snowflake-ml-python 1.4.0__py3-none-any.whl → 1.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (234) hide show
  1. snowflake/ml/_internal/env_utils.py +77 -32
  2. snowflake/ml/_internal/exceptions/dataset_error_messages.py +5 -0
  3. snowflake/ml/_internal/exceptions/dataset_errors.py +24 -0
  4. snowflake/ml/_internal/exceptions/error_codes.py +3 -0
  5. snowflake/ml/_internal/lineage/data_source.py +10 -0
  6. snowflake/ml/_internal/lineage/dataset_dataframe.py +44 -0
  7. snowflake/ml/_internal/utils/identifier.py +3 -1
  8. snowflake/ml/_internal/utils/sql_identifier.py +2 -6
  9. snowflake/ml/dataset/__init__.py +10 -0
  10. snowflake/ml/dataset/dataset.py +454 -129
  11. snowflake/ml/dataset/dataset_factory.py +53 -0
  12. snowflake/ml/dataset/dataset_metadata.py +103 -0
  13. snowflake/ml/dataset/dataset_reader.py +202 -0
  14. snowflake/ml/feature_store/feature_store.py +531 -332
  15. snowflake/ml/feature_store/feature_view.py +40 -23
  16. snowflake/ml/fileset/embedded_stage_fs.py +146 -0
  17. snowflake/ml/fileset/sfcfs.py +56 -54
  18. snowflake/ml/fileset/snowfs.py +159 -0
  19. snowflake/ml/fileset/stage_fs.py +49 -17
  20. snowflake/ml/model/__init__.py +2 -2
  21. snowflake/ml/model/_api.py +16 -1
  22. snowflake/ml/model/_client/model/model_impl.py +27 -0
  23. snowflake/ml/model/_client/model/model_version_impl.py +137 -50
  24. snowflake/ml/model/_client/ops/model_ops.py +159 -40
  25. snowflake/ml/model/_client/sql/model.py +25 -2
  26. snowflake/ml/model/_client/sql/model_version.py +131 -2
  27. snowflake/ml/model/_deploy_client/image_builds/server_image_builder.py +5 -1
  28. snowflake/ml/model/_deploy_client/image_builds/templates/dockerfile_template +1 -0
  29. snowflake/ml/model/_deploy_client/snowservice/deploy.py +2 -0
  30. snowflake/ml/model/_deploy_client/utils/constants.py +0 -5
  31. snowflake/ml/model/_deploy_client/utils/snowservice_client.py +21 -50
  32. snowflake/ml/model/_model_composer/model_composer.py +22 -1
  33. snowflake/ml/model/_model_composer/model_manifest/model_manifest.py +38 -51
  34. snowflake/ml/model/_model_composer/model_manifest/model_manifest_schema.py +19 -1
  35. snowflake/ml/model/_model_composer/model_method/model_method.py +6 -10
  36. snowflake/ml/model/_packager/model_env/model_env.py +41 -0
  37. snowflake/ml/model/_packager/model_handlers/catboost.py +206 -0
  38. snowflake/ml/model/_packager/model_handlers/lightgbm.py +218 -0
  39. snowflake/ml/model/_packager/model_handlers/sklearn.py +3 -0
  40. snowflake/ml/model/_packager/model_meta/_core_requirements.py +1 -1
  41. snowflake/ml/model/_packager/model_meta/model_meta.py +37 -11
  42. snowflake/ml/model/_packager/model_meta/model_meta_schema.py +20 -1
  43. snowflake/ml/model/_packager/model_meta_migrator/migrator_plans.py +3 -1
  44. snowflake/ml/model/_packager/model_packager.py +2 -5
  45. snowflake/ml/model/{_model_composer/model_runtime/_runtime_requirements.py → _packager/model_runtime/_snowml_inference_alternative_requirements.py} +1 -1
  46. snowflake/ml/model/_packager/model_runtime/model_runtime.py +137 -0
  47. snowflake/ml/model/type_hints.py +21 -2
  48. snowflake/ml/modeling/_internal/estimator_utils.py +16 -11
  49. snowflake/ml/modeling/_internal/local_implementations/pandas_handlers.py +4 -1
  50. snowflake/ml/modeling/_internal/local_implementations/pandas_trainer.py +55 -3
  51. snowflake/ml/modeling/_internal/ml_runtime_implementations/ml_runtime_handlers.py +34 -18
  52. snowflake/ml/modeling/_internal/model_trainer.py +7 -0
  53. snowflake/ml/modeling/_internal/model_trainer_builder.py +42 -9
  54. snowflake/ml/modeling/_internal/snowpark_implementations/distributed_hpo_trainer.py +13 -14
  55. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_handlers.py +29 -7
  56. snowflake/ml/modeling/_internal/snowpark_implementations/snowpark_trainer.py +261 -16
  57. snowflake/ml/modeling/calibration/calibrated_classifier_cv.py +246 -175
  58. snowflake/ml/modeling/cluster/affinity_propagation.py +246 -175
  59. snowflake/ml/modeling/cluster/agglomerative_clustering.py +246 -175
  60. snowflake/ml/modeling/cluster/birch.py +248 -175
  61. snowflake/ml/modeling/cluster/bisecting_k_means.py +248 -175
  62. snowflake/ml/modeling/cluster/dbscan.py +246 -175
  63. snowflake/ml/modeling/cluster/feature_agglomeration.py +248 -175
  64. snowflake/ml/modeling/cluster/k_means.py +248 -175
  65. snowflake/ml/modeling/cluster/mean_shift.py +246 -175
  66. snowflake/ml/modeling/cluster/mini_batch_k_means.py +248 -175
  67. snowflake/ml/modeling/cluster/optics.py +246 -175
  68. snowflake/ml/modeling/cluster/spectral_biclustering.py +246 -175
  69. snowflake/ml/modeling/cluster/spectral_clustering.py +246 -175
  70. snowflake/ml/modeling/cluster/spectral_coclustering.py +246 -175
  71. snowflake/ml/modeling/compose/column_transformer.py +248 -175
  72. snowflake/ml/modeling/compose/transformed_target_regressor.py +246 -175
  73. snowflake/ml/modeling/covariance/elliptic_envelope.py +246 -175
  74. snowflake/ml/modeling/covariance/empirical_covariance.py +246 -175
  75. snowflake/ml/modeling/covariance/graphical_lasso.py +246 -175
  76. snowflake/ml/modeling/covariance/graphical_lasso_cv.py +246 -175
  77. snowflake/ml/modeling/covariance/ledoit_wolf.py +246 -175
  78. snowflake/ml/modeling/covariance/min_cov_det.py +246 -175
  79. snowflake/ml/modeling/covariance/oas.py +246 -175
  80. snowflake/ml/modeling/covariance/shrunk_covariance.py +246 -175
  81. snowflake/ml/modeling/decomposition/dictionary_learning.py +248 -175
  82. snowflake/ml/modeling/decomposition/factor_analysis.py +248 -175
  83. snowflake/ml/modeling/decomposition/fast_ica.py +248 -175
  84. snowflake/ml/modeling/decomposition/incremental_pca.py +248 -175
  85. snowflake/ml/modeling/decomposition/kernel_pca.py +248 -175
  86. snowflake/ml/modeling/decomposition/mini_batch_dictionary_learning.py +248 -175
  87. snowflake/ml/modeling/decomposition/mini_batch_sparse_pca.py +248 -175
  88. snowflake/ml/modeling/decomposition/pca.py +248 -175
  89. snowflake/ml/modeling/decomposition/sparse_pca.py +248 -175
  90. snowflake/ml/modeling/decomposition/truncated_svd.py +248 -175
  91. snowflake/ml/modeling/discriminant_analysis/linear_discriminant_analysis.py +248 -175
  92. snowflake/ml/modeling/discriminant_analysis/quadratic_discriminant_analysis.py +246 -175
  93. snowflake/ml/modeling/ensemble/ada_boost_classifier.py +246 -175
  94. snowflake/ml/modeling/ensemble/ada_boost_regressor.py +246 -175
  95. snowflake/ml/modeling/ensemble/bagging_classifier.py +246 -175
  96. snowflake/ml/modeling/ensemble/bagging_regressor.py +246 -175
  97. snowflake/ml/modeling/ensemble/extra_trees_classifier.py +246 -175
  98. snowflake/ml/modeling/ensemble/extra_trees_regressor.py +246 -175
  99. snowflake/ml/modeling/ensemble/gradient_boosting_classifier.py +246 -175
  100. snowflake/ml/modeling/ensemble/gradient_boosting_regressor.py +246 -175
  101. snowflake/ml/modeling/ensemble/hist_gradient_boosting_classifier.py +246 -175
  102. snowflake/ml/modeling/ensemble/hist_gradient_boosting_regressor.py +246 -175
  103. snowflake/ml/modeling/ensemble/isolation_forest.py +246 -175
  104. snowflake/ml/modeling/ensemble/random_forest_classifier.py +246 -175
  105. snowflake/ml/modeling/ensemble/random_forest_regressor.py +246 -175
  106. snowflake/ml/modeling/ensemble/stacking_regressor.py +248 -175
  107. snowflake/ml/modeling/ensemble/voting_classifier.py +248 -175
  108. snowflake/ml/modeling/ensemble/voting_regressor.py +248 -175
  109. snowflake/ml/modeling/feature_selection/generic_univariate_select.py +248 -175
  110. snowflake/ml/modeling/feature_selection/select_fdr.py +248 -175
  111. snowflake/ml/modeling/feature_selection/select_fpr.py +248 -175
  112. snowflake/ml/modeling/feature_selection/select_fwe.py +248 -175
  113. snowflake/ml/modeling/feature_selection/select_k_best.py +248 -175
  114. snowflake/ml/modeling/feature_selection/select_percentile.py +248 -175
  115. snowflake/ml/modeling/feature_selection/sequential_feature_selector.py +248 -175
  116. snowflake/ml/modeling/feature_selection/variance_threshold.py +248 -175
  117. snowflake/ml/modeling/framework/_utils.py +8 -1
  118. snowflake/ml/modeling/framework/base.py +72 -37
  119. snowflake/ml/modeling/gaussian_process/gaussian_process_classifier.py +246 -175
  120. snowflake/ml/modeling/gaussian_process/gaussian_process_regressor.py +246 -175
  121. snowflake/ml/modeling/impute/iterative_imputer.py +248 -175
  122. snowflake/ml/modeling/impute/knn_imputer.py +248 -175
  123. snowflake/ml/modeling/impute/missing_indicator.py +248 -175
  124. snowflake/ml/modeling/kernel_approximation/additive_chi2_sampler.py +248 -175
  125. snowflake/ml/modeling/kernel_approximation/nystroem.py +248 -175
  126. snowflake/ml/modeling/kernel_approximation/polynomial_count_sketch.py +248 -175
  127. snowflake/ml/modeling/kernel_approximation/rbf_sampler.py +248 -175
  128. snowflake/ml/modeling/kernel_approximation/skewed_chi2_sampler.py +248 -175
  129. snowflake/ml/modeling/kernel_ridge/kernel_ridge.py +246 -175
  130. snowflake/ml/modeling/lightgbm/lgbm_classifier.py +246 -175
  131. snowflake/ml/modeling/lightgbm/lgbm_regressor.py +246 -175
  132. snowflake/ml/modeling/linear_model/ard_regression.py +246 -175
  133. snowflake/ml/modeling/linear_model/bayesian_ridge.py +246 -175
  134. snowflake/ml/modeling/linear_model/elastic_net.py +246 -175
  135. snowflake/ml/modeling/linear_model/elastic_net_cv.py +246 -175
  136. snowflake/ml/modeling/linear_model/gamma_regressor.py +246 -175
  137. snowflake/ml/modeling/linear_model/huber_regressor.py +246 -175
  138. snowflake/ml/modeling/linear_model/lars.py +246 -175
  139. snowflake/ml/modeling/linear_model/lars_cv.py +246 -175
  140. snowflake/ml/modeling/linear_model/lasso.py +246 -175
  141. snowflake/ml/modeling/linear_model/lasso_cv.py +246 -175
  142. snowflake/ml/modeling/linear_model/lasso_lars.py +246 -175
  143. snowflake/ml/modeling/linear_model/lasso_lars_cv.py +246 -175
  144. snowflake/ml/modeling/linear_model/lasso_lars_ic.py +246 -175
  145. snowflake/ml/modeling/linear_model/linear_regression.py +246 -175
  146. snowflake/ml/modeling/linear_model/logistic_regression.py +246 -175
  147. snowflake/ml/modeling/linear_model/logistic_regression_cv.py +246 -175
  148. snowflake/ml/modeling/linear_model/multi_task_elastic_net.py +246 -175
  149. snowflake/ml/modeling/linear_model/multi_task_elastic_net_cv.py +246 -175
  150. snowflake/ml/modeling/linear_model/multi_task_lasso.py +246 -175
  151. snowflake/ml/modeling/linear_model/multi_task_lasso_cv.py +246 -175
  152. snowflake/ml/modeling/linear_model/orthogonal_matching_pursuit.py +246 -175
  153. snowflake/ml/modeling/linear_model/passive_aggressive_classifier.py +246 -175
  154. snowflake/ml/modeling/linear_model/passive_aggressive_regressor.py +246 -175
  155. snowflake/ml/modeling/linear_model/perceptron.py +246 -175
  156. snowflake/ml/modeling/linear_model/poisson_regressor.py +246 -175
  157. snowflake/ml/modeling/linear_model/ransac_regressor.py +246 -175
  158. snowflake/ml/modeling/linear_model/ridge.py +246 -175
  159. snowflake/ml/modeling/linear_model/ridge_classifier.py +246 -175
  160. snowflake/ml/modeling/linear_model/ridge_classifier_cv.py +246 -175
  161. snowflake/ml/modeling/linear_model/ridge_cv.py +246 -175
  162. snowflake/ml/modeling/linear_model/sgd_classifier.py +246 -175
  163. snowflake/ml/modeling/linear_model/sgd_one_class_svm.py +246 -175
  164. snowflake/ml/modeling/linear_model/sgd_regressor.py +246 -175
  165. snowflake/ml/modeling/linear_model/theil_sen_regressor.py +246 -175
  166. snowflake/ml/modeling/linear_model/tweedie_regressor.py +246 -175
  167. snowflake/ml/modeling/manifold/isomap.py +248 -175
  168. snowflake/ml/modeling/manifold/mds.py +248 -175
  169. snowflake/ml/modeling/manifold/spectral_embedding.py +248 -175
  170. snowflake/ml/modeling/manifold/tsne.py +248 -175
  171. snowflake/ml/modeling/mixture/bayesian_gaussian_mixture.py +246 -175
  172. snowflake/ml/modeling/mixture/gaussian_mixture.py +246 -175
  173. snowflake/ml/modeling/model_selection/grid_search_cv.py +63 -41
  174. snowflake/ml/modeling/model_selection/randomized_search_cv.py +80 -38
  175. snowflake/ml/modeling/multiclass/one_vs_one_classifier.py +246 -175
  176. snowflake/ml/modeling/multiclass/one_vs_rest_classifier.py +246 -175
  177. snowflake/ml/modeling/multiclass/output_code_classifier.py +246 -175
  178. snowflake/ml/modeling/naive_bayes/bernoulli_nb.py +246 -175
  179. snowflake/ml/modeling/naive_bayes/categorical_nb.py +246 -175
  180. snowflake/ml/modeling/naive_bayes/complement_nb.py +246 -175
  181. snowflake/ml/modeling/naive_bayes/gaussian_nb.py +246 -175
  182. snowflake/ml/modeling/naive_bayes/multinomial_nb.py +246 -175
  183. snowflake/ml/modeling/neighbors/k_neighbors_classifier.py +246 -175
  184. snowflake/ml/modeling/neighbors/k_neighbors_regressor.py +246 -175
  185. snowflake/ml/modeling/neighbors/kernel_density.py +246 -175
  186. snowflake/ml/modeling/neighbors/local_outlier_factor.py +246 -175
  187. snowflake/ml/modeling/neighbors/nearest_centroid.py +246 -175
  188. snowflake/ml/modeling/neighbors/nearest_neighbors.py +246 -175
  189. snowflake/ml/modeling/neighbors/neighborhood_components_analysis.py +248 -175
  190. snowflake/ml/modeling/neighbors/radius_neighbors_classifier.py +246 -175
  191. snowflake/ml/modeling/neighbors/radius_neighbors_regressor.py +246 -175
  192. snowflake/ml/modeling/neural_network/bernoulli_rbm.py +248 -175
  193. snowflake/ml/modeling/neural_network/mlp_classifier.py +246 -175
  194. snowflake/ml/modeling/neural_network/mlp_regressor.py +246 -175
  195. snowflake/ml/modeling/pipeline/pipeline.py +517 -35
  196. snowflake/ml/modeling/preprocessing/binarizer.py +1 -5
  197. snowflake/ml/modeling/preprocessing/k_bins_discretizer.py +1 -5
  198. snowflake/ml/modeling/preprocessing/label_encoder.py +1 -5
  199. snowflake/ml/modeling/preprocessing/max_abs_scaler.py +1 -5
  200. snowflake/ml/modeling/preprocessing/min_max_scaler.py +10 -12
  201. snowflake/ml/modeling/preprocessing/normalizer.py +1 -5
  202. snowflake/ml/modeling/preprocessing/one_hot_encoder.py +13 -5
  203. snowflake/ml/modeling/preprocessing/ordinal_encoder.py +1 -5
  204. snowflake/ml/modeling/preprocessing/polynomial_features.py +248 -175
  205. snowflake/ml/modeling/preprocessing/robust_scaler.py +1 -5
  206. snowflake/ml/modeling/preprocessing/standard_scaler.py +11 -11
  207. snowflake/ml/modeling/semi_supervised/label_propagation.py +246 -175
  208. snowflake/ml/modeling/semi_supervised/label_spreading.py +246 -175
  209. snowflake/ml/modeling/svm/linear_svc.py +246 -175
  210. snowflake/ml/modeling/svm/linear_svr.py +246 -175
  211. snowflake/ml/modeling/svm/nu_svc.py +246 -175
  212. snowflake/ml/modeling/svm/nu_svr.py +246 -175
  213. snowflake/ml/modeling/svm/svc.py +246 -175
  214. snowflake/ml/modeling/svm/svr.py +246 -175
  215. snowflake/ml/modeling/tree/decision_tree_classifier.py +246 -175
  216. snowflake/ml/modeling/tree/decision_tree_regressor.py +246 -175
  217. snowflake/ml/modeling/tree/extra_tree_classifier.py +246 -175
  218. snowflake/ml/modeling/tree/extra_tree_regressor.py +246 -175
  219. snowflake/ml/modeling/xgboost/xgb_classifier.py +246 -175
  220. snowflake/ml/modeling/xgboost/xgb_regressor.py +246 -175
  221. snowflake/ml/modeling/xgboost/xgbrf_classifier.py +246 -175
  222. snowflake/ml/modeling/xgboost/xgbrf_regressor.py +246 -175
  223. snowflake/ml/registry/model_registry.py +3 -149
  224. snowflake/ml/registry/registry.py +1 -1
  225. snowflake/ml/version.py +1 -1
  226. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/METADATA +129 -57
  227. snowflake_ml_python-1.5.0.dist-info/RECORD +380 -0
  228. snowflake/ml/model/_model_composer/model_runtime/model_runtime.py +0 -97
  229. snowflake/ml/registry/_artifact_manager.py +0 -156
  230. snowflake/ml/registry/artifact.py +0 -46
  231. snowflake_ml_python-1.4.0.dist-info/RECORD +0 -370
  232. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/LICENSE.txt +0 -0
  233. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/WHEEL +0 -0
  234. {snowflake_ml_python-1.4.0.dist-info → snowflake_ml_python-1.5.0.dist-info}/top_level.txt +0 -0
@@ -33,6 +33,15 @@ from snowflake.ml.modeling._internal.transformer_protocols import (
33
33
  BatchInferenceKwargsTypedDict,
34
34
  ScoreKwargsTypedDict
35
35
  )
36
+ from snowflake.ml.model._signatures import utils as model_signature_utils
37
+ from snowflake.ml.model.model_signature import (
38
+ BaseFeatureSpec,
39
+ DataType,
40
+ FeatureSpec,
41
+ ModelSignature,
42
+ _infer_signature,
43
+ _rename_signature_with_snowflake_identifiers,
44
+ )
36
45
 
37
46
  from snowflake.ml.modeling._internal.model_transformer_builder import ModelTransformerBuilder
38
47
 
@@ -43,16 +52,6 @@ from snowflake.ml.modeling._internal.estimator_utils import (
43
52
  validate_sklearn_args,
44
53
  )
45
54
 
46
- from snowflake.ml.model.model_signature import (
47
- DataType,
48
- FeatureSpec,
49
- ModelSignature,
50
- _infer_signature,
51
- _rename_signature_with_snowflake_identifiers,
52
- BaseFeatureSpec,
53
- )
54
- from snowflake.ml.model._signatures import utils as model_signature_utils
55
-
56
55
  _PROJECT = "ModelDevelopment"
57
56
  # Derive subproject from module name by removing "sklearn"
58
57
  # and converting module name from underscore to CamelCase
@@ -61,12 +60,6 @@ _SUBPROJECT = "".join([s.capitalize() for s in "sklearn.svm".replace("sklearn.",
61
60
 
62
61
  DATAFRAME_TYPE = Union[DataFrame, pd.DataFrame]
63
62
 
64
- def _is_fit_transform_method_enabled() -> Callable[[Any], bool]:
65
- def check(self: BaseTransformer) -> TypeGuard[Callable[..., object]]:
66
- return False and callable(getattr(self._sklearn_object, "fit_transform", None))
67
- return check
68
-
69
-
70
63
  class SVC(BaseTransformer):
71
64
  r"""C-Support Vector Classification
72
65
  For more details on this class, see [sklearn.svm.SVC]
@@ -302,12 +295,7 @@ class SVC(BaseTransformer):
302
295
  )
303
296
  return selected_cols
304
297
 
305
- @telemetry.send_api_usage_telemetry(
306
- project=_PROJECT,
307
- subproject=_SUBPROJECT,
308
- custom_tags=dict([("autogen", True)]),
309
- )
310
- def fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVC":
298
+ def _fit(self, dataset: Union[DataFrame, pd.DataFrame]) -> "SVC":
311
299
  """Fit the SVM model according to the given training data
312
300
  For more details on this function, see [sklearn.svm.SVC.fit]
313
301
  (https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC.fit)
@@ -334,12 +322,14 @@ class SVC(BaseTransformer):
334
322
 
335
323
  self._snowpark_cols = dataset.select(self.input_cols).columns
336
324
 
337
- # If we are already in a stored procedure, no need to kick off another one.
325
+ # If we are already in a stored procedure, no need to kick off another one.
338
326
  if SNOWML_SPROC_ENV in os.environ:
339
327
  statement_params = telemetry.get_function_usage_statement_params(
340
328
  project=_PROJECT,
341
329
  subproject=_SUBPROJECT,
342
- function_name=telemetry.get_statement_params_full_func_name(inspect.currentframe(), SVC.__class__.__name__),
330
+ function_name=telemetry.get_statement_params_full_func_name(
331
+ inspect.currentframe(), SVC.__class__.__name__
332
+ ),
343
333
  api_calls=[Session.call],
344
334
  custom_tags=dict([("autogen", True)]) if self._autogenerated else None,
345
335
  )
@@ -360,27 +350,24 @@ class SVC(BaseTransformer):
360
350
  )
361
351
  self._sklearn_object = model_trainer.train()
362
352
  self._is_fitted = True
363
- self._get_model_signatures(dataset)
353
+ self._generate_model_signatures(dataset)
364
354
  return self
365
355
 
366
356
  def _batch_inference_validate_snowpark(
367
357
  self,
368
358
  dataset: DataFrame,
369
359
  inference_method: str,
370
- ) -> List[str]:
371
- """Util method to run validate that batch inference can be run on a snowpark dataframe and
372
- return the available package that exists in the snowflake anaconda channel
360
+ ) -> None:
361
+ """Util method to run validate that batch inference can be run on a snowpark dataframe.
373
362
 
374
363
  Args:
375
364
  dataset: snowpark dataframe
376
365
  inference_method: the inference method such as predict, score...
377
-
366
+
378
367
  Raises:
379
368
  SnowflakeMLException: If the estimator is not fitted, raise error
380
369
  SnowflakeMLException: If the session is None, raise error
381
370
 
382
- Returns:
383
- A list of available package that exists in the snowflake anaconda channel
384
371
  """
385
372
  if not self._is_fitted:
386
373
  raise exceptions.SnowflakeMLException(
@@ -398,9 +385,7 @@ class SVC(BaseTransformer):
398
385
  "Session must not specified for snowpark dataset."
399
386
  ),
400
387
  )
401
- # Validate that key package version in user workspace are supported in snowflake conda channel
402
- return pkg_version_utils.get_valid_pkg_versions_supported_in_snowflake_conda_channel(
403
- pkg_versions=self._get_dependencies(), session=session, subproject=_SUBPROJECT)
388
+
404
389
 
405
390
  @available_if(original_estimator_has_callable("predict")) # type: ignore[misc]
406
391
  @telemetry.send_api_usage_telemetry(
@@ -436,7 +421,9 @@ class SVC(BaseTransformer):
436
421
  # when it is classifier, infer the datatype from label columns
437
422
  if expected_type_inferred == "" and 'predict' in self.model_signatures:
438
423
  # Batch inference takes a single expected output column type. Use the first columns type for now.
439
- label_cols_signatures = [row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols]
424
+ label_cols_signatures = [
425
+ row for row in self.model_signatures['predict'].outputs if row.name in self.output_cols
426
+ ]
440
427
  if len(label_cols_signatures) == 0:
441
428
  error_str = f"Output columns {self.output_cols} do not match model signatures {self.model_signatures['predict'].outputs}."
442
429
  raise exceptions.SnowflakeMLException(
@@ -444,25 +431,23 @@ class SVC(BaseTransformer):
444
431
  original_exception=ValueError(error_str),
445
432
  )
446
433
 
447
- expected_type_inferred = convert_sp_to_sf_type(
448
- label_cols_signatures[0].as_snowpark_type()
449
- )
434
+ expected_type_inferred = convert_sp_to_sf_type(label_cols_signatures[0].as_snowpark_type())
450
435
 
451
- self._deps = self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
452
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
436
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
437
+ self._deps = self._get_dependencies()
438
+ assert isinstance(
439
+ dataset._session, Session
440
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
453
441
 
454
442
  transform_kwargs = dict(
455
- session = dataset._session,
456
- dependencies = self._deps,
457
- drop_input_cols = self._drop_input_cols,
458
- expected_output_cols_type = expected_type_inferred,
443
+ session=dataset._session,
444
+ dependencies=self._deps,
445
+ drop_input_cols=self._drop_input_cols,
446
+ expected_output_cols_type=expected_type_inferred,
459
447
  )
460
448
 
461
449
  elif isinstance(dataset, pd.DataFrame):
462
- transform_kwargs = dict(
463
- snowpark_input_cols = self._snowpark_cols,
464
- drop_input_cols = self._drop_input_cols
465
- )
450
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
466
451
 
467
452
  transform_handlers = ModelTransformerBuilder.build(
468
453
  dataset=dataset,
@@ -502,7 +487,7 @@ class SVC(BaseTransformer):
502
487
  Transformed dataset.
503
488
  """
504
489
  super()._check_dataset_type(dataset)
505
- inference_method="transform"
490
+ inference_method = "transform"
506
491
 
507
492
  # This dictionary contains optional kwargs for batch inference. These kwargs
508
493
  # are specific to the type of dataset used.
@@ -532,24 +517,19 @@ class SVC(BaseTransformer):
532
517
  if all(x == output_types[0] for x in output_types) and len(output_types) == len(self.output_cols):
533
518
  expected_dtype = convert_sp_to_sf_type(output_types[0])
534
519
 
535
- self._deps = self._batch_inference_validate_snowpark(
536
- dataset=dataset,
537
- inference_method=inference_method,
538
- )
520
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
521
+ self._deps = self._get_dependencies()
539
522
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
540
523
 
541
524
  transform_kwargs = dict(
542
- session = dataset._session,
543
- dependencies = self._deps,
544
- drop_input_cols = self._drop_input_cols,
545
- expected_output_cols_type = expected_dtype,
525
+ session=dataset._session,
526
+ dependencies=self._deps,
527
+ drop_input_cols=self._drop_input_cols,
528
+ expected_output_cols_type=expected_dtype,
546
529
  )
547
530
 
548
531
  elif isinstance(dataset, pd.DataFrame):
549
- transform_kwargs = dict(
550
- snowpark_input_cols = self._snowpark_cols,
551
- drop_input_cols = self._drop_input_cols
552
- )
532
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
553
533
 
554
534
  transform_handlers = ModelTransformerBuilder.build(
555
535
  dataset=dataset,
@@ -568,7 +548,11 @@ class SVC(BaseTransformer):
568
548
  return output_df
569
549
 
570
550
  @available_if(original_estimator_has_callable("fit_predict")) # type: ignore[misc]
571
- def fit_predict(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_predict_",) -> Union[DataFrame, pd.DataFrame]:
551
+ def fit_predict(
552
+ self,
553
+ dataset: Union[DataFrame, pd.DataFrame],
554
+ output_cols_prefix: str = "fit_predict_",
555
+ ) -> Union[DataFrame, pd.DataFrame]:
572
556
  """ Method not supported for this class.
573
557
 
574
558
 
@@ -593,22 +577,104 @@ class SVC(BaseTransformer):
593
577
  )
594
578
  output_result, fitted_estimator = model_trainer.train_fit_predict(
595
579
  drop_input_cols=self._drop_input_cols,
596
- expected_output_cols_list=self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix),
580
+ expected_output_cols_list=(
581
+ self.output_cols if self.output_cols else self._get_output_column_names(output_cols_prefix)
582
+ ),
597
583
  )
598
584
  self._sklearn_object = fitted_estimator
599
585
  self._is_fitted = True
600
586
  return output_result
601
587
 
588
+
589
+ @available_if(original_estimator_has_callable("fit_transform")) # type: ignore[misc]
590
+ def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame], output_cols_prefix: str = "fit_transform_",) -> Union[DataFrame, pd.DataFrame]:
591
+ """ Method not supported for this class.
592
+
602
593
 
603
- @available_if(_is_fit_transform_method_enabled()) # type: ignore[misc]
604
- def fit_transform(self, dataset: Union[DataFrame, pd.DataFrame]) -> Union[Any, npt.NDArray[Any]]:
605
- """
594
+ Raises:
595
+ TypeError: Supported dataset types: snowpark.DataFrame, pandas.DataFrame.
596
+
597
+ Args:
598
+ dataset: Union[snowflake.snowpark.DataFrame, pandas.DataFrame]
599
+ Snowpark or Pandas DataFrame.
600
+ output_cols_prefix: Prefix for the response columns
606
601
  Returns:
607
602
  Transformed dataset.
608
603
  """
609
- self.fit(dataset)
610
- assert self._sklearn_object is not None
611
- return self._sklearn_object.embedding_
604
+ self._infer_input_output_cols(dataset)
605
+ super()._check_dataset_type(dataset)
606
+ model_trainer = ModelTrainerBuilder.build_fit_transform(
607
+ estimator=self._sklearn_object,
608
+ dataset=dataset,
609
+ input_cols=self.input_cols,
610
+ label_cols=self.label_cols,
611
+ sample_weight_col=self.sample_weight_col,
612
+ autogenerated=self._autogenerated,
613
+ subproject=_SUBPROJECT,
614
+ )
615
+ output_result, fitted_estimator = model_trainer.train_fit_transform(
616
+ drop_input_cols=self._drop_input_cols,
617
+ expected_output_cols_list=self.output_cols,
618
+ )
619
+ self._sklearn_object = fitted_estimator
620
+ self._is_fitted = True
621
+ return output_result
622
+
623
+
624
+ def _get_output_column_names(self, output_cols_prefix: str, output_cols: Optional[List[str]] = None) -> List[str]:
625
+ """ Returns the list of output columns for predict_proba(), decision_function(), etc.. functions.
626
+ Returns a list with output_cols_prefix as the only element if the estimator is not a classifier.
627
+ """
628
+ output_cols_prefix = identifier.resolve_identifier(output_cols_prefix)
629
+ # The following condition is introduced for kneighbors methods, and not used in other methods
630
+ if output_cols:
631
+ output_cols = [
632
+ identifier.concat_names([output_cols_prefix, identifier.resolve_identifier(c)])
633
+ for c in output_cols
634
+ ]
635
+ elif getattr(self._sklearn_object, "classes_", None) is None:
636
+ output_cols = [output_cols_prefix]
637
+ elif self._sklearn_object is not None:
638
+ classes = self._sklearn_object.classes_
639
+ if isinstance(classes, numpy.ndarray):
640
+ output_cols = [f'{output_cols_prefix}{str(c)}' for c in classes.tolist()]
641
+ elif isinstance(classes, list) and len(classes) > 0 and isinstance(classes[0], numpy.ndarray):
642
+ # If the estimator is a multioutput estimator, classes_ will be a list of ndarrays.
643
+ output_cols = []
644
+ for i, cl in enumerate(classes):
645
+ # For binary classification, there is only one output column for each class
646
+ # ndarray as the two classes are complementary.
647
+ if len(cl) == 2:
648
+ output_cols.append(f'{output_cols_prefix}{i}_{cl[0]}')
649
+ else:
650
+ output_cols.extend([
651
+ f'{output_cols_prefix}{i}_{c}' for c in cl.tolist()
652
+ ])
653
+ else:
654
+ output_cols = []
655
+
656
+ # Make sure column names are valid snowflake identifiers.
657
+ assert output_cols is not None # Make MyPy happy
658
+ rv = [identifier.rename_to_valid_snowflake_identifier(c) for c in output_cols]
659
+
660
+ return rv
661
+
662
+ def _align_expected_output_names(
663
+ self, method: str, dataset: DataFrame, expected_output_cols_list: List[str], output_cols_prefix: str
664
+ ) -> List[str]:
665
+ # in case the inferred output column names dimension is different
666
+ # we use one line of snowpark dataframe and put it into sklearn estimator using pandas
667
+ output_df_pd = getattr(self, method)(dataset.limit(1).to_pandas(), output_cols_prefix)
668
+ output_df_columns = list(output_df_pd.columns)
669
+ output_df_columns_set: Set[str] = set(output_df_columns) - set(dataset.columns)
670
+ if self.sample_weight_col:
671
+ output_df_columns_set -= set(self.sample_weight_col)
672
+ # if the dimension of inferred output column names is correct; use it
673
+ if len(expected_output_cols_list) == len(output_df_columns_set):
674
+ return expected_output_cols_list
675
+ # otherwise, use the sklearn estimator's output
676
+ else:
677
+ return sorted(list(output_df_columns_set), key=lambda x: output_df_columns.index(x))
612
678
 
613
679
  @available_if(original_estimator_has_callable("predict_proba")) # type: ignore[misc]
614
680
  @telemetry.send_api_usage_telemetry(
@@ -642,24 +708,26 @@ class SVC(BaseTransformer):
642
708
  # are specific to the type of dataset used.
643
709
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
644
710
 
711
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
712
+
645
713
  if isinstance(dataset, DataFrame):
646
- self._deps = self._batch_inference_validate_snowpark(
647
- dataset=dataset,
648
- inference_method=inference_method,
649
- )
650
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
714
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
715
+ self._deps = self._get_dependencies()
716
+ assert isinstance(
717
+ dataset._session, Session
718
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
651
719
  transform_kwargs = dict(
652
720
  session=dataset._session,
653
721
  dependencies=self._deps,
654
- drop_input_cols = self._drop_input_cols,
722
+ drop_input_cols=self._drop_input_cols,
655
723
  expected_output_cols_type="float",
656
724
  )
725
+ expected_output_cols = self._align_expected_output_names(
726
+ inference_method, dataset, expected_output_cols, output_cols_prefix
727
+ )
657
728
 
658
729
  elif isinstance(dataset, pd.DataFrame):
659
- transform_kwargs = dict(
660
- snowpark_input_cols = self._snowpark_cols,
661
- drop_input_cols = self._drop_input_cols
662
- )
730
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
663
731
 
664
732
  transform_handlers = ModelTransformerBuilder.build(
665
733
  dataset=dataset,
@@ -671,7 +739,7 @@ class SVC(BaseTransformer):
671
739
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
672
740
  inference_method=inference_method,
673
741
  input_cols=self.input_cols,
674
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
742
+ expected_output_cols=expected_output_cols,
675
743
  **transform_kwargs
676
744
  )
677
745
  return output_df
@@ -703,29 +771,30 @@ class SVC(BaseTransformer):
703
771
  Output dataset with log probability of the sample for each class in the model.
704
772
  """
705
773
  super()._check_dataset_type(dataset)
706
- inference_method="predict_log_proba"
774
+ inference_method = "predict_log_proba"
775
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
707
776
 
708
777
  # This dictionary contains optional kwargs for batch inference. These kwargs
709
778
  # are specific to the type of dataset used.
710
779
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
711
780
 
712
781
  if isinstance(dataset, DataFrame):
713
- self._deps = self._batch_inference_validate_snowpark(
714
- dataset=dataset,
715
- inference_method=inference_method,
716
- )
717
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
782
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
783
+ self._deps = self._get_dependencies()
784
+ assert isinstance(
785
+ dataset._session, Session
786
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
718
787
  transform_kwargs = dict(
719
788
  session=dataset._session,
720
789
  dependencies=self._deps,
721
- drop_input_cols = self._drop_input_cols,
790
+ drop_input_cols=self._drop_input_cols,
722
791
  expected_output_cols_type="float",
723
792
  )
793
+ expected_output_cols = self._align_expected_output_names(
794
+ inference_method, dataset, expected_output_cols, output_cols_prefix
795
+ )
724
796
  elif isinstance(dataset, pd.DataFrame):
725
- transform_kwargs = dict(
726
- snowpark_input_cols = self._snowpark_cols,
727
- drop_input_cols = self._drop_input_cols
728
- )
797
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
729
798
 
730
799
  transform_handlers = ModelTransformerBuilder.build(
731
800
  dataset=dataset,
@@ -738,7 +807,7 @@ class SVC(BaseTransformer):
738
807
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
739
808
  inference_method=inference_method,
740
809
  input_cols=self.input_cols,
741
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
810
+ expected_output_cols=expected_output_cols,
742
811
  **transform_kwargs
743
812
  )
744
813
  return output_df
@@ -766,30 +835,32 @@ class SVC(BaseTransformer):
766
835
  Output dataset with results of the decision function for the samples in input dataset.
767
836
  """
768
837
  super()._check_dataset_type(dataset)
769
- inference_method="decision_function"
838
+ inference_method = "decision_function"
770
839
 
771
840
  # This dictionary contains optional kwargs for batch inference. These kwargs
772
841
  # are specific to the type of dataset used.
773
842
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
774
843
 
844
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
845
+
775
846
  if isinstance(dataset, DataFrame):
776
- self._deps = self._batch_inference_validate_snowpark(
777
- dataset=dataset,
778
- inference_method=inference_method,
779
- )
780
- assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
847
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
848
+ self._deps = self._get_dependencies()
849
+ assert isinstance(
850
+ dataset._session, Session
851
+ ) # mypy does not recognize the check in _batch_inference_validate_snowpark()
781
852
  transform_kwargs = dict(
782
853
  session=dataset._session,
783
854
  dependencies=self._deps,
784
- drop_input_cols = self._drop_input_cols,
855
+ drop_input_cols=self._drop_input_cols,
785
856
  expected_output_cols_type="float",
786
857
  )
858
+ expected_output_cols = self._align_expected_output_names(
859
+ inference_method, dataset, expected_output_cols, output_cols_prefix
860
+ )
787
861
 
788
862
  elif isinstance(dataset, pd.DataFrame):
789
- transform_kwargs = dict(
790
- snowpark_input_cols = self._snowpark_cols,
791
- drop_input_cols = self._drop_input_cols
792
- )
863
+ transform_kwargs = dict(snowpark_input_cols=self._snowpark_cols, drop_input_cols=self._drop_input_cols)
793
864
 
794
865
  transform_handlers = ModelTransformerBuilder.build(
795
866
  dataset=dataset,
@@ -802,7 +873,7 @@ class SVC(BaseTransformer):
802
873
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
803
874
  inference_method=inference_method,
804
875
  input_cols=self.input_cols,
805
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
876
+ expected_output_cols=expected_output_cols,
806
877
  **transform_kwargs
807
878
  )
808
879
  return output_df
@@ -831,17 +902,17 @@ class SVC(BaseTransformer):
831
902
  Output dataset with probability of the sample for each class in the model.
832
903
  """
833
904
  super()._check_dataset_type(dataset)
834
- inference_method="score_samples"
905
+ inference_method = "score_samples"
835
906
 
836
907
  # This dictionary contains optional kwargs for batch inference. These kwargs
837
908
  # are specific to the type of dataset used.
838
909
  transform_kwargs: BatchInferenceKwargsTypedDict = dict()
839
910
 
911
+ expected_output_cols = self._get_output_column_names(output_cols_prefix)
912
+
840
913
  if isinstance(dataset, DataFrame):
841
- self._deps = self._batch_inference_validate_snowpark(
842
- dataset=dataset,
843
- inference_method=inference_method,
844
- )
914
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
915
+ self._deps = self._get_dependencies()
845
916
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
846
917
  transform_kwargs = dict(
847
918
  session=dataset._session,
@@ -849,6 +920,9 @@ class SVC(BaseTransformer):
849
920
  drop_input_cols = self._drop_input_cols,
850
921
  expected_output_cols_type="float",
851
922
  )
923
+ expected_output_cols = self._align_expected_output_names(
924
+ inference_method, dataset, expected_output_cols, output_cols_prefix
925
+ )
852
926
 
853
927
  elif isinstance(dataset, pd.DataFrame):
854
928
  transform_kwargs = dict(
@@ -867,7 +941,7 @@ class SVC(BaseTransformer):
867
941
  output_df: DATAFRAME_TYPE = transform_handlers.batch_inference(
868
942
  inference_method=inference_method,
869
943
  input_cols=self.input_cols,
870
- expected_output_cols=self._get_output_column_names(output_cols_prefix),
944
+ expected_output_cols=expected_output_cols,
871
945
  **transform_kwargs
872
946
  )
873
947
  return output_df
@@ -902,17 +976,15 @@ class SVC(BaseTransformer):
902
976
  transform_kwargs: ScoreKwargsTypedDict = dict()
903
977
 
904
978
  if isinstance(dataset, DataFrame):
905
- self._deps = self._batch_inference_validate_snowpark(
906
- dataset=dataset,
907
- inference_method="score",
908
- )
979
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method="score")
980
+ self._deps = self._get_dependencies()
909
981
  selected_cols = self._get_active_columns()
910
982
  if len(selected_cols) > 0:
911
983
  dataset = dataset.select(selected_cols)
912
984
  assert isinstance(dataset._session, Session) # keep mypy happy
913
985
  transform_kwargs = dict(
914
986
  session=dataset._session,
915
- dependencies=["snowflake-snowpark-python"] + self._deps,
987
+ dependencies=self._deps,
916
988
  score_sproc_imports=['sklearn'],
917
989
  )
918
990
  elif isinstance(dataset, pd.DataFrame):
@@ -977,11 +1049,8 @@ class SVC(BaseTransformer):
977
1049
 
978
1050
  if isinstance(dataset, DataFrame):
979
1051
 
980
- self._deps = self._batch_inference_validate_snowpark(
981
- dataset=dataset,
982
- inference_method=inference_method,
983
-
984
- )
1052
+ self._batch_inference_validate_snowpark(dataset=dataset, inference_method=inference_method)
1053
+ self._deps = self._get_dependencies()
985
1054
  assert isinstance(dataset._session, Session) # mypy does not recognize the check in _batch_inference_validate_snowpark()
986
1055
  transform_kwargs = dict(
987
1056
  session = dataset._session,
@@ -1014,50 +1083,84 @@ class SVC(BaseTransformer):
1014
1083
  )
1015
1084
  return output_df
1016
1085
 
1086
+
1087
+
1088
+ def to_sklearn(self) -> Any:
1089
+ """Get sklearn.svm.SVC object.
1090
+ """
1091
+ if self._sklearn_object is None:
1092
+ self._sklearn_object = self._create_sklearn_object()
1093
+ return self._sklearn_object
1094
+
1095
+ def to_xgboost(self) -> Any:
1096
+ raise exceptions.SnowflakeMLException(
1097
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1098
+ original_exception=AttributeError(
1099
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1100
+ "to_xgboost()",
1101
+ "to_sklearn()"
1102
+ )
1103
+ ),
1104
+ )
1105
+
1106
+ def to_lightgbm(self) -> Any:
1107
+ raise exceptions.SnowflakeMLException(
1108
+ error_code=error_codes.METHOD_NOT_ALLOWED,
1109
+ original_exception=AttributeError(
1110
+ modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1111
+ "to_lightgbm()",
1112
+ "to_sklearn()"
1113
+ )
1114
+ ),
1115
+ )
1116
+
1117
+ def _get_dependencies(self) -> List[str]:
1118
+ return self._deps
1119
+
1017
1120
 
1018
- def _get_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1121
+ def _generate_model_signatures(self, dataset: Union[DataFrame, pd.DataFrame]) -> None:
1019
1122
  self._model_signature_dict = dict()
1020
1123
 
1021
1124
  PROB_FUNCTIONS = ["predict_log_proba", "predict_proba", "decision_function"]
1022
1125
 
1023
- inputs = list(_infer_signature(dataset[self.input_cols], "input"))
1126
+ inputs = list(_infer_signature(dataset[self.input_cols], "input", use_snowflake_identifiers=True))
1024
1127
  outputs: List[BaseFeatureSpec] = []
1025
1128
  if hasattr(self, "predict"):
1026
1129
  # keep mypy happy
1027
- assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1130
+ assert self._sklearn_object is not None and hasattr(self._sklearn_object, "_estimator_type")
1028
1131
  # For classifier, the type of predict is the same as the type of label
1029
- if self._sklearn_object._estimator_type == 'classifier':
1030
- # label columns is the desired type for output
1132
+ if self._sklearn_object._estimator_type == "classifier":
1133
+ # label columns is the desired type for output
1031
1134
  outputs = list(_infer_signature(dataset[self.label_cols], "output", use_snowflake_identifiers=True))
1032
1135
  # rename the output columns
1033
1136
  outputs = list(model_signature_utils.rename_features(outputs, self.output_cols))
1034
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1035
- ([] if self._drop_input_cols else inputs)
1036
- + outputs)
1137
+ self._model_signature_dict["predict"] = ModelSignature(
1138
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1139
+ )
1037
1140
  # For mixture models that use the density mixin, `predict` returns the argmax of the log prob.
1038
1141
  # For outlier models, returns -1 for outliers and 1 for inliers.
1039
- # Clusterer returns int64 cluster labels.
1142
+ # Clusterer returns int64 cluster labels.
1040
1143
  elif self._sklearn_object._estimator_type in ["DensityEstimator", "clusterer", "outlier_detector"]:
1041
1144
  outputs = [FeatureSpec(dtype=DataType.INT64, name=c) for c in self.output_cols]
1042
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1043
- ([] if self._drop_input_cols else inputs)
1044
- + outputs)
1045
-
1145
+ self._model_signature_dict["predict"] = ModelSignature(
1146
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1147
+ )
1148
+
1046
1149
  # For regressor, the type of predict is float64
1047
- elif self._sklearn_object._estimator_type == 'regressor':
1150
+ elif self._sklearn_object._estimator_type == "regressor":
1048
1151
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in self.output_cols]
1049
- self._model_signature_dict["predict"] = ModelSignature(inputs,
1050
- ([] if self._drop_input_cols else inputs)
1051
- + outputs)
1052
-
1152
+ self._model_signature_dict["predict"] = ModelSignature(
1153
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1154
+ )
1155
+
1053
1156
  for prob_func in PROB_FUNCTIONS:
1054
1157
  if hasattr(self, prob_func):
1055
1158
  output_cols_prefix: str = f"{prob_func}_"
1056
1159
  output_column_names = self._get_output_column_names(output_cols_prefix)
1057
1160
  outputs = [FeatureSpec(dtype=DataType.DOUBLE, name=c) for c in output_column_names]
1058
- self._model_signature_dict[prob_func] = ModelSignature(inputs,
1059
- ([] if self._drop_input_cols else inputs)
1060
- + outputs)
1161
+ self._model_signature_dict[prob_func] = ModelSignature(
1162
+ inputs, ([] if self._drop_input_cols else inputs) + outputs
1163
+ )
1061
1164
 
1062
1165
  # Output signature names may still need to be renamed, since they were not created with `_infer_signature`.
1063
1166
  items = list(self._model_signature_dict.items())
@@ -1070,10 +1173,10 @@ class SVC(BaseTransformer):
1070
1173
  """Returns model signature of current class.
1071
1174
 
1072
1175
  Raises:
1073
- exceptions.SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1176
+ SnowflakeMLException: If estimator is not fitted, then model signature cannot be inferred
1074
1177
 
1075
1178
  Returns:
1076
- Dict[str, ModelSignature]: each method and its input output signature
1179
+ Dict with each method and its input output signature
1077
1180
  """
1078
1181
  if self._model_signature_dict is None:
1079
1182
  raise exceptions.SnowflakeMLException(
@@ -1081,35 +1184,3 @@ class SVC(BaseTransformer):
1081
1184
  original_exception=RuntimeError("Estimator not fitted before accessing property model_signatures!"),
1082
1185
  )
1083
1186
  return self._model_signature_dict
1084
-
1085
- def to_sklearn(self) -> Any:
1086
- """Get sklearn.svm.SVC object.
1087
- """
1088
- if self._sklearn_object is None:
1089
- self._sklearn_object = self._create_sklearn_object()
1090
- return self._sklearn_object
1091
-
1092
- def to_xgboost(self) -> Any:
1093
- raise exceptions.SnowflakeMLException(
1094
- error_code=error_codes.METHOD_NOT_ALLOWED,
1095
- original_exception=AttributeError(
1096
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1097
- "to_xgboost()",
1098
- "to_sklearn()"
1099
- )
1100
- ),
1101
- )
1102
-
1103
- def to_lightgbm(self) -> Any:
1104
- raise exceptions.SnowflakeMLException(
1105
- error_code=error_codes.METHOD_NOT_ALLOWED,
1106
- original_exception=AttributeError(
1107
- modeling_error_messages.UNSUPPORTED_MODEL_CONVERSION.format(
1108
- "to_lightgbm()",
1109
- "to_sklearn()"
1110
- )
1111
- ),
1112
- )
1113
-
1114
- def _get_dependencies(self) -> List[str]:
1115
- return self._deps