snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.covariance".replace("skl
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class MinCovDet(BaseTransformer):
71
64
  r"""Minimum Covariance Determinant (MCD): robust estimator of covariance
72
65
  For more details on this class, see [sklearn.covariance.MinCovDet]
@@ -221,12 +214,7 @@ class MinCovDet(BaseTransformer):
221
214
  )
222
215
  return selected_cols
223
216
 
224
- @telemetry.send_api_usage_telemetry(
225
- project=_PROJECT,
226
- subproject=_SUBPROJECT,
227
- custom_tags=dict([("autogen", True)]),
228
- )
229
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MinCovDet":
217
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "MinCovDet":
230
218
  """Fit a Minimum Covariance Determinant with the FastMCD algorithm
231
219
  For more details on this function, see [sklearn.covariance.MinCovDet.fit]
232
220
  (https://scikit-learn.org/stable/modules/generated/sklearn.covariance.MinCovDet.html#sklearn.covariance.MinCovDet.fit)
@@ -253,12 +241,14 @@ class MinCovDet(BaseTransformer):
253
241
 
254
242
  self._snowpark_cols = dataset.select(self.input_cols).columns
255
243
 
256
- # If we are already in a stored procedure, no need to kick off another one.
244
+ # If we are already in a stored procedure, no need to kick off another one.
257
245
  if SNOWML_SPROC_ENV in os.environ:
258
246
  statement_params = telemetry.get_function_usage_statement_params(
259
247
  project=_PROJECT,
260
248
  subproject=_SUBPROJECT,
261
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), MinCovDet.__class__.__name__),
249
+ function_name=telemetry.get_statement_params_full_func_name(
250
+ inspect.currentframe(), MinCovDet.__class__.__name__
251
+ ),
262
252
  api_calls=[Session.call],
263
253
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
264
254
  )
@@ -279,27 +269,24 @@ class MinCovDet(BaseTransformer):
279
269
  )
280
270
  self._sklearn_object = model_trainer.train()
281
271
  self._is_fitted = True
282
- self._get_model_signatures(dataset)
272
+ self._generate_model_signatures(dataset)
283
273
  return self
284
274
 
285
275
  def _batch_inference_validate_snowpark(
286
276
  self,
287
277
  dataset: DataFrame,
288
278
  inference_method: str,
289
- ) -> List[str]:
290
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
291
- return the available package that exists in the snowflake anaconda channel
279
+ ) -> None:
280
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
292
281
 
293
282
  Args:
294
283
  dataset: snowpark dataframe
295
284
  inference_method: the inference method such as predict, score...
296
-
285
+
297
286
  Raises:
298
287
  SnowflakeMLException: If the estimator is not fitted, raise error
299
288
  SnowflakeMLException: If the session is None, raise error
300
289
 
301
- Returns:
302
- A list of available package that exists in the snowflake anaconda channel
303
290
  """
304
291
  if not self._is_fitted:
305
292
  raise exceptions.SnowflakeMLException(
@@ -317,9 +304,7 @@ class MinCovDet(BaseTransformer):
317
304
  "Session must not specified for snowpark dataset."
318
305
  ),
319
306
  )
320
- # Validate that key package version in user workspace are supported in snowflake conda channel
321
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
322
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
307
+
323
308
 
324
309
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
325
310
  @telemetry.send_api_usage_telemetry(
@@ -353,7 +338,9 @@ class MinCovDet(BaseTransformer):
353
338
  # when it is classifier, infer the datatype from label columns
354
339
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
355
340
  # Batch inference takes a single expected output column type. Use the first columns type for now.
356
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
341
+ label_cols_signatures = [
342
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
343
+ ]
357
344
  if len(label_cols_signatures) == 0:
358
345
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
359
346
  raise exceptions.SnowflakeMLException(
@@ -361,25 +348,23 @@ class MinCovDet(BaseTransformer):
361
348
  original_exception=ValueError(error_str),
362
349
  )
363
350
 
364
- expected_type_inferred = convert_sp_to_sf_type(
365
- label_cols_signatures[0].as_snowpark_type()
366
- )
351
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
367
352
 
368
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
369
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
353
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
354
+ self._deps = self._get_dependencies()
355
+ assert isinstance(
356
+ dataset._session, Session
357
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
370
358
 
371
359
  transform_kwargs = dict(
372
- session = dataset._session,
373
- dependencies = self._deps,
374
- drop_input_cols = self._drop_input_cols,
375
- expected_output_cols_type = expected_type_inferred,
360
+ session=dataset._session,
361
+ dependencies=self._deps,
362
+ drop_input_cols=self._drop_input_cols,
363
+ expected_output_cols_type=expected_type_inferred,
376
364
  )
377
365
 
378
366
  elif isinstance(dataset, pd.DataFrame):
379
- transform_kwargs = dict(
380
- snowpark_input_cols = self._snowpark_cols,
381
- drop_input_cols = self._drop_input_cols
382
- )
367
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
383
368
 
384
369
  transform_handlers = ModelTransformerBuilder.build(
385
370
  dataset=dataset,
@@ -419,7 +404,7 @@ class MinCovDet(BaseTransformer):
419
404
  Transformed dataset.
420
405
  """
421
406
  super()._check_dataset_type(dataset)
422
- inference_method="transform"
407
+ inference_method = "transform"
423
408
 
424
409
  # This dictionary contains optional kwargs for batch inference. These kwargs
425
410
  # are specific to the type of dataset used.
@@ -449,24 +434,19 @@ class MinCovDet(BaseTransformer):
449
434
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
450
435
  expected_dtype = convert_sp_to_sf_type(output_types[0])
451
436
 
452
- self._deps = self._batch_inference_validate_snowpark(
453
- dataset=dataset,
454
- inference_method=inference_method,
455
- )
437
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
438
+ self._deps = self._get_dependencies()
456
439
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
457
440
 
458
441
  transform_kwargs = dict(
459
- session = dataset._session,
460
- dependencies = self._deps,
461
- drop_input_cols = self._drop_input_cols,
462
- expected_output_cols_type = expected_dtype,
442
+ session=dataset._session,
443
+ dependencies=self._deps,
444
+ drop_input_cols=self._drop_input_cols,
445
+ expected_output_cols_type=expected_dtype,
463
446
  )
464
447
 
465
448
  elif isinstance(dataset, pd.DataFrame):
466
- transform_kwargs = dict(
467
- snowpark_input_cols = self._snowpark_cols,
468
- drop_input_cols = self._drop_input_cols
469
- )
449
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
470
450
 
471
451
  transform_handlers = ModelTransformerBuilder.build(
472
452
  dataset=dataset,
@@ -485,7 +465,11 @@ class MinCovDet(BaseTransformer):
485
465
  return output_df
486
466
 
487
467
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
488
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
468
+ def fit_predict(
469
+ self,
470
+ dataset: Union[DataFrame, pd.DataFrame],
471
+ output_cols_prefix: str = "fit_predict_",
472
+ ) -> Union[DataFrame, pd.DataFrame]:
489
473
  """ Method not supported for this class.
490
474
 
491
475
 
@@ -510,22 +494,104 @@ class MinCovDet(BaseTransformer):
510
494
  )
511
495
  output_result, fitted_estimator = model_trainer.train_fit_predict(
512
496
  drop_input_cols=self._drop_input_cols,
513
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
497
+ expected_output_cols_list=(
498
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
499
+ ),
514
500
  )
515
501
  self._sklearn_object = fitted_estimator
516
502
  self._is_fitted = True
517
503
  return output_result
518
504
 
505
+
506
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
507
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
508
+ """ Method not supported for this class.
509
+
519
510
 
520
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
521
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
522
- """
511
+ Raises:
512
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
513
+
514
+ Args:
515
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
516
+ Snowpark or Pandas DataFrame.
517
+ output_cols_prefix: Prefix for the response columns
523
518
  Returns:
524
519
  Transformed dataset.
525
520
  """
526
- self.fit(dataset)
527
- assert self._sklearn_object is not None
528
- return self._sklearn_object.embedding_
521
+ self._infer_input_output_cols(dataset)
522
+ super()._check_dataset_type(dataset)
523
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
524
+ estimator=self._sklearn_object,
525
+ dataset=dataset,
526
+ input_cols=self.input_cols,
527
+ label_cols=self.label_cols,
528
+ sample_weight_col=self.sample_weight_col,
529
+ autogenerated=self._autogenerated,
530
+ subproject=_SUBPROJECT,
531
+ )
532
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
533
+ drop_input_cols=self._drop_input_cols,
534
+ expected_output_cols_list=self.output_cols,
535
+ )
536
+ self._sklearn_object = fitted_estimator
537
+ self._is_fitted = True
538
+ return output_result
539
+
540
+
541
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
542
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
543
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
544
+ """
545
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
546
+ # The following condition is introduced for kneighbors methods, and not used in other methods
547
+ if output_cols:
548
+ output_cols = [
549
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
550
+ for c in output_cols
551
+ ]
552
+ elif getattr(self._sklearn_object, "classes_", None) is None:
553
+ output_cols = [output_cols_prefix]
554
+ elif self._sklearn_object is not None:
555
+ classes = self._sklearn_object.classes_
556
+ if isinstance(classes, numpy.ndarray):
557
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
558
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
559
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
560
+ output_cols = []
561
+ for i, cl in enumerate(classes):
562
+ # For binary classification, there is only one output column for each class
563
+ # ndarray as the two classes are complementary.
564
+ if len(cl) == 2:
565
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
566
+ else:
567
+ output_cols.extend([
568
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
569
+ ])
570
+ else:
571
+ output_cols = []
572
+
573
+ # Make sure column names are valid snowflake identifiers.
574
+ assert output_cols is not None # Make MyPy happy
575
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
576
+
577
+ return rv
578
+
579
+ def _align_expected_output_names(
580
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
581
+ ) -> List[str]:
582
+ # in case the inferred output column names dimension is different
583
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
584
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
585
+ output_df_columns = list(output_df_pd.columns)
586
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
587
+ if self.sample_weight_col:
588
+ output_df_columns_set -= set(self.sample_weight_col)
589
+ # if the dimension of inferred output column names is correct; use it
590
+ if len(expected_output_cols_list) == len(output_df_columns_set):
591
+ return expected_output_cols_list
592
+ # otherwise, use the sklearn estimator's output
593
+ else:
594
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
529
595
 
530
596
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
531
597
  @telemetry.send_api_usage_telemetry(
@@ -557,24 +623,26 @@ class MinCovDet(BaseTransformer):
557
623
  # are specific to the type of dataset used.
558
624
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
559
625
 
626
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
627
+
560
628
  if isinstance(dataset, DataFrame):
561
- self._deps = self._batch_inference_validate_snowpark(
562
- dataset=dataset,
563
- inference_method=inference_method,
564
- )
565
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
629
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
630
+ self._deps = self._get_dependencies()
631
+ assert isinstance(
632
+ dataset._session, Session
633
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
566
634
  transform_kwargs = dict(
567
635
  session=dataset._session,
568
636
  dependencies=self._deps,
569
- drop_input_cols = self._drop_input_cols,
637
+ drop_input_cols=self._drop_input_cols,
570
638
  expected_output_cols_type="float",
571
639
  )
640
+ expected_output_cols = self._align_expected_output_names(
641
+ inference_method, dataset, expected_output_cols, output_cols_prefix
642
+ )
572
643
 
573
644
  elif isinstance(dataset, pd.DataFrame):
574
- transform_kwargs = dict(
575
- snowpark_input_cols = self._snowpark_cols,
576
- drop_input_cols = self._drop_input_cols
577
- )
645
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
578
646
 
579
647
  transform_handlers = ModelTransformerBuilder.build(
580
648
  dataset=dataset,
@@ -586,7 +654,7 @@ class MinCovDet(BaseTransformer):
586
654
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
587
655
  inference_method=inference_method,
588
656
  input_cols=self.input_cols,
589
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
657
+ expected_output_cols=expected_output_cols,
590
658
  **transform_kwargs
591
659
  )
592
660
  return output_df
@@ -616,29 +684,30 @@ class MinCovDet(BaseTransformer):
616
684
  Output dataset with log probability of the sample for each class in the model.
617
685
  """
618
686
  super()._check_dataset_type(dataset)
619
- inference_method="predict_log_proba"
687
+ inference_method = "predict_log_proba"
688
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
620
689
 
621
690
  # This dictionary contains optional kwargs for batch inference. These kwargs
622
691
  # are specific to the type of dataset used.
623
692
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
624
693
 
625
694
  if isinstance(dataset, DataFrame):
626
- self._deps = self._batch_inference_validate_snowpark(
627
- dataset=dataset,
628
- inference_method=inference_method,
629
- )
630
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
695
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
696
+ self._deps = self._get_dependencies()
697
+ assert isinstance(
698
+ dataset._session, Session
699
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
631
700
  transform_kwargs = dict(
632
701
  session=dataset._session,
633
702
  dependencies=self._deps,
634
- drop_input_cols = self._drop_input_cols,
703
+ drop_input_cols=self._drop_input_cols,
635
704
  expected_output_cols_type="float",
636
705
  )
706
+ expected_output_cols = self._align_expected_output_names(
707
+ inference_method, dataset, expected_output_cols, output_cols_prefix
708
+ )
637
709
  elif isinstance(dataset, pd.DataFrame):
638
- transform_kwargs = dict(
639
- snowpark_input_cols = self._snowpark_cols,
640
- drop_input_cols = self._drop_input_cols
641
- )
710
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
642
711
 
643
712
  transform_handlers = ModelTransformerBuilder.build(
644
713
  dataset=dataset,
@@ -651,7 +720,7 @@ class MinCovDet(BaseTransformer):
651
720
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
652
721
  inference_method=inference_method,
653
722
  input_cols=self.input_cols,
654
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
723
+ expected_output_cols=expected_output_cols,
655
724
  **transform_kwargs
656
725
  )
657
726
  return output_df
@@ -677,30 +746,32 @@ class MinCovDet(BaseTransformer):
677
746
  Output dataset with results of the decision function for the samples in input dataset.
678
747
  """
679
748
  super()._check_dataset_type(dataset)
680
- inference_method="decision_function"
749
+ inference_method = "decision_function"
681
750
 
682
751
  # This dictionary contains optional kwargs for batch inference. These kwargs
683
752
  # are specific to the type of dataset used.
684
753
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
685
754
 
755
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
756
+
686
757
  if isinstance(dataset, DataFrame):
687
- self._deps = self._batch_inference_validate_snowpark(
688
- dataset=dataset,
689
- inference_method=inference_method,
690
- )
691
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
758
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
759
+ self._deps = self._get_dependencies()
760
+ assert isinstance(
761
+ dataset._session, Session
762
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
692
763
  transform_kwargs = dict(
693
764
  session=dataset._session,
694
765
  dependencies=self._deps,
695
- drop_input_cols = self._drop_input_cols,
766
+ drop_input_cols=self._drop_input_cols,
696
767
  expected_output_cols_type="float",
697
768
  )
769
+ expected_output_cols = self._align_expected_output_names(
770
+ inference_method, dataset, expected_output_cols, output_cols_prefix
771
+ )
698
772
 
699
773
  elif isinstance(dataset, pd.DataFrame):
700
- transform_kwargs = dict(
701
- snowpark_input_cols = self._snowpark_cols,
702
- drop_input_cols = self._drop_input_cols
703
- )
774
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
704
775
 
705
776
  transform_handlers = ModelTransformerBuilder.build(
706
777
  dataset=dataset,
@@ -713,7 +784,7 @@ class MinCovDet(BaseTransformer):
713
784
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
714
785
  inference_method=inference_method,
715
786
  input_cols=self.input_cols,
716
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
787
+ expected_output_cols=expected_output_cols,
717
788
  **transform_kwargs
718
789
  )
719
790
  return output_df
@@ -742,17 +813,17 @@ class MinCovDet(BaseTransformer):
742
813
  Output dataset with probability of the sample for each class in the model.
743
814
  """
744
815
  super()._check_dataset_type(dataset)
745
- inference_method="score_samples"
816
+ inference_method = "score_samples"
746
817
 
747
818
  # This dictionary contains optional kwargs for batch inference. These kwargs
748
819
  # are specific to the type of dataset used.
749
820
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
750
821
 
822
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
823
+
751
824
  if isinstance(dataset, DataFrame):
752
- self._deps = self._batch_inference_validate_snowpark(
753
- dataset=dataset,
754
- inference_method=inference_method,
755
- )
825
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
826
+ self._deps = self._get_dependencies()
756
827
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
757
828
  transform_kwargs = dict(
758
829
  session=dataset._session,
@@ -760,6 +831,9 @@ class MinCovDet(BaseTransformer):
760
831
  drop_input_cols = self._drop_input_cols,
761
832
  expected_output_cols_type="float",
762
833
  )
834
+ expected_output_cols = self._align_expected_output_names(
835
+ inference_method, dataset, expected_output_cols, output_cols_prefix
836
+ )
763
837
 
764
838
  elif isinstance(dataset, pd.DataFrame):
765
839
  transform_kwargs = dict(
@@ -778,7 +852,7 @@ class MinCovDet(BaseTransformer):
778
852
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
779
853
  inference_method=inference_method,
780
854
  input_cols=self.input_cols,
781
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
855
+ expected_output_cols=expected_output_cols,
782
856
  **transform_kwargs
783
857
  )
784
858
  return output_df
@@ -813,17 +887,15 @@ class MinCovDet(BaseTransformer):
813
887
  transform_kwargs: ScoreKwargsTypedDict = dict()
814
888
 
815
889
  if isinstance(dataset, DataFrame):
816
- self._deps = self._batch_inference_validate_snowpark(
817
- dataset=dataset,
818
- inference_method="score",
819
- )
890
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
891
+ self._deps = self._get_dependencies()
820
892
  selected_cols = self._get_active_columns()
821
893
  if len(selected_cols) > 0:
822
894
  dataset = dataset.select(selected_cols)
823
895
  assert isinstance(dataset._session, Session) # keep mypy happy
824
896
  transform_kwargs = dict(
825
897
  session=dataset._session,
826
- dependencies=["snowflake-snowpark-python"] + self._deps,
898
+ dependencies=self._deps,
827
899
  score_sproc_imports=['sklearn'],
828
900
  )
829
901
  elif isinstance(dataset, pd.DataFrame):
@@ -888,11 +960,8 @@ class MinCovDet(BaseTransformer):
888
960
 
889
961
  if isinstance(dataset, DataFrame):
890
962
 
891
- self._deps = self._batch_inference_validate_snowpark(
892
- dataset=dataset,
893
- inference_method=inference_method,
894
-
895
- )
963
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
964
+ self._deps = self._get_dependencies()
896
965
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
897
966
  transform_kwargs = dict(
898
967
  session = dataset._session,
@@ -925,50 +994,84 @@ class MinCovDet(BaseTransformer):
925
994
  )
926
995
  return output_df
927
996
 
997
+
998
+
999
+ def to_sklearn(self) -> Any:
1000
+ """Get sklearn.covariance.MinCovDet object.
1001
+ """
1002
+ if self._sklearn_object is None:
1003
+ self._sklearn_object = self._create_sklearn_object()
1004
+ return self._sklearn_object
1005
+
1006
+ def to_xgboost(self) -> Any:
1007
+ raise exceptions.SnowflakeMLException(
1008
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1009
+ original_exception=AttributeError(
1010
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1011
+ "to_xgboost()",
1012
+ "to_sklearn()"
1013
+ )
1014
+ ),
1015
+ )
1016
+
1017
+ def to_lightgbm(self) -> Any:
1018
+ raise exceptions.SnowflakeMLException(
1019
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1020
+ original_exception=AttributeError(
1021
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1022
+ "to_lightgbm()",
1023
+ "to_sklearn()"
1024
+ )
1025
+ ),
1026
+ )
1027
+
1028
+ def _get_dependencies(self) -> List[str]:
1029
+ return self._deps
1030
+
928
1031
 
929
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1032
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
930
1033
  self._model_signature_dict = dict()
931
1034
 
932
1035
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
933
1036
 
934
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1037
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
935
1038
  outputs: List[BaseFeatureSpec] = []
936
1039
  if hasattr(self, "predict"):
937
1040
  # keep mypy happy
938
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1041
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
939
1042
  # For classifier, the type of predict is the same as the type of label
940
- if self._sklearn_object._estimator_type == 'classifier':
941
- # label columns is the desired type for output
1043
+ if self._sklearn_object._estimator_type == "classifier":
1044
+ # label columns is the desired type for output
942
1045
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
943
1046
  # rename the output columns
944
1047
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
945
- self._model_signature_dict["predict"] = ModelSignature(inputs,
946
- ([] if self._drop_input_cols else inputs)
947
- + outputs)
1048
+ self._model_signature_dict["predict"] = ModelSignature(
1049
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1050
+ )
948
1051
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
949
1052
  # For outlier models, returns -1 for outliers and 1 for inliers.
950
- # Clusterer returns int64 cluster labels.
1053
+ # Clusterer returns int64 cluster labels.
951
1054
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
952
1055
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
953
- self._model_signature_dict["predict"] = ModelSignature(inputs,
954
- ([] if self._drop_input_cols else inputs)
955
- + outputs)
956
-
1056
+ self._model_signature_dict["predict"] = ModelSignature(
1057
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1058
+ )
1059
+
957
1060
  # For regressor, the type of predict is float64
958
- elif self._sklearn_object._estimator_type == 'regressor':
1061
+ elif self._sklearn_object._estimator_type == "regressor":
959
1062
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
960
- self._model_signature_dict["predict"] = ModelSignature(inputs,
961
- ([] if self._drop_input_cols else inputs)
962
- + outputs)
963
-
1063
+ self._model_signature_dict["predict"] = ModelSignature(
1064
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1065
+ )
1066
+
964
1067
  for prob_func in PROB_FUNCTIONS:
965
1068
  if hasattr(self, prob_func):
966
1069
  output_cols_prefix: str = f"{prob_func}_"
967
1070
  output_column_names = self._get_output_column_names(output_cols_prefix)
968
1071
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
969
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
970
- ([] if self._drop_input_cols else inputs)
971
- + outputs)
1072
+ self._model_signature_dict[prob_func] = ModelSignature(
1073
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1074
+ )
972
1075
 
973
1076
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
974
1077
  items = list(self._model_signature_dict.items())
@@ -981,10 +1084,10 @@ class MinCovDet(BaseTransformer):
981
1084
  """Returns model signature of current class.
982
1085
 
983
1086
  Raises:
984
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1087
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
985
1088
 
986
1089
  Returns:
987
- Dict[str, ModelSignature]: each method and its input output signature
1090
+ Dict with each method and its input output signature
988
1091
  """
989
1092
  if self._model_signature_dict is None:
990
1093
  raise exceptions.SnowflakeMLException(
@@ -992,35 +1095,3 @@ class MinCovDet(BaseTransformer):
992
1095
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
993
1096
  )
994
1097
  return self._model_signature_dict
995
-
996
- def to_sklearn(self) -> Any:
997
- """Get sklearn.covariance.MinCovDet object.
998
- """
999
- if self._sklearn_object is None:
1000
- self._sklearn_object = self._create_sklearn_object()
1001
- return self._sklearn_object
1002
-
1003
- def to_xgboost(self) -> Any:
1004
- raise exceptions.SnowflakeMLException(
1005
- error_code=error_codes.METHOD_NOT_ALLOWED,
1006
- original_exception=AttributeError(
1007
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1008
- "to_xgboost()",
1009
- "to_sklearn()"
1010
- )
1011
- ),
1012
- )
1013
-
1014
- def to_lightgbm(self) -> Any:
1015
- raise exceptions.SnowflakeMLException(
1016
- error_code=error_codes.METHOD_NOT_ALLOWED,
1017
- original_exception=AttributeError(
1018
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1019
- "to_lightgbm()",
1020
- "to_sklearn()"
1021
- )
1022
- ),
1023
- )
1024
-
1025
- def _get_dependencies(self) -> List[str]:
1026
- return self._deps