780
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
712
781
 
713
782
  transform_handlers = ModelTransformerBuilder.build(
714
783
  dataset=dataset,
@@ -721,7 +790,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
721
790
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
722
791
  inference_method=inference_method,
723
792
  input_cols=self.input_cols,
724
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
793
+ expected_output_cols=expected_output_cols,
725
794
  **transform_kwargs
726
795
  )
727
796
  return output_df
@@ -747,30 +816,32 @@ class RadiusNeighborsClassifier(BaseTransformer):
747
816
  Output dataset with results of the decision function for the samples in input dataset.
748
817
  """
749
818
  super()._check_dataset_type(dataset)
750
- inference_method="decision_function"
819
+ inference_method = "decision_function"
751
820
 
752
821
  # This dictionary contains optional kwargs for batch inference. These kwargs
753
822
  # are specific to the type of dataset used.
754
823
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
755
824
 
825
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
826
+
756
827
  if isinstance(dataset, DataFrame):
757
- self._deps = self._batch_inference_validate_snowpark(
758
- dataset=dataset,
759
- inference_method=inference_method,
760
- )
761
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
828
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
829
+ self._deps = self._get_dependencies()
830
+ assert isinstance(
831
+ dataset._session, Session
832
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
762
833
  transform_kwargs = dict(
763
834
  session=dataset._session,
764
835
  dependencies=self._deps,
765
- drop_input_cols = self._drop_input_cols,
836
+ drop_input_cols=self._drop_input_cols,
766
837
  expected_output_cols_type="float",
767
838
  )
839
+ expected_output_cols = self._align_expected_output_names(
840
+ inference_method, dataset, expected_output_cols, output_cols_prefix
841
+ )
768
842
 
769
843
  elif isinstance(dataset, pd.DataFrame):
770
- transform_kwargs = dict(
771
- snowpark_input_cols = self._snowpark_cols,
772
- drop_input_cols = self._drop_input_cols
773
- )
844
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
774
845
 
775
846
  transform_handlers = ModelTransformerBuilder.build(
776
847
  dataset=dataset,
@@ -783,7 +854,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
783
854
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
784
855
  inference_method=inference_method,
785
856
  input_cols=self.input_cols,
786
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
857
+ expected_output_cols=expected_output_cols,
787
858
  **transform_kwargs
788
859
  )
789
860
  return output_df
@@ -812,17 +883,17 @@ class RadiusNeighborsClassifier(BaseTransformer):
812
883
  Output dataset with probability of the sample for each class in the model.
813
884
  """
814
885
  super()._check_dataset_type(dataset)
815
- inference_method="score_samples"
886
+ inference_method = "score_samples"
816
887
 
817
888
  # This dictionary contains optional kwargs for batch inference. These kwargs
818
889
  # are specific to the type of dataset used.
819
890
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
820
891
 
892
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
893
+
821
894
  if isinstance(dataset, DataFrame):
822
- self._deps = self._batch_inference_validate_snowpark(
823
- dataset=dataset,
824
- inference_method=inference_method,
825
- )
895
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
896
+ self._deps = self._get_dependencies()
826
897
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
827
898
  transform_kwargs = dict(
828
899
  session=dataset._session,
@@ -830,6 +901,9 @@ class RadiusNeighborsClassifier(BaseTransformer):
830
901
  drop_input_cols = self._drop_input_cols,
831
902
  expected_output_cols_type="float",
832
903
  )
904
+ expected_output_cols = self._align_expected_output_names(
905
+ inference_method, dataset, expected_output_cols, output_cols_prefix
906
+ )
833
907
 
834
908
  elif isinstance(dataset, pd.DataFrame):
835
909
  transform_kwargs = dict(
@@ -848,7 +922,7 @@ class RadiusNeighborsClassifier(BaseTransformer):
848
922
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
849
923
  inference_method=inference_method,
850
924
  input_cols=self.input_cols,
851
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
925
+ expected_output_cols=expected_output_cols,
852
926
  **transform_kwargs
853
927
  )
854
928
  return output_df
@@ -883,17 +957,15 @@ class RadiusNeighborsClassifier(BaseTransformer):
883
957
  transform_kwargs: ScoreKwargsTypedDict = dict()
884
958
 
885
959
  if isinstance(dataset, DataFrame):
886
- self._deps = self._batch_inference_validate_snowpark(
887
- dataset=dataset,
888
- inference_method="score",
889
- )
960
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
961
+ self._deps = self._get_dependencies()
890
962
  selected_cols = self._get_active_columns()
891
963
  if len(selected_cols) > 0:
892
964
  dataset = dataset.select(selected_cols)
893
965
  assert isinstance(dataset._session, Session) # keep mypy happy
894
966
  transform_kwargs = dict(
895
967
  session=dataset._session,
896
- dependencies=["snowflake-snowpark-python"] + self._deps,
968
+ dependencies=self._deps,
897
969
  score_sproc_imports=['sklearn'],
898
970
  )
899
971
  elif isinstance(dataset, pd.DataFrame):
@@ -958,11 +1030,8 @@ class RadiusNeighborsClassifier(BaseTransformer):
958
1030
 
959
1031
  if isinstance(dataset, DataFrame):
960
1032
 
961
- self._deps = self._batch_inference_validate_snowpark(
962
- dataset=dataset,
963
- inference_method=inference_method,
964
-
965
- )
1033
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1034
+ self._deps = self._get_dependencies()
966
1035
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
967
1036
  transform_kwargs = dict(
968
1037
  session = dataset._session,
@@ -995,50 +1064,84 @@ class RadiusNeighborsClassifier(BaseTransformer):
995
1064
  )
996
1065
  return output_df
997
1066
 
1067
+
1068
+
1069
+ def to_sklearn(self) -> Any:
1070
+ """Get sklearn.neighbors.RadiusNeighborsClassifier object.
1071
+ """
1072
+ if self._sklearn_object is None:
1073
+ self._sklearn_object = self._create_sklearn_object()
1074
+ return self._sklearn_object
1075
+
1076
+ def to_xgboost(self) -> Any:
1077
+ raise exceptions.SnowflakeMLException(
1078
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1079
+ original_exception=AttributeError(
1080
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1081
+ "to_xgboost()",
1082
+ "to_sklearn()"
1083
+ )
1084
+ ),
1085
+ )
1086
+
1087
+ def to_lightgbm(self) -> Any:
1088
+ raise exceptions.SnowflakeMLException(
1089
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1090
+ original_exception=AttributeError(
1091
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1092
+ "to_lightgbm()",
1093
+ "to_sklearn()"
1094
+ )
1095
+ ),
1096
+ )
1097
+
1098
+ def _get_dependencies(self) -> List[str]:
1099
+ return self._deps
1100
+
998
1101
 
999
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1102
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1000
1103
  self._model_signature_dict = dict()
1001
1104
 
1002
1105
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1003
1106
 
1004
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1107
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1005
1108
  outputs: List[BaseFeatureSpec] = []
1006
1109
  if hasattr(self, "predict"):
1007
1110
  # keep mypy happy
1008
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1111
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1009
1112
  # For classifier, the type of predict is the same as the type of label
1010
- if self._sklearn_object._estimator_type == 'classifier':
1011
- # label columns is the desired type for output
1113
+ if self._sklearn_object._estimator_type == "classifier":
1114
+ # label columns is the desired type for output
1012
1115
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1013
1116
  # rename the output columns
1014
1117
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1015
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1016
- ([] if self._drop_input_cols else inputs)
1017
- + outputs)
1118
+ self._model_signature_dict["predict"] = ModelSignature(
1119
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1120
+ )
1018
1121
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1019
1122
  # For outlier models, returns -1 for outliers and 1 for inliers.
1020
- # Clusterer returns int64 cluster labels.
1123
+ # Clusterer returns int64 cluster labels.
1021
1124
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1022
1125
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1023
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1024
- ([] if self._drop_input_cols else inputs)
1025
- + outputs)
1026
-
1126
+ self._model_signature_dict["predict"] = ModelSignature(
1127
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1128
+ )
1129
+
1027
1130
  # For regressor, the type of predict is float64
1028
- elif self._sklearn_object._estimator_type == 'regressor':
1131
+ elif self._sklearn_object._estimator_type == "regressor":
1029
1132
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1030
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1031
- ([] if self._drop_input_cols else inputs)
1032
- + outputs)
1033
-
1133
+ self._model_signature_dict["predict"] = ModelSignature(
1134
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1135
+ )
1136
+
1034
1137
  for prob_func in PROB_FUNCTIONS:
1035
1138
  if hasattr(self, prob_func):
1036
1139
  output_cols_prefix: str = f"{prob_func}_"
1037
1140
  output_column_names = self._get_output_column_names(output_cols_prefix)
1038
1141
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1039
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1040
- ([] if self._drop_input_cols else inputs)
1041
- + outputs)
1142
+ self._model_signature_dict[prob_func] = ModelSignature(
1143
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1144
+ )
1042
1145
 
1043
1146
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1044
1147
  items = list(self._model_signature_dict.items())
@@ -1051,10 +1154,10 @@ class RadiusNeighborsClassifier(BaseTransformer):
1051
1154
  """Returns model signature of current class.
1052
1155
 
1053
1156
  Raises:
1054
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1157
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1055
1158
 
1056
1159
  Returns:
1057
- Dict[str, ModelSignature]: each method and its input output signature
1160
+ Dict with each method and its input output signature
1058
1161
  """
1059
1162
  if self._model_signature_dict is None:
1060
1163
  raise exceptions.SnowflakeMLException(
@@ -1062,35 +1165,3 @@ class RadiusNeighborsClassifier(BaseTransformer):
1062
1165
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1063
1166
  )
1064
1167
  return self._model_signature_dict
1065
-
1066
- def to_sklearn(self) -> Any:
1067
- """Get sklearn.neighbors.RadiusNeighborsClassifier object.
1068
- """
1069
- if self._sklearn_object is None:
1070
- self._sklearn_object = self._create_sklearn_object()
1071
- return self._sklearn_object
1072
-
1073
- def to_xgboost(self) -> Any:
1074
- raise exceptions.SnowflakeMLException(
1075
- error_code=error_codes.METHOD_NOT_ALLOWED,
1076
- original_exception=AttributeError(
1077
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1078
- "to_xgboost()",
1079
- "to_sklearn()"
1080
- )
1081
- ),
1082
- )
1083
-
1084
- def to_lightgbm(self) -> Any:
1085
- raise exceptions.SnowflakeMLException(
1086
- error_code=error_codes.METHOD_NOT_ALLOWED,
1087
- original_exception=AttributeError(
1088
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1089
- "to_lightgbm()",
1090
- "to_sklearn()"
1091
- )
1092
- ),
1093
- )
1094
-
1095
- def _get_dependencies(self) -> List[str]:
1096
- return self._deps