snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- snowflake/ml/_internal/env_utils.py +77 -32
- snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
- snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
- snowflake/ml/_internal/exceptions/error_codes.py +3 -0
- snowflake/ml/_internal/lineage/data_source.py +10 -0
- snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
- snowflake/ml/_internal/utils/identifier.py +3 -1
- snowflake/ml/_internal/utils/sql_identifier.py +2 -6
- snowflake/ml/dataset/__init__.py +10 -0
- snowflake/ml/dataset/dataset.py +454 -129
- snowflake/ml/dataset/dataset_factory.py +53 -0
- snowflake/ml/dataset/dataset_metadata.py +103 -0
- snowflake/ml/dataset/dataset_reader.py +202 -0
- snowflake/ml/feature_store/feature_store.py +531 -332
- snowflake/ml/feature_store/feature_view.py +40 -23
- snowflake/ml/fileset/embedded_stage_fs.py +146 -0
- snowflake/ml/fileset/sfcfs.py +56 -54
- snowflake/ml/fileset/snowfs.py +159 -0
- snowflake/ml/fileset/stage_fs.py +49 -17
- snowflake/ml/model/__init__.py +2 -2
- snowflake/ml/model/_api.py +16 -1
- snowflake/ml/model/_client/model/model_impl.py +27 -0
- snowflake/ml/model/_client/model/model_version_impl.py +137 -50
- snowflake/ml/model/_client/ops/model_ops.py +159 -40
- snowflake/ml/model/_client/sql/model.py +25 -2
- snowflake/ml/model/_client/sql/model_version.py +131 -2
- snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
- snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
- snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
- snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
- snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
- snowflake/ml/model/_model_composer/model_composer.py +22 -1
- snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
- snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
- snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
- snowflake/ml/model/_packager/model_env/model_env.py +41 -0
- snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
- snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
- snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
- snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
- snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
- snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
- snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
- snowflake/ml/model/_packager/model_packager.py +2 -5
- snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
- snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
- snowflake/ml/model/type_hints.py +21 -2
- snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
- snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
- snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
- snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
- snowflake/ml/modeling/_internal/model_trainer.py +7 -0
- snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
- snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
- snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
- snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
- snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
- snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
- snowflake/ml/modeling/cluster/birch.py +248 -175
- snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
- snowflake/ml/modeling/cluster/dbscan.py +246 -175
- snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
- snowflake/ml/modeling/cluster/k_means.py +248 -175
- snowflake/ml/modeling/cluster/mean_shift.py +246 -175
- snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
- snowflake/ml/modeling/cluster/optics.py +246 -175
- snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
- snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
- snowflake/ml/modeling/compose/column_transformer.py +248 -175
- snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
- snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
- snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
- snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
- snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
- snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
- snowflake/ml/modeling/covariance/oas.py +246 -175
- snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
- snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
- snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
- snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
- snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
- snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/pca.py +248 -175
- snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
- snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
- snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
- snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
- snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
- snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
- snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
- snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
- snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
- snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
- snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
- snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
- snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
- snowflake/ml/modeling/framework/_utils.py +8 -1
- snowflake/ml/modeling/framework/base.py +72 -37
- snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
- snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
- snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
- snowflake/ml/modeling/impute/knn_imputer.py +248 -175
- snowflake/ml/modeling/impute/missing_indicator.py +248 -175
- snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
- snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
- snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
- snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
- snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
- snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
- snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/lars.py +246 -175
- snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
- snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
- snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
- snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
- snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
- snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/perceptron.py +246 -175
- snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/ridge.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
- snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
- snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
- snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
- snowflake/ml/modeling/manifold/isomap.py +248 -175
- snowflake/ml/modeling/manifold/mds.py +248 -175
- snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
- snowflake/ml/modeling/manifold/tsne.py +248 -175
- snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
- snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
- snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
- snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
- snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
- snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
- snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
- snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
- snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
- snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
- snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
- snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
- snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
- snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
- snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
- snowflake/ml/modeling/pipeline/pipeline.py +517 -35
- snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
- snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
- snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
- snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
- snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
- snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
- snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
- snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
- snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
- snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
- snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
- snowflake/ml/modeling/svm/linear_svc.py +246 -175
- snowflake/ml/modeling/svm/linear_svr.py +246 -175
- snowflake/ml/modeling/svm/nu_svc.py +246 -175
- snowflake/ml/modeling/svm/nu_svr.py +246 -175
- snowflake/ml/modeling/svm/svc.py +246 -175
- snowflake/ml/modeling/svm/svr.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
- snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
- snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
- snowflake/ml/registry/model_registry.py +3 -149
- snowflake/ml/registry/registry.py +1 -1
- snowflake/ml/version.py +1 -1
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
- snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
- snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
- snowflake/ml/registry/_artifact_manager.py +0 -156
- snowflake/ml/registry/artifact.py +0 -46
- snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
- {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
|
|
33
33
|
BatchInferenceKwargsTypedDict,
|
34
34
|
ScoreKwargsTypedDict
|
35
35
|
)
|
36
|
+
from snowflake.ml.model._signatures import utils as model_signature_utils
|
37
|
+
from snowflake.ml.model.model_signature import (
|
38
|
+
BaseFeatureSpec,
|
39
|
+
DataType,
|
40
|
+
FeatureSpec,
|
41
|
+
ModelSignature,
|
42
|
+
_infer_signature,
|
43
|
+
_rename_signature_with_snowflake_identifiers,
|
44
|
+
)
|
36
45
|
|
37
46
|
from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
|
38
47
|
|
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
|
|
43
52
|
validate_sklearn_args,
|
44
53
|
)
|
45
54
|
|
46
|
-
from snowflake.ml.model.model_signature import (
|
47
|
-
DataType,
|
48
|
-
FeatureSpec,
|
49
|
-
ModelSignature,
|
50
|
-
_infer_signature,
|
51
|
-
_rename_signature_with_snowflake_identifiers,
|
52
|
-
BaseFeatureSpec,
|
53
|
-
)
|
54
|
-
from snowflake.ml.model._signatures import utils as model_signature_utils
|
55
|
-
|
56
55
|
_PROJECT = "ModelDevelopment"
|
57
56
|
# Derive subproject from module name by removing "sklearn"
|
58
57
|
# and converting module name from underscore to CamelCase
|
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
|
|
61
60
|
|
62
61
|
DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
|
63
62
|
|
64
|
-
def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
|
65
|
-
def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
|
66
|
-
return False and callable(getattr(self._sklearn_object, "fit_transform", None))
|
67
|
-
return check
|
68
|
-
|
69
|
-
|
70
63
|
class IsolationForest(BaseTransformer):
|
71
64
|
r"""Isolation Forest Algorithm
|
72
65
|
For more details on this class, see [sklearn.ensemble.IsolationForest]
|
@@ -263,12 +256,7 @@ class IsolationForest(BaseTransformer):
|
|
263
256
|
)
|
264
257
|
return selected_cols
|
265
258
|
|
266
|
-
|
267
|
-
project=_PROJECT,
|
268
|
-
subproject=_SUBPROJECT,
|
269
|
-
custom_tags=dict([("autogen", True)]),
|
270
|
-
)
|
271
|
-
def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
|
259
|
+
def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
|
272
260
|
"""Fit estimator
|
273
261
|
For more details on this function, see [sklearn.ensemble.IsolationForest.fit]
|
274
262
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit)
|
@@ -295,12 +283,14 @@ class IsolationForest(BaseTransformer):
|
|
295
283
|
|
296
284
|
self._snowpark_cols = dataset.select(self.input_cols).columns
|
297
285
|
|
298
|
-
|
286
|
+
# If we are already in a stored procedure, no need to kick off another one.
|
299
287
|
if SNOWML_SPROC_ENV in os.environ:
|
300
288
|
statement_params = telemetry.get_function_usage_statement_params(
|
301
289
|
project=_PROJECT,
|
302
290
|
subproject=_SUBPROJECT,
|
303
|
-
function_name=telemetry.get_statement_params_full_func_name(
|
291
|
+
function_name=telemetry.get_statement_params_full_func_name(
|
292
|
+
inspect.currentframe(), IsolationForest.__class__.__name__
|
293
|
+
),
|
304
294
|
api_calls=[Session.call],
|
305
295
|
custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
|
306
296
|
)
|
@@ -321,27 +311,24 @@ class IsolationForest(BaseTransformer):
|
|
321
311
|
)
|
322
312
|
self._sklearn_object = model_trainer.train()
|
323
313
|
self._is_fitted = True
|
324
|
-
self.
|
314
|
+
self._generate_model_signatures(dataset)
|
325
315
|
return self
|
326
316
|
|
327
317
|
def _batch_inference_validate_snowpark(
|
328
318
|
self,
|
329
319
|
dataset: DataFrame,
|
330
320
|
inference_method: str,
|
331
|
-
) ->
|
332
|
-
"""Util method to run validate that batch inference can be run on a snowpark dataframe
|
333
|
-
return the available package that exists in the snowflake anaconda channel
|
321
|
+
) -> None:
|
322
|
+
"""Util method to run validate that batch inference can be run on a snowpark dataframe.
|
334
323
|
|
335
324
|
Args:
|
336
325
|
dataset: snowpark dataframe
|
337
326
|
inference_method: the inference method such as predict, score...
|
338
|
-
|
327
|
+
|
339
328
|
Raises:
|
340
329
|
SnowflakeMLException: If the estimator is not fitted, raise error
|
341
330
|
SnowflakeMLException: If the session is None, raise error
|
342
331
|
|
343
|
-
Returns:
|
344
|
-
A list of available package that exists in the snowflake anaconda channel
|
345
332
|
"""
|
346
333
|
if not self._is_fitted:
|
347
334
|
raise exceptions.SnowflakeMLException(
|
@@ -359,9 +346,7 @@ class IsolationForest(BaseTransformer):
|
|
359
346
|
"Session must not specified for snowpark dataset."
|
360
347
|
),
|
361
348
|
)
|
362
|
-
|
363
|
-
return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
|
364
|
-
pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
|
349
|
+
|
365
350
|
|
366
351
|
@available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
|
367
352
|
@telemetry.send_api_usage_telemetry(
|
@@ -397,7 +382,9 @@ class IsolationForest(BaseTransformer):
|
|
397
382
|
# when it is classifier, infer the datatype from label columns
|
398
383
|
if expected_type_inferred == "" and 'predict' in self.model_signatures:
|
399
384
|
# Batch inference takes a single expected output column type. Use the first columns type for now.
|
400
|
-
label_cols_signatures = [
|
385
|
+
label_cols_signatures = [
|
386
|
+
row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
|
387
|
+
]
|
401
388
|
if len(label_cols_signatures) == 0:
|
402
389
|
error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
|
403
390
|
raise exceptions.SnowflakeMLException(
|
@@ -405,25 +392,23 @@ class IsolationForest(BaseTransformer):
|
|
405
392
|
original_exception=ValueError(error_str),
|
406
393
|
)
|
407
394
|
|
408
|
-
expected_type_inferred = convert_sp_to_sf_type(
|
409
|
-
label_cols_signatures[0].as_snowpark_type()
|
410
|
-
)
|
395
|
+
expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
|
411
396
|
|
412
|
-
self.
|
413
|
-
|
397
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
398
|
+
self._deps = self._get_dependencies()
|
399
|
+
assert isinstance(
|
400
|
+
dataset._session, Session
|
401
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
414
402
|
|
415
403
|
transform_kwargs = dict(
|
416
|
-
session
|
417
|
-
dependencies
|
418
|
-
drop_input_cols
|
419
|
-
expected_output_cols_type
|
404
|
+
session=dataset._session,
|
405
|
+
dependencies=self._deps,
|
406
|
+
drop_input_cols=self._drop_input_cols,
|
407
|
+
expected_output_cols_type=expected_type_inferred,
|
420
408
|
)
|
421
409
|
|
422
410
|
elif isinstance(dataset, pd.DataFrame):
|
423
|
-
transform_kwargs = dict(
|
424
|
-
snowpark_input_cols = self._snowpark_cols,
|
425
|
-
drop_input_cols = self._drop_input_cols
|
426
|
-
)
|
411
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
427
412
|
|
428
413
|
transform_handlers = ModelTransformerBuilder.build(
|
429
414
|
dataset=dataset,
|
@@ -463,7 +448,7 @@ class IsolationForest(BaseTransformer):
|
|
463
448
|
Transformed dataset.
|
464
449
|
"""
|
465
450
|
super()._check_dataset_type(dataset)
|
466
|
-
inference_method="transform"
|
451
|
+
inference_method = "transform"
|
467
452
|
|
468
453
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
469
454
|
# are specific to the type of dataset used.
|
@@ -493,24 +478,19 @@ class IsolationForest(BaseTransformer):
|
|
493
478
|
if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
|
494
479
|
expected_dtype = convert_sp_to_sf_type(output_types[0])
|
495
480
|
|
496
|
-
self.
|
497
|
-
|
498
|
-
inference_method=inference_method,
|
499
|
-
)
|
481
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
482
|
+
self._deps = self._get_dependencies()
|
500
483
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
501
484
|
|
502
485
|
transform_kwargs = dict(
|
503
|
-
session
|
504
|
-
dependencies
|
505
|
-
drop_input_cols
|
506
|
-
expected_output_cols_type
|
486
|
+
session=dataset._session,
|
487
|
+
dependencies=self._deps,
|
488
|
+
drop_input_cols=self._drop_input_cols,
|
489
|
+
expected_output_cols_type=expected_dtype,
|
507
490
|
)
|
508
491
|
|
509
492
|
elif isinstance(dataset, pd.DataFrame):
|
510
|
-
transform_kwargs = dict(
|
511
|
-
snowpark_input_cols = self._snowpark_cols,
|
512
|
-
drop_input_cols = self._drop_input_cols
|
513
|
-
)
|
493
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
514
494
|
|
515
495
|
transform_handlers = ModelTransformerBuilder.build(
|
516
496
|
dataset=dataset,
|
@@ -529,7 +509,11 @@ class IsolationForest(BaseTransformer):
|
|
529
509
|
return output_df
|
530
510
|
|
531
511
|
@available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
|
532
|
-
def fit_predict(
|
512
|
+
def fit_predict(
|
513
|
+
self,
|
514
|
+
dataset: Union[DataFrame, pd.DataFrame],
|
515
|
+
output_cols_prefix: str = "fit_predict_",
|
516
|
+
) -> Union[DataFrame, pd.DataFrame]:
|
533
517
|
""" Perform fit on X and returns labels for X
|
534
518
|
For more details on this function, see [sklearn.ensemble.IsolationForest.fit_predict]
|
535
519
|
(https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit_predict)
|
@@ -556,22 +540,104 @@ class IsolationForest(BaseTransformer):
|
|
556
540
|
)
|
557
541
|
output_result, fitted_estimator = model_trainer.train_fit_predict(
|
558
542
|
drop_input_cols=self._drop_input_cols,
|
559
|
-
expected_output_cols_list=
|
543
|
+
expected_output_cols_list=(
|
544
|
+
self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
|
545
|
+
),
|
560
546
|
)
|
561
547
|
self._sklearn_object = fitted_estimator
|
562
548
|
self._is_fitted = True
|
563
549
|
return output_result
|
564
550
|
|
551
|
+
|
552
|
+
@available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
|
553
|
+
def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
|
554
|
+
""" Method not supported for this class.
|
555
|
+
|
556
|
+
|
557
|
+
Raises:
|
558
|
+
TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
|
565
559
|
|
566
|
-
|
567
|
-
|
568
|
-
|
560
|
+
Args:
|
561
|
+
dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
|
562
|
+
Snowpark or Pandas DataFrame.
|
563
|
+
output_cols_prefix: Prefix for the response columns
|
569
564
|
Returns:
|
570
565
|
Transformed dataset.
|
571
566
|
"""
|
572
|
-
self.
|
573
|
-
|
574
|
-
|
567
|
+
self._infer_input_output_cols(dataset)
|
568
|
+
super()._check_dataset_type(dataset)
|
569
|
+
model_trainer = ModelTrainerBuilder.build_fit_transform(
|
570
|
+
estimator=self._sklearn_object,
|
571
|
+
dataset=dataset,
|
572
|
+
input_cols=self.input_cols,
|
573
|
+
label_cols=self.label_cols,
|
574
|
+
sample_weight_col=self.sample_weight_col,
|
575
|
+
autogenerated=self._autogenerated,
|
576
|
+
subproject=_SUBPROJECT,
|
577
|
+
)
|
578
|
+
output_result, fitted_estimator = model_trainer.train_fit_transform(
|
579
|
+
drop_input_cols=self._drop_input_cols,
|
580
|
+
expected_output_cols_list=self.output_cols,
|
581
|
+
)
|
582
|
+
self._sklearn_object = fitted_estimator
|
583
|
+
self._is_fitted = True
|
584
|
+
return output_result
|
585
|
+
|
586
|
+
|
587
|
+
def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
|
588
|
+
""" Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
|
589
|
+
Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
|
590
|
+
"""
|
591
|
+
output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
|
592
|
+
# The following condition is introduced for kneighbors methods, and not used in other methods
|
593
|
+
if output_cols:
|
594
|
+
output_cols = [
|
595
|
+
identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
|
596
|
+
for c in output_cols
|
597
|
+
]
|
598
|
+
elif getattr(self._sklearn_object, "classes_", None) is None:
|
599
|
+
output_cols = [output_cols_prefix]
|
600
|
+
elif self._sklearn_object is not None:
|
601
|
+
classes = self._sklearn_object.classes_
|
602
|
+
if isinstance(classes, numpy.ndarray):
|
603
|
+
output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
|
604
|
+
elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
|
605
|
+
# If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
|
606
|
+
output_cols = []
|
607
|
+
for i, cl in enumerate(classes):
|
608
|
+
# For binary classification, there is only one output column for each class
|
609
|
+
# ndarray as the two classes are complementary.
|
610
|
+
if len(cl) == 2:
|
611
|
+
output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
|
612
|
+
else:
|
613
|
+
output_cols.extend([
|
614
|
+
f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
|
615
|
+
])
|
616
|
+
else:
|
617
|
+
output_cols = []
|
618
|
+
|
619
|
+
# Make sure column names are valid snowflake identifiers.
|
620
|
+
assert output_cols is not None # Make MyPy happy
|
621
|
+
rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
|
622
|
+
|
623
|
+
return rv
|
624
|
+
|
625
|
+
def _align_expected_output_names(
|
626
|
+
self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
|
627
|
+
) -> List[str]:
|
628
|
+
# in case the inferred output column names dimension is different
|
629
|
+
# we use one line of snowpark dataframe and put it into sklearn estimator using pandas
|
630
|
+
output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
|
631
|
+
output_df_columns = list(output_df_pd.columns)
|
632
|
+
output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
|
633
|
+
if self.sample_weight_col:
|
634
|
+
output_df_columns_set -= set(self.sample_weight_col)
|
635
|
+
# if the dimension of inferred output column names is correct; use it
|
636
|
+
if len(expected_output_cols_list) == len(output_df_columns_set):
|
637
|
+
return expected_output_cols_list
|
638
|
+
# otherwise, use the sklearn estimator's output
|
639
|
+
else:
|
640
|
+
return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
|
575
641
|
|
576
642
|
@available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
|
577
643
|
@telemetry.send_api_usage_telemetry(
|
@@ -603,24 +669,26 @@ class IsolationForest(BaseTransformer):
|
|
603
669
|
# are specific to the type of dataset used.
|
604
670
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
605
671
|
|
672
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
673
|
+
|
606
674
|
if isinstance(dataset, DataFrame):
|
607
|
-
self.
|
608
|
-
|
609
|
-
|
610
|
-
|
611
|
-
|
675
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
676
|
+
self._deps = self._get_dependencies()
|
677
|
+
assert isinstance(
|
678
|
+
dataset._session, Session
|
679
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
612
680
|
transform_kwargs = dict(
|
613
681
|
session=dataset._session,
|
614
682
|
dependencies=self._deps,
|
615
|
-
drop_input_cols
|
683
|
+
drop_input_cols=self._drop_input_cols,
|
616
684
|
expected_output_cols_type="float",
|
617
685
|
)
|
686
|
+
expected_output_cols = self._align_expected_output_names(
|
687
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
688
|
+
)
|
618
689
|
|
619
690
|
elif isinstance(dataset, pd.DataFrame):
|
620
|
-
transform_kwargs = dict(
|
621
|
-
snowpark_input_cols = self._snowpark_cols,
|
622
|
-
drop_input_cols = self._drop_input_cols
|
623
|
-
)
|
691
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
624
692
|
|
625
693
|
transform_handlers = ModelTransformerBuilder.build(
|
626
694
|
dataset=dataset,
|
@@ -632,7 +700,7 @@ class IsolationForest(BaseTransformer):
|
|
632
700
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
633
701
|
inference_method=inference_method,
|
634
702
|
input_cols=self.input_cols,
|
635
|
-
expected_output_cols=
|
703
|
+
expected_output_cols=expected_output_cols,
|
636
704
|
**transform_kwargs
|
637
705
|
)
|
638
706
|
return output_df
|
@@ -662,29 +730,30 @@ class IsolationForest(BaseTransformer):
|
|
662
730
|
Output dataset with log probability of the sample for each class in the model.
|
663
731
|
"""
|
664
732
|
super()._check_dataset_type(dataset)
|
665
|
-
inference_method="predict_log_proba"
|
733
|
+
inference_method = "predict_log_proba"
|
734
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
666
735
|
|
667
736
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
668
737
|
# are specific to the type of dataset used.
|
669
738
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
670
739
|
|
671
740
|
if isinstance(dataset, DataFrame):
|
672
|
-
self.
|
673
|
-
|
674
|
-
|
675
|
-
|
676
|
-
|
741
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
742
|
+
self._deps = self._get_dependencies()
|
743
|
+
assert isinstance(
|
744
|
+
dataset._session, Session
|
745
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
677
746
|
transform_kwargs = dict(
|
678
747
|
session=dataset._session,
|
679
748
|
dependencies=self._deps,
|
680
|
-
drop_input_cols
|
749
|
+
drop_input_cols=self._drop_input_cols,
|
681
750
|
expected_output_cols_type="float",
|
682
751
|
)
|
752
|
+
expected_output_cols = self._align_expected_output_names(
|
753
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
754
|
+
)
|
683
755
|
elif isinstance(dataset, pd.DataFrame):
|
684
|
-
transform_kwargs = dict(
|
685
|
-
snowpark_input_cols = self._snowpark_cols,
|
686
|
-
drop_input_cols = self._drop_input_cols
|
687
|
-
)
|
756
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
688
757
|
|
689
758
|
transform_handlers = ModelTransformerBuilder.build(
|
690
759
|
dataset=dataset,
|
@@ -697,7 +766,7 @@ class IsolationForest(BaseTransformer):
|
|
697
766
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
698
767
|
inference_method=inference_method,
|
699
768
|
input_cols=self.input_cols,
|
700
|
-
expected_output_cols=
|
769
|
+
expected_output_cols=expected_output_cols,
|
701
770
|
**transform_kwargs
|
702
771
|
)
|
703
772
|
return output_df
|
@@ -725,30 +794,32 @@ class IsolationForest(BaseTransformer):
|
|
725
794
|
Output dataset with results of the decision function for the samples in input dataset.
|
726
795
|
"""
|
727
796
|
super()._check_dataset_type(dataset)
|
728
|
-
inference_method="decision_function"
|
797
|
+
inference_method = "decision_function"
|
729
798
|
|
730
799
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
731
800
|
# are specific to the type of dataset used.
|
732
801
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
733
802
|
|
803
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
804
|
+
|
734
805
|
if isinstance(dataset, DataFrame):
|
735
|
-
self.
|
736
|
-
|
737
|
-
|
738
|
-
|
739
|
-
|
806
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
807
|
+
self._deps = self._get_dependencies()
|
808
|
+
assert isinstance(
|
809
|
+
dataset._session, Session
|
810
|
+
) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
740
811
|
transform_kwargs = dict(
|
741
812
|
session=dataset._session,
|
742
813
|
dependencies=self._deps,
|
743
|
-
drop_input_cols
|
814
|
+
drop_input_cols=self._drop_input_cols,
|
744
815
|
expected_output_cols_type="float",
|
745
816
|
)
|
817
|
+
expected_output_cols = self._align_expected_output_names(
|
818
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
819
|
+
)
|
746
820
|
|
747
821
|
elif isinstance(dataset, pd.DataFrame):
|
748
|
-
transform_kwargs = dict(
|
749
|
-
snowpark_input_cols = self._snowpark_cols,
|
750
|
-
drop_input_cols = self._drop_input_cols
|
751
|
-
)
|
822
|
+
transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
|
752
823
|
|
753
824
|
transform_handlers = ModelTransformerBuilder.build(
|
754
825
|
dataset=dataset,
|
@@ -761,7 +832,7 @@ class IsolationForest(BaseTransformer):
|
|
761
832
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
762
833
|
inference_method=inference_method,
|
763
834
|
input_cols=self.input_cols,
|
764
|
-
expected_output_cols=
|
835
|
+
expected_output_cols=expected_output_cols,
|
765
836
|
**transform_kwargs
|
766
837
|
)
|
767
838
|
return output_df
|
@@ -792,17 +863,17 @@ class IsolationForest(BaseTransformer):
|
|
792
863
|
Output dataset with probability of the sample for each class in the model.
|
793
864
|
"""
|
794
865
|
super()._check_dataset_type(dataset)
|
795
|
-
inference_method="score_samples"
|
866
|
+
inference_method = "score_samples"
|
796
867
|
|
797
868
|
# This dictionary contains optional kwargs for batch inference. These kwargs
|
798
869
|
# are specific to the type of dataset used.
|
799
870
|
transform_kwargs: BatchInferenceKwargsTypedDict = dict()
|
800
871
|
|
872
|
+
expected_output_cols = self._get_output_column_names(output_cols_prefix)
|
873
|
+
|
801
874
|
if isinstance(dataset, DataFrame):
|
802
|
-
self.
|
803
|
-
|
804
|
-
inference_method=inference_method,
|
805
|
-
)
|
875
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
876
|
+
self._deps = self._get_dependencies()
|
806
877
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
807
878
|
transform_kwargs = dict(
|
808
879
|
session=dataset._session,
|
@@ -810,6 +881,9 @@ class IsolationForest(BaseTransformer):
|
|
810
881
|
drop_input_cols = self._drop_input_cols,
|
811
882
|
expected_output_cols_type="float",
|
812
883
|
)
|
884
|
+
expected_output_cols = self._align_expected_output_names(
|
885
|
+
inference_method, dataset, expected_output_cols, output_cols_prefix
|
886
|
+
)
|
813
887
|
|
814
888
|
elif isinstance(dataset, pd.DataFrame):
|
815
889
|
transform_kwargs = dict(
|
@@ -828,7 +902,7 @@ class IsolationForest(BaseTransformer):
|
|
828
902
|
output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
|
829
903
|
inference_method=inference_method,
|
830
904
|
input_cols=self.input_cols,
|
831
|
-
expected_output_cols=
|
905
|
+
expected_output_cols=expected_output_cols,
|
832
906
|
**transform_kwargs
|
833
907
|
)
|
834
908
|
return output_df
|
@@ -861,17 +935,15 @@ class IsolationForest(BaseTransformer):
|
|
861
935
|
transform_kwargs: ScoreKwargsTypedDict = dict()
|
862
936
|
|
863
937
|
if isinstance(dataset, DataFrame):
|
864
|
-
self.
|
865
|
-
|
866
|
-
inference_method="score",
|
867
|
-
)
|
938
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
|
939
|
+
self._deps = self._get_dependencies()
|
868
940
|
selected_cols = self._get_active_columns()
|
869
941
|
if len(selected_cols) > 0:
|
870
942
|
dataset = dataset.select(selected_cols)
|
871
943
|
assert isinstance(dataset._session, Session) # keep mypy happy
|
872
944
|
transform_kwargs = dict(
|
873
945
|
session=dataset._session,
|
874
|
-
dependencies=
|
946
|
+
dependencies=self._deps,
|
875
947
|
score_sproc_imports=['sklearn'],
|
876
948
|
)
|
877
949
|
elif isinstance(dataset, pd.DataFrame):
|
@@ -936,11 +1008,8 @@ class IsolationForest(BaseTransformer):
|
|
936
1008
|
|
937
1009
|
if isinstance(dataset, DataFrame):
|
938
1010
|
|
939
|
-
self.
|
940
|
-
|
941
|
-
inference_method=inference_method,
|
942
|
-
|
943
|
-
)
|
1011
|
+
self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
|
1012
|
+
self._deps = self._get_dependencies()
|
944
1013
|
assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
|
945
1014
|
transform_kwargs = dict(
|
946
1015
|
session = dataset._session,
|
@@ -973,50 +1042,84 @@ class IsolationForest(BaseTransformer):
|
|
973
1042
|
)
|
974
1043
|
return output_df
|
975
1044
|
|
1045
|
+
|
1046
|
+
|
1047
|
+
def to_sklearn(self) -> Any:
|
1048
|
+
"""Get sklearn.ensemble.IsolationForest object.
|
1049
|
+
"""
|
1050
|
+
if self._sklearn_object is None:
|
1051
|
+
self._sklearn_object = self._create_sklearn_object()
|
1052
|
+
return self._sklearn_object
|
1053
|
+
|
1054
|
+
def to_xgboost(self) -> Any:
|
1055
|
+
raise exceptions.SnowflakeMLException(
|
1056
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1057
|
+
original_exception=AttributeError(
|
1058
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1059
|
+
"to_xgboost()",
|
1060
|
+
"to_sklearn()"
|
1061
|
+
)
|
1062
|
+
),
|
1063
|
+
)
|
976
1064
|
|
977
|
-
def
|
1065
|
+
def to_lightgbm(self) -> Any:
|
1066
|
+
raise exceptions.SnowflakeMLException(
|
1067
|
+
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1068
|
+
original_exception=AttributeError(
|
1069
|
+
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1070
|
+
"to_lightgbm()",
|
1071
|
+
"to_sklearn()"
|
1072
|
+
)
|
1073
|
+
),
|
1074
|
+
)
|
1075
|
+
|
1076
|
+
def _get_dependencies(self) -> List[str]:
|
1077
|
+
return self._deps
|
1078
|
+
|
1079
|
+
|
1080
|
+
def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
|
978
1081
|
self._model_signature_dict = dict()
|
979
1082
|
|
980
1083
|
PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
|
981
1084
|
|
982
|
-
inputs = list(_infer_signature(dataset[self.input_cols], "input"))
|
1085
|
+
inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
|
983
1086
|
outputs: List[BaseFeatureSpec] = []
|
984
1087
|
if hasattr(self, "predict"):
|
985
1088
|
# keep mypy happy
|
986
|
-
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
1089
|
+
assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
|
987
1090
|
# For classifier, the type of predict is the same as the type of label
|
988
|
-
if self._sklearn_object._estimator_type ==
|
989
|
-
|
1091
|
+
if self._sklearn_object._estimator_type == "classifier":
|
1092
|
+
# label columns is the desired type for output
|
990
1093
|
outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
|
991
1094
|
# rename the output columns
|
992
1095
|
outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
|
993
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
994
|
-
|
995
|
-
|
1096
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1097
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1098
|
+
)
|
996
1099
|
# For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
|
997
1100
|
# For outlier models, returns -1 for outliers and 1 for inliers.
|
998
|
-
# Clusterer returns int64 cluster labels.
|
1101
|
+
# Clusterer returns int64 cluster labels.
|
999
1102
|
elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
|
1000
1103
|
outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
|
1001
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1002
|
-
|
1003
|
-
|
1004
|
-
|
1104
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1105
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1106
|
+
)
|
1107
|
+
|
1005
1108
|
# For regressor, the type of predict is float64
|
1006
|
-
elif self._sklearn_object._estimator_type ==
|
1109
|
+
elif self._sklearn_object._estimator_type == "regressor":
|
1007
1110
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
|
1008
|
-
self._model_signature_dict["predict"] = ModelSignature(
|
1009
|
-
|
1010
|
-
|
1011
|
-
|
1111
|
+
self._model_signature_dict["predict"] = ModelSignature(
|
1112
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1113
|
+
)
|
1114
|
+
|
1012
1115
|
for prob_func in PROB_FUNCTIONS:
|
1013
1116
|
if hasattr(self, prob_func):
|
1014
1117
|
output_cols_prefix: str = f"{prob_func}_"
|
1015
1118
|
output_column_names = self._get_output_column_names(output_cols_prefix)
|
1016
1119
|
outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
|
1017
|
-
self._model_signature_dict[prob_func] = ModelSignature(
|
1018
|
-
|
1019
|
-
|
1120
|
+
self._model_signature_dict[prob_func] = ModelSignature(
|
1121
|
+
inputs, ([] if self._drop_input_cols else inputs) + outputs
|
1122
|
+
)
|
1020
1123
|
|
1021
1124
|
# Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
|
1022
1125
|
items = list(self._model_signature_dict.items())
|
@@ -1029,10 +1132,10 @@ class IsolationForest(BaseTransformer):
|
|
1029
1132
|
"""Returns model signature of current class.
|
1030
1133
|
|
1031
1134
|
Raises:
|
1032
|
-
|
1135
|
+
SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
|
1033
1136
|
|
1034
1137
|
Returns:
|
1035
|
-
Dict
|
1138
|
+
Dict with each method and its input output signature
|
1036
1139
|
"""
|
1037
1140
|
if self._model_signature_dict is None:
|
1038
1141
|
raise exceptions.SnowflakeMLException(
|
@@ -1040,35 +1143,3 @@ class IsolationForest(BaseTransformer):
|
|
1040
1143
|
original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
|
1041
1144
|
)
|
1042
1145
|
return self._model_signature_dict
|
1043
|
-
|
1044
|
-
def to_sklearn(self) -> Any:
|
1045
|
-
"""Get sklearn.ensemble.IsolationForest object.
|
1046
|
-
"""
|
1047
|
-
if self._sklearn_object is None:
|
1048
|
-
self._sklearn_object = self._create_sklearn_object()
|
1049
|
-
return self._sklearn_object
|
1050
|
-
|
1051
|
-
def to_xgboost(self) -> Any:
|
1052
|
-
raise exceptions.SnowflakeMLException(
|
1053
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1054
|
-
original_exception=AttributeError(
|
1055
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1056
|
-
"to_xgboost()",
|
1057
|
-
"to_sklearn()"
|
1058
|
-
)
|
1059
|
-
),
|
1060
|
-
)
|
1061
|
-
|
1062
|
-
def to_lightgbm(self) -> Any:
|
1063
|
-
raise exceptions.SnowflakeMLException(
|
1064
|
-
error_code=error_codes.METHOD_NOT_ALLOWED,
|
1065
|
-
original_exception=AttributeError(
|
1066
|
-
modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
|
1067
|
-
"to_lightgbm()",
|
1068
|
-
"to_sklearn()"
|
1069
|
-
)
|
1070
|
-
),
|
1071
|
-
)
|
1072
|
-
|
1073
|
-
def _get_dependencies(self) -> List[str]:
|
1074
|
-
return self._deps
|