snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.ensemble".replace("sklea
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class IsolationForest(BaseTransformer):
71
64
  r"""Isolation Forest Algorithm
72
65
  For more details on this class, see [sklearn.ensemble.IsolationForest]
@@ -263,12 +256,7 @@ class IsolationForest(BaseTransformer):
263
256
  )
264
257
  return selected_cols
265
258
 
266
- @telemetry.send_api_usage_telemetry(
267
- project=_PROJECT,
268
- subproject=_SUBPROJECT,
269
- custom_tags=dict([("autogen", True)]),
270
- )
271
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
259
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "IsolationForest":
272
260
  """Fit estimator
273
261
  For more details on this function, see [sklearn.ensemble.IsolationForest.fit]
274
262
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit)
@@ -295,12 +283,14 @@ class IsolationForest(BaseTransformer):
295
283
 
296
284
  self._snowpark_cols = dataset.select(self.input_cols).columns
297
285
 
298
- # If we are already in a stored procedure, no need to kick off another one.
286
+ # If we are already in a stored procedure, no need to kick off another one.
299
287
  if SNOWML_SPROC_ENV in os.environ:
300
288
  statement_params = telemetry.get_function_usage_statement_params(
301
289
  project=_PROJECT,
302
290
  subproject=_SUBPROJECT,
303
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), IsolationForest.__class__.__name__),
291
+ function_name=telemetry.get_statement_params_full_func_name(
292
+ inspect.currentframe(), IsolationForest.__class__.__name__
293
+ ),
304
294
  api_calls=[Session.call],
305
295
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
306
296
  )
@@ -321,27 +311,24 @@ class IsolationForest(BaseTransformer):
321
311
  )
322
312
  self._sklearn_object = model_trainer.train()
323
313
  self._is_fitted = True
324
- self._get_model_signatures(dataset)
314
+ self._generate_model_signatures(dataset)
325
315
  return self
326
316
 
327
317
  def _batch_inference_validate_snowpark(
328
318
  self,
329
319
  dataset: DataFrame,
330
320
  inference_method: str,
331
- ) -> List[str]:
332
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
333
- return the available package that exists in the snowflake anaconda channel
321
+ ) -> None:
322
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
334
323
 
335
324
  Args:
336
325
  dataset: snowpark dataframe
337
326
  inference_method: the inference method such as predict, score...
338
-
327
+
339
328
  Raises:
340
329
  SnowflakeMLException: If the estimator is not fitted, raise error
341
330
  SnowflakeMLException: If the session is None, raise error
342
331
 
343
- Returns:
344
- A list of available package that exists in the snowflake anaconda channel
345
332
  """
346
333
  if not self._is_fitted:
347
334
  raise exceptions.SnowflakeMLException(
@@ -359,9 +346,7 @@ class IsolationForest(BaseTransformer):
359
346
  "Session must not specified for snowpark dataset."
360
347
  ),
361
348
  )
362
- # Validate that key package version in user workspace are supported in snowflake conda channel
363
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
364
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
349
+
365
350
 
366
351
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
367
352
  @telemetry.send_api_usage_telemetry(
@@ -397,7 +382,9 @@ class IsolationForest(BaseTransformer):
397
382
  # when it is classifier, infer the datatype from label columns
398
383
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
399
384
  # Batch inference takes a single expected output column type. Use the first columns type for now.
400
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
385
+ label_cols_signatures = [
386
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
387
+ ]
401
388
  if len(label_cols_signatures) == 0:
402
389
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
403
390
  raise exceptions.SnowflakeMLException(
@@ -405,25 +392,23 @@ class IsolationForest(BaseTransformer):
405
392
  original_exception=ValueError(error_str),
406
393
  )
407
394
 
408
- expected_type_inferred = convert_sp_to_sf_type(
409
- label_cols_signatures[0].as_snowpark_type()
410
- )
395
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
411
396
 
412
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
413
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
397
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
398
+ self._deps = self._get_dependencies()
399
+ assert isinstance(
400
+ dataset._session, Session
401
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
414
402
 
415
403
  transform_kwargs = dict(
416
- session = dataset._session,
417
- dependencies = self._deps,
418
- drop_input_cols = self._drop_input_cols,
419
- expected_output_cols_type = expected_type_inferred,
404
+ session=dataset._session,
405
+ dependencies=self._deps,
406
+ drop_input_cols=self._drop_input_cols,
407
+ expected_output_cols_type=expected_type_inferred,
420
408
  )
421
409
 
422
410
  elif isinstance(dataset, pd.DataFrame):
423
- transform_kwargs = dict(
424
- snowpark_input_cols = self._snowpark_cols,
425
- drop_input_cols = self._drop_input_cols
426
- )
411
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
427
412
 
428
413
  transform_handlers = ModelTransformerBuilder.build(
429
414
  dataset=dataset,
@@ -463,7 +448,7 @@ class IsolationForest(BaseTransformer):
463
448
  Transformed dataset.
464
449
  """
465
450
  super()._check_dataset_type(dataset)
466
- inference_method="transform"
451
+ inference_method = "transform"
467
452
 
468
453
  # This dictionary contains optional kwargs for batch inference. These kwargs
469
454
  # are specific to the type of dataset used.
@@ -493,24 +478,19 @@ class IsolationForest(BaseTransformer):
493
478
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
494
479
  expected_dtype = convert_sp_to_sf_type(output_types[0])
495
480
 
496
- self._deps = self._batch_inference_validate_snowpark(
497
- dataset=dataset,
498
- inference_method=inference_method,
499
- )
481
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
482
+ self._deps = self._get_dependencies()
500
483
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
501
484
 
502
485
  transform_kwargs = dict(
503
- session = dataset._session,
504
- dependencies = self._deps,
505
- drop_input_cols = self._drop_input_cols,
506
- expected_output_cols_type = expected_dtype,
486
+ session=dataset._session,
487
+ dependencies=self._deps,
488
+ drop_input_cols=self._drop_input_cols,
489
+ expected_output_cols_type=expected_dtype,
507
490
  )
508
491
 
509
492
  elif isinstance(dataset, pd.DataFrame):
510
- transform_kwargs = dict(
511
- snowpark_input_cols = self._snowpark_cols,
512
- drop_input_cols = self._drop_input_cols
513
- )
493
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
514
494
 
515
495
  transform_handlers = ModelTransformerBuilder.build(
516
496
  dataset=dataset,
@@ -529,7 +509,11 @@ class IsolationForest(BaseTransformer):
529
509
  return output_df
530
510
 
531
511
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
532
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
512
+ def fit_predict(
513
+ self,
514
+ dataset: Union[DataFrame, pd.DataFrame],
515
+ output_cols_prefix: str = "fit_predict_",
516
+ ) -> Union[DataFrame, pd.DataFrame]:
533
517
  """ Perform fit on X and returns labels for X
534
518
  For more details on this function, see [sklearn.ensemble.IsolationForest.fit_predict]
535
519
  (https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.ensemble.IsolationForest.fit_predict)
@@ -556,22 +540,104 @@ class IsolationForest(BaseTransformer):
556
540
  )
557
541
  output_result, fitted_estimator = model_trainer.train_fit_predict(
558
542
  drop_input_cols=self._drop_input_cols,
559
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
543
+ expected_output_cols_list=(
544
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
545
+ ),
560
546
  )
561
547
  self._sklearn_object = fitted_estimator
562
548
  self._is_fitted = True
563
549
  return output_result
564
550
 
551
+
552
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
553
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
554
+ """ Method not supported for this class.
555
+
556
+
557
+ Raises:
558
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
565
559
 
566
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
567
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
568
- """
560
+ Args:
561
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
562
+ Snowpark or Pandas DataFrame.
563
+ output_cols_prefix: Prefix for the response columns
569
564
  Returns:
570
565
  Transformed dataset.
571
566
  """
572
- self.fit(dataset)
573
- assert self._sklearn_object is not None
574
- return self._sklearn_object.embedding_
567
+ self._infer_input_output_cols(dataset)
568
+ super()._check_dataset_type(dataset)
569
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
570
+ estimator=self._sklearn_object,
571
+ dataset=dataset,
572
+ input_cols=self.input_cols,
573
+ label_cols=self.label_cols,
574
+ sample_weight_col=self.sample_weight_col,
575
+ autogenerated=self._autogenerated,
576
+ subproject=_SUBPROJECT,
577
+ )
578
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
579
+ drop_input_cols=self._drop_input_cols,
580
+ expected_output_cols_list=self.output_cols,
581
+ )
582
+ self._sklearn_object = fitted_estimator
583
+ self._is_fitted = True
584
+ return output_result
585
+
586
+
587
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
588
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
589
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
590
+ """
591
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
592
+ # The following condition is introduced for kneighbors methods, and not used in other methods
593
+ if output_cols:
594
+ output_cols = [
595
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
596
+ for c in output_cols
597
+ ]
598
+ elif getattr(self._sklearn_object, "classes_", None) is None:
599
+ output_cols = [output_cols_prefix]
600
+ elif self._sklearn_object is not None:
601
+ classes = self._sklearn_object.classes_
602
+ if isinstance(classes, numpy.ndarray):
603
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
604
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
605
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
606
+ output_cols = []
607
+ for i, cl in enumerate(classes):
608
+ # For binary classification, there is only one output column for each class
609
+ # ndarray as the two classes are complementary.
610
+ if len(cl) == 2:
611
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
612
+ else:
613
+ output_cols.extend([
614
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
615
+ ])
616
+ else:
617
+ output_cols = []
618
+
619
+ # Make sure column names are valid snowflake identifiers.
620
+ assert output_cols is not None # Make MyPy happy
621
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
622
+
623
+ return rv
624
+
625
+ def _align_expected_output_names(
626
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
627
+ ) -> List[str]:
628
+ # in case the inferred output column names dimension is different
629
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
630
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
631
+ output_df_columns = list(output_df_pd.columns)
632
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
633
+ if self.sample_weight_col:
634
+ output_df_columns_set -= set(self.sample_weight_col)
635
+ # if the dimension of inferred output column names is correct; use it
636
+ if len(expected_output_cols_list) == len(output_df_columns_set):
637
+ return expected_output_cols_list
638
+ # otherwise, use the sklearn estimator's output
639
+ else:
640
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
575
641
 
576
642
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
577
643
  @telemetry.send_api_usage_telemetry(
@@ -603,24 +669,26 @@ class IsolationForest(BaseTransformer):
603
669
  # are specific to the type of dataset used.
604
670
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
605
671
 
672
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
673
+
606
674
  if isinstance(dataset, DataFrame):
607
- self._deps = self._batch_inference_validate_snowpark(
608
- dataset=dataset,
609
- inference_method=inference_method,
610
- )
611
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
675
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
676
+ self._deps = self._get_dependencies()
677
+ assert isinstance(
678
+ dataset._session, Session
679
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
612
680
  transform_kwargs = dict(
613
681
  session=dataset._session,
614
682
  dependencies=self._deps,
615
- drop_input_cols = self._drop_input_cols,
683
+ drop_input_cols=self._drop_input_cols,
616
684
  expected_output_cols_type="float",
617
685
  )
686
+ expected_output_cols = self._align_expected_output_names(
687
+ inference_method, dataset, expected_output_cols, output_cols_prefix
688
+ )
618
689
 
619
690
  elif isinstance(dataset, pd.DataFrame):
620
- transform_kwargs = dict(
621
- snowpark_input_cols = self._snowpark_cols,
622
- drop_input_cols = self._drop_input_cols
623
- )
691
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
624
692
 
625
693
  transform_handlers = ModelTransformerBuilder.build(
626
694
  dataset=dataset,
@@ -632,7 +700,7 @@ class IsolationForest(BaseTransformer):
632
700
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
633
701
  inference_method=inference_method,
634
702
  input_cols=self.input_cols,
635
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
703
+ expected_output_cols=expected_output_cols,
636
704
  **transform_kwargs
637
705
  )
638
706
  return output_df
@@ -662,29 +730,30 @@ class IsolationForest(BaseTransformer):
662
730
  Output dataset with log probability of the sample for each class in the model.
663
731
  """
664
732
  super()._check_dataset_type(dataset)
665
- inference_method="predict_log_proba"
733
+ inference_method = "predict_log_proba"
734
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
666
735
 
667
736
  # This dictionary contains optional kwargs for batch inference. These kwargs
668
737
  # are specific to the type of dataset used.
669
738
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
670
739
 
671
740
  if isinstance(dataset, DataFrame):
672
- self._deps = self._batch_inference_validate_snowpark(
673
- dataset=dataset,
674
- inference_method=inference_method,
675
- )
676
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
741
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
742
+ self._deps = self._get_dependencies()
743
+ assert isinstance(
744
+ dataset._session, Session
745
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
677
746
  transform_kwargs = dict(
678
747
  session=dataset._session,
679
748
  dependencies=self._deps,
680
- drop_input_cols = self._drop_input_cols,
749
+ drop_input_cols=self._drop_input_cols,
681
750
  expected_output_cols_type="float",
682
751
  )
752
+ expected_output_cols = self._align_expected_output_names(
753
+ inference_method, dataset, expected_output_cols, output_cols_prefix
754
+ )
683
755
  elif isinstance(dataset, pd.DataFrame):
684
- transform_kwargs = dict(
685
- snowpark_input_cols = self._snowpark_cols,
686
- drop_input_cols = self._drop_input_cols
687
- )
756
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
688
757
 
689
758
  transform_handlers = ModelTransformerBuilder.build(
690
759
  dataset=dataset,
@@ -697,7 +766,7 @@ class IsolationForest(BaseTransformer):
697
766
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
698
767
  inference_method=inference_method,
699
768
  input_cols=self.input_cols,
700
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
769
+ expected_output_cols=expected_output_cols,
701
770
  **transform_kwargs
702
771
  )
703
772
  return output_df
@@ -725,30 +794,32 @@ class IsolationForest(BaseTransformer):
725
794
  Output dataset with results of the decision function for the samples in input dataset.
726
795
  """
727
796
  super()._check_dataset_type(dataset)
728
- inference_method="decision_function"
797
+ inference_method = "decision_function"
729
798
 
730
799
  # This dictionary contains optional kwargs for batch inference. These kwargs
731
800
  # are specific to the type of dataset used.
732
801
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
733
802
 
803
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
804
+
734
805
  if isinstance(dataset, DataFrame):
735
- self._deps = self._batch_inference_validate_snowpark(
736
- dataset=dataset,
737
- inference_method=inference_method,
738
- )
739
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
806
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
807
+ self._deps = self._get_dependencies()
808
+ assert isinstance(
809
+ dataset._session, Session
810
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
740
811
  transform_kwargs = dict(
741
812
  session=dataset._session,
742
813
  dependencies=self._deps,
743
- drop_input_cols = self._drop_input_cols,
814
+ drop_input_cols=self._drop_input_cols,
744
815
  expected_output_cols_type="float",
745
816
  )
817
+ expected_output_cols = self._align_expected_output_names(
818
+ inference_method, dataset, expected_output_cols, output_cols_prefix
819
+ )
746
820
 
747
821
  elif isinstance(dataset, pd.DataFrame):
748
- transform_kwargs = dict(
749
- snowpark_input_cols = self._snowpark_cols,
750
- drop_input_cols = self._drop_input_cols
751
- )
822
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
752
823
 
753
824
  transform_handlers = ModelTransformerBuilder.build(
754
825
  dataset=dataset,
@@ -761,7 +832,7 @@ class IsolationForest(BaseTransformer):
761
832
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
762
833
  inference_method=inference_method,
763
834
  input_cols=self.input_cols,
764
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
835
+ expected_output_cols=expected_output_cols,
765
836
  **transform_kwargs
766
837
  )
767
838
  return output_df
@@ -792,17 +863,17 @@ class IsolationForest(BaseTransformer):
792
863
  Output dataset with probability of the sample for each class in the model.
793
864
  """
794
865
  super()._check_dataset_type(dataset)
795
- inference_method="score_samples"
866
+ inference_method = "score_samples"
796
867
 
797
868
  # This dictionary contains optional kwargs for batch inference. These kwargs
798
869
  # are specific to the type of dataset used.
799
870
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
800
871
 
872
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
873
+
801
874
  if isinstance(dataset, DataFrame):
802
- self._deps = self._batch_inference_validate_snowpark(
803
- dataset=dataset,
804
- inference_method=inference_method,
805
- )
875
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
876
+ self._deps = self._get_dependencies()
806
877
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
807
878
  transform_kwargs = dict(
808
879
  session=dataset._session,
@@ -810,6 +881,9 @@ class IsolationForest(BaseTransformer):
810
881
  drop_input_cols = self._drop_input_cols,
811
882
  expected_output_cols_type="float",
812
883
  )
884
+ expected_output_cols = self._align_expected_output_names(
885
+ inference_method, dataset, expected_output_cols, output_cols_prefix
886
+ )
813
887
 
814
888
  elif isinstance(dataset, pd.DataFrame):
815
889
  transform_kwargs = dict(
@@ -828,7 +902,7 @@ class IsolationForest(BaseTransformer):
828
902
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
829
903
  inference_method=inference_method,
830
904
  input_cols=self.input_cols,
831
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
905
+ expected_output_cols=expected_output_cols,
832
906
  **transform_kwargs
833
907
  )
834
908
  return output_df
@@ -861,17 +935,15 @@ class IsolationForest(BaseTransformer):
861
935
  transform_kwargs: ScoreKwargsTypedDict = dict()
862
936
 
863
937
  if isinstance(dataset, DataFrame):
864
- self._deps = self._batch_inference_validate_snowpark(
865
- dataset=dataset,
866
- inference_method="score",
867
- )
938
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
939
+ self._deps = self._get_dependencies()
868
940
  selected_cols = self._get_active_columns()
869
941
  if len(selected_cols) > 0:
870
942
  dataset = dataset.select(selected_cols)
871
943
  assert isinstance(dataset._session, Session) # keep mypy happy
872
944
  transform_kwargs = dict(
873
945
  session=dataset._session,
874
- dependencies=["snowflake-snowpark-python"] + self._deps,
946
+ dependencies=self._deps,
875
947
  score_sproc_imports=['sklearn'],
876
948
  )
877
949
  elif isinstance(dataset, pd.DataFrame):
@@ -936,11 +1008,8 @@ class IsolationForest(BaseTransformer):
936
1008
 
937
1009
  if isinstance(dataset, DataFrame):
938
1010
 
939
- self._deps = self._batch_inference_validate_snowpark(
940
- dataset=dataset,
941
- inference_method=inference_method,
942
-
943
- )
1011
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1012
+ self._deps = self._get_dependencies()
944
1013
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
945
1014
  transform_kwargs = dict(
946
1015
  session = dataset._session,
@@ -973,50 +1042,84 @@ class IsolationForest(BaseTransformer):
973
1042
  )
974
1043
  return output_df
975
1044
 
1045
+
1046
+
1047
+ def to_sklearn(self) -> Any:
1048
+ """Get sklearn.ensemble.IsolationForest object.
1049
+ """
1050
+ if self._sklearn_object is None:
1051
+ self._sklearn_object = self._create_sklearn_object()
1052
+ return self._sklearn_object
1053
+
1054
+ def to_xgboost(self) -> Any:
1055
+ raise exceptions.SnowflakeMLException(
1056
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1057
+ original_exception=AttributeError(
1058
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1059
+ "to_xgboost()",
1060
+ "to_sklearn()"
1061
+ )
1062
+ ),
1063
+ )
976
1064
 
977
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1065
+ def to_lightgbm(self) -> Any:
1066
+ raise exceptions.SnowflakeMLException(
1067
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1068
+ original_exception=AttributeError(
1069
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1070
+ "to_lightgbm()",
1071
+ "to_sklearn()"
1072
+ )
1073
+ ),
1074
+ )
1075
+
1076
+ def _get_dependencies(self) -> List[str]:
1077
+ return self._deps
1078
+
1079
+
1080
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
978
1081
  self._model_signature_dict = dict()
979
1082
 
980
1083
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
981
1084
 
982
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1085
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
983
1086
  outputs: List[BaseFeatureSpec] = []
984
1087
  if hasattr(self, "predict"):
985
1088
  # keep mypy happy
986
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1089
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
987
1090
  # For classifier, the type of predict is the same as the type of label
988
- if self._sklearn_object._estimator_type == 'classifier':
989
- # label columns is the desired type for output
1091
+ if self._sklearn_object._estimator_type == "classifier":
1092
+ # label columns is the desired type for output
990
1093
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
991
1094
  # rename the output columns
992
1095
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
993
- self._model_signature_dict["predict"] = ModelSignature(inputs,
994
- ([] if self._drop_input_cols else inputs)
995
- + outputs)
1096
+ self._model_signature_dict["predict"] = ModelSignature(
1097
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1098
+ )
996
1099
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
997
1100
  # For outlier models, returns -1 for outliers and 1 for inliers.
998
- # Clusterer returns int64 cluster labels.
1101
+ # Clusterer returns int64 cluster labels.
999
1102
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1000
1103
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1001
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1002
- ([] if self._drop_input_cols else inputs)
1003
- + outputs)
1004
-
1104
+ self._model_signature_dict["predict"] = ModelSignature(
1105
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1106
+ )
1107
+
1005
1108
  # For regressor, the type of predict is float64
1006
- elif self._sklearn_object._estimator_type == 'regressor':
1109
+ elif self._sklearn_object._estimator_type == "regressor":
1007
1110
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1008
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1009
- ([] if self._drop_input_cols else inputs)
1010
- + outputs)
1011
-
1111
+ self._model_signature_dict["predict"] = ModelSignature(
1112
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1113
+ )
1114
+
1012
1115
  for prob_func in PROB_FUNCTIONS:
1013
1116
  if hasattr(self, prob_func):
1014
1117
  output_cols_prefix: str = f"{prob_func}_"
1015
1118
  output_column_names = self._get_output_column_names(output_cols_prefix)
1016
1119
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1017
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1018
- ([] if self._drop_input_cols else inputs)
1019
- + outputs)
1120
+ self._model_signature_dict[prob_func] = ModelSignature(
1121
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1122
+ )
1020
1123
 
1021
1124
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1022
1125
  items = list(self._model_signature_dict.items())
@@ -1029,10 +1132,10 @@ class IsolationForest(BaseTransformer):
1029
1132
  """Returns model signature of current class.
1030
1133
 
1031
1134
  Raises:
1032
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1135
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1033
1136
 
1034
1137
  Returns:
1035
- Dict[str, ModelSignature]: each method and its input output signature
1138
+ Dict with each method and its input output signature
1036
1139
  """
1037
1140
  if self._model_signature_dict is None:
1038
1141
  raise exceptions.SnowflakeMLException(
@@ -1040,35 +1143,3 @@ class IsolationForest(BaseTransformer):
1040
1143
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1041
1144
  )
1042
1145
  return self._model_signature_dict
1043
-
1044
- def to_sklearn(self) -> Any:
1045
- """Get sklearn.ensemble.IsolationForest object.
1046
- """
1047
- if self._sklearn_object is None:
1048
- self._sklearn_object = self._create_sklearn_object()
1049
- return self._sklearn_object
1050
-
1051
- def to_xgboost(self) -> Any:
1052
- raise exceptions.SnowflakeMLException(
1053
- error_code=error_codes.METHOD_NOT_ALLOWED,
1054
- original_exception=AttributeError(
1055
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1056
- "to_xgboost()",
1057
- "to_sklearn()"
1058
- )
1059
- ),
1060
- )
1061
-
1062
- def to_lightgbm(self) -> Any:
1063
- raise exceptions.SnowflakeMLException(
1064
- error_code=error_codes.METHOD_NOT_ALLOWED,
1065
- original_exception=AttributeError(
1066
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1067
- "to_lightgbm()",
1068
- "to_sklearn()"
1069
- )
1070
- ),
1071
- )
1072
-
1073
- def _get_dependencies(self) -> List[str]:
1074
- return self._deps